首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《FEBS letters》1985,189(1):72-76
Ricinus communis agglutinin (RCA) B chain, in contrast to ricin B chain, contains fucose. Since both RCA and ricin B chain lose two oligosaccharide side chains when treated with β-endo N-acetylglucosaminidase H, it is proposed that fucose is present on a third oligosaccharide. This third oligosaccharide is not present on the ricin B chain and accounts for the larger relative molecular mass of the RCA B chain.Ricinus communis agglutininRicinB chainFucose  相似文献   

2.
We have recently observed that certain asparagine-linked oligosaccharides are multivalent and capable of binding and precipitating with the D-mannose-specific lectin concanavalin A [cf. Bhattacharyya, L., & Brewer, C. F. (1989) Eur. J. Biochem. 178, 721-726] and with a variety of D-galactose-specific lectins [Bhattacharyya, L., Haraldsson, M., & Brewer, C. F. (1988) Biochemistry 27, 1034-1041]. In the present study, we have examined the binding and precipitating activities of a variety of mono- and biantennary L-fucosyl oligosaccharides with three L-fucose-specific isolectins from Lotus tetragonolobus, LTL-A, LTL-B, and LTL-C. The results show that certain difucosyl biantennary oligosaccharides are capable of cross-linking and precipitating with tetrameric isolectins, LTL-A and LTL-C, but not with dimeric isolectin, LTL-B. Quantitative precipitation analyses show that biantennary oligosaccharides containing the Lewis(x) antigen (or type 2 chain of Lewis(a)), Gal beta (1-4)[Fuc alpha (1-3)]GlcNAc, at the nonreducing terminus of each arm are bivalent ligands. However, a biantennary oligosaccharide containing a Lewis(x) determinant on one arm and a type 2 chain of blood group H(O) determinant, Fuc alpha (1-2)Gal beta (1-4)GlcNAc, on the other arm and a monoantennary oligosaccharide containing two fucose residues (analogue of the Lewis(y) antigen) bind but do not precipitate with the isolectins, indicating that the positions and linkage of fucose residues are critical for cross-linking.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Lipochitin oligosaccharides are organogenesis-inducing signal molecules produced by rhizobia to establish the formation of nitrogen-fixing root nodules in leguminous plants. Chitin oligosaccharide biosynthesis by the Mesorhizobium loti nodulation protein NodC was studied in vitro using membrane fractions of an Escherichia coli strain expressing the cloned M. loti nodC gene. The results indicate that prenylpyrophosphate-linked intermediates are not involved in the chitin oligosaccharide synthesis pathway. We observed that, in addition to N-acetylglucosamine (GlcNAc) from UDP-GlcNAc, NodC also directly incorporates free GlcNAc into chitin oligosaccharides. Further analysis showed that free GlcNAc is used as a primer that is elongated at the nonreducing terminus. The synthetic glycoside p-nitrophenyl-beta-N-acetylglucosaminide (pNPGlcNAc) has a free hydroxyl group at C4 but not at C1 and could also be used as an acceptor by NodC, confirming that chain elongation by NodC takes place at the nonreducing-terminal residue. The use of artificial glycosyl acceptors such as pNPGlcNAc has not previously been described for a processive glycosyltransferase. Using this method, we show that also the DG42-directed chitin oligosaccharide synthase activity, present in extracts of zebrafish embryos, is able to initiate chitin oligosaccharide synthesis on pNPGlcNAc. Consequently, chain elongation in chitin oligosaccharide synthesis by M. loti NodC and zebrafish DG42 occurs by the transfer of GlcNAc residues from UDP-GlcNAc to O4 of the nonreducing-terminal residue, in contrast to earlier models on the mechanism of processive beta-glycosyltransferase reactions.  相似文献   

4.
D M Cohen  R J Linhardt 《Biopolymers》1990,30(7-8):733-741
Heparin is a mixture of linear polysaccharides of undetermined sequence. Both biosynthetic data and computer simulation studies have established that each heparin polymer chain is comprised of oligosaccharides of defined sequence, representing ordered domains. One such ordered domian is a pentasaccharide corresponding to heparin's antithrombin III binding site. Previous computer simulation studies, performed under the assumption that heparin lyase (heparinase, EC 4.2.2.7), has a random endolytic action pattern, suggested that certain of these ordered oligosaccharide domains may themselves be nonrandomly arranged in the heparin polymer. The present work presents computer simulations of alternative action patterns for heparin lyase while assuming a random distribution of these oligosaccharide units within the heparin polymer. We consider action patterns that are determined solely by the primary structure of the substrate molecules. Results of the simulations are compared to (1) the experimental measurements of product chains formed throughout the reaction and (2) the change in weight average molecular weight Mw as a function of reaction completion as determined by absorbance at 232 nm. From the simulation of 60 action patterns for heparin lyase, we infer that one of the following statements concerning heparin and heparin lyase is true: (1) Heparin is a random arrangement of a small number of structurally defined oligosaccharide units. Heparin lyase changes its action pattern during the depolymerization of heparin (perhaps influenced by the secondary structure of substrate). (2) Heparin contain clusters of oligosaccharide sequences that are present in low concentrations (overall) in the polymer. Heparin lyase has a specificity for cleaving glycosidic linkages either exolytically at the nonreducing terminus of a chain or (endolytically) at the reducing side of these rare oligosaccharide sequence.  相似文献   

5.
N-Acetyllactosamine is the most prevalent disaccharide moiety in the glycans on the surface of mammalian cells and often found as repeat units in the linear and branched polylactosamines, known as i- and I-antigen, respectively. The β1-4-galactosyltransferase-I (β4Gal-T1) enzyme is responsible for the synthesis of the N-acetyllactosamine moiety. To understand its oligosaccharide acceptor specificity, we have previously investigated the binding of tri- and pentasaccharides of N-glycan with a GlcNAc at their nonreducing end and found that the extended sugar moiety in these acceptor substrates binds to the crevice present at the acceptor substrate binding site of the β4Gal-T1 molecule. Here we report seven crystal structures of β4Gal-T1 in complex with an oligosaccharide acceptor with a nonreducing end GlcNAc that has a β1-6-glycosidic link and that are analogous to either N-glycan or i/I-antigen. In the crystal structure of the complex of β4Gal-T1 with I-antigen analog pentasaccharide, the β1-6-branched GlcNAc moiety is bound to the sugar acceptor binding site of the β4Gal-T1 molecule in a way similar to the crystal structures described previously; however, the extended linear tetrasaccharide moiety does not interact with the previously found extended sugar binding site on the β4Gal-T1 molecule. Instead, it interacts with the different hydrophobic surface of the protein molecule formed by the residues Tyr-276, Trp-310, and Phe-356. Results from the present and previous studies suggest that β4Gal-T1 molecule has two different oligosaccharide binding regions for the binding of the extended oligosaccharide moiety of the acceptor substrate.  相似文献   

6.
Collagen IV contains an amino-terminal tetramerization domain (7 S) that is involved in aggregation and cross-linking as part of the process of self-assembly of the collagen IV matrix of basement membranes. We determined the structure and location of the Asn-linked oligosaccharides of the 7 S tetramer. Two glycopeptides, GP-1 and GP-2, were isolated from tryptic digests of the 7 S tetramer and were characterized. GP-1 and GP-2 are derived from the alpha 1(IV) chain and the alpha 2(IV) chain, respectively. Each glycopeptide contained one sequence, -Asn-Xaa-Thr-, which was shown to be N-glycosylated at Asn, corresponding to position 126 of the alpha 1 chains and 138 of the alpha 2 chain. 1H NMR spectroscopic analysis of the oligosaccharide is a biantennary N-acetyllactosamine type of N-linked oligosaccharide with a broad heterogeneity in the presence of the sugar residues at their nonreducing termini as indicated. [formula: see text] The location of the Asn-linked oligosaccharide units and Hyl-linked disaccharide units and their orientation with respect to the surface of the triple helix were calculated using two models. We conclude that both units are important determinants in the assembly of the 7 S tetramer.  相似文献   

7.
Rat fibrinogen plasmic fragment E was found to contain one oligosaccharide chain per gamma-chain attached by a glycosylamine linkage. The oligosaccharide was composed of 1 sialic acid, 1 galactose, 2 mannose and 2 glucosamine residues. The probable sequence from the nonreducing end was sialic acid leads to galactose beta leads to mannose alpha leads to mannose alpha leads to glucosamine leads to glucosamine. No difference in the rate of clearance from the rat circulation could be detected between native and desialated fragment E. A non-denaturing method for the purification of fragment E is described.  相似文献   

8.
Structural requirements for the binding of oligosaccharides and glycopeptides to immobilized lentil- and pea-lectins were investigated by use of radioactively-labeled glycopeptides and oligosaccharides. The results indicate that an intact 2- acetamido-2-deoxy-β-d-glucopyranosyl residue at the reducing end of a complex-type oligosaccharide is essential for high-affinity binding to lentil lectin-Sepharose but not to concanavalin A-Sepharose and that an asparagine residue is required for the binding of a complex-type glycopeptide to pea lectin-Sepharose. In addition, interaction of a complex-type oligosaccharide with lentil lectin-Sepharose was enhanced by exposure of nonreducing, terminal 2-acetamido-2-deoxy-β-d-glucopyranosyl groups, whereas interaction with pea lectin-Sepharose was enhanced only after exposure of nonreducing, terminal α-d-mannopyranosyl groups.  相似文献   

9.
Hyaluronan and chondroitin/dermatan sulfate are glycosaminoglycans that play major roles in the biomechanical properties of a wide variety of tissues, including cartilage. A chondroitin/dermatan sulfate chain can be divided into three regions: (1) a single linkage region oligosaccharide, through which the chain is attached to its proteoglycan core protein, (2) numerous internal repeat disaccharides, which comprise the bulk of the chain, and (3) a single nonreducing terminal saccharide structure. Each of these regions of a chondroitin/dermatan sulfate chain has its own level of microheterogeneity of structure, which varies with proteoglycan class, tissue source, species, and pathology. We have developed rapid, simple, and sensitive protocols for detection, characterization and quantitation of the saccharide structures from the internal disaccharide and nonreducing terminal regions of hyaluronan and chondroitin/dermatan sulfate chains. These protocols rely on the generation of saccharide structures with free reducing groups by specific enzymatic treatments (hyaluronidase/chondroitinase) which are then quantitatively tagged though their free reducing groups with the fluorescent reporter, 2-aminoacridone. These saccharide structures are further characterized by modification through additional enzymatic (sulfatase) or chemical (mercuric ion) treatments. After separation by fluorophore-assisted carbohydrate electrophoresis, the relative fluorescence in each band is quantitated with a cooled, charge-coupled device camera for analysis. Specifically, the digestion products identified are (1) unsaturated internal Deltadisaccharides including DeltaDiHA, DeltaDi0S, DeltaDi2S, DeltaDi4S, DeltaDi6S, DeltaDi2,4S, DeltaDi2,6S, DeltaDi4,6S, and DeltaDi2,4,6S; (2) saturated nonreducing terminal disaccharides including DiHA, Di0S, Di4S and Di6S; and (3) nonreducing terminal hexosamines including glcNAc, galNAc, 4S-galNAc, 6S-galNAc, and 4, 6S-galNAc.  相似文献   

10.
The branched O-antigens of Escherichia coli O159 and Shigella dysenteriae type 4 are structurally related and are known to show cross-reactivity with antibodies. In the present study, conformational analyses were performed on these two O-antigens using molecular mechanics MM3(96) with filtered systematic search. The results show very strong steric restrictions for the trisaccharide at the branch point of the E. coli O159 antigen, especially for the β-d-GlcNAc-(1 → 3)-β-d-GlcNAc linkage of the main chain. For the type 4 O-antigen the calculations show essentially a single conformation with respect to the α-d-GlcNAc-(1 → 3)-α-d-GlcNAc linkage of the main chain and three different favoured conformations for the fucose branch. Consecutive repeating units of the S. dysenteriae type 4 and E. coli O159 O-antigens form linear extended chains with significant flexibility between the branches. Comparative calculations carried out with the SWEET server indicate that our method of filtered systematic search is a superior method in the case of branched, constrained oligosaccharides. Based on the results of the MM3 calculations, we propose that the common epitope explaining the cross-reactivity comprises the fucose branch, the downstream GlcNAc and part of the uronic acid.  相似文献   

11.
Microsomal preparations from cultured chick embryo chondrocytes were incubated with 3'-phosphoadenosine 5'-phosphosulfate and oligosaccharides prepared from chondroitin. Rates of 4- and 6-sulfation were measured at pH 6 and 8 in the presence of MnCl2 and Brij 58. Ratios of the overall 6-sulfation to 4-sulfation rates ranged from 40-200 at pH 8 and from 6-35 at pH 6, depending upon the composition of the assay mixture. When saturating concentrations of 3'-phosphoadenosine 5'-phosphosulfate and the oligosaccharide acceptors were used, the resulting products were mixtures of monosulfated oligosaccharides. The compositions of the mixtures formed from oligosaccharides with degrees of polymerization from 4-12 at pH 6 and 8 were analyzed. Sulfate substituents were found at all N-acetyl-D-galactosamine (GalNAc) residues in the acceptors but were not evenly distributed along the oligosaccharide chains. For oligosaccharides with nonreducing terminal D-glucuronic acid (GlcUA) residues, sulfation at the nonreducing terminal GlcUA----GalNAc occurred exclusively at the C6 of the GalNAc residue. However, for oligosaccharides with nonreducing terminal GalNAc residues the rate of 6-sulfation of the nonreducing terminal GalNAc was markedly reduced and was similar to the rate of 4-sulfation at the same position. The rates of sulfation at the reducing ends of the oligosaccharides were relatively high for the shorter oligosaccharide acceptors but decreased with increasing length of the acceptor, suggesting that the sulfotransferases recognized primarily the GalNAc residues in the nonreducing terminal regions.  相似文献   

12.
C T Moraes  M Bosch  A J Parodi 《Biochemistry》1988,27(5):1543-1549
It was reported before that cells of the trypanosomatid Leptomonas samueli incubated with [14C]glucose synthesized dolichol-P-P-linked Man9GlcNAc2 as the main and largest derivative. It is now reported that this protozoan is deficient in dolichol-P-Glc synthesis as judged from results obtained in a cell-free assay. We have structurally characterized several endo-beta-N-acetylglucosaminidase H sensitive oligosaccharides present in mature glycoproteins of this parasite. The compounds appeared to have the compositions Gal3Man9GlcNAc2, Gal2Man9GlcNAc2, Gal1Man9GlcNAc2, Man9GlcNAc2, Gal1Man8GlcNAc2, Man8GlcNAc2, Gal1Man7GlcNAc2, and Man7GlcNAc2. The galactose residues were in all cases in the furanose form and linked to mannoses in nonreducing ends. In the cases of Gal1Man8GlcNAc2 and Gal1Man7GlcNAc2, the galactose-substituted mannose units were the nonreducing residues originally present in the oligosaccharide transferred from dolichol-P-P (Man9GlcNAc2) and not the nonreducing termini generated by demannosylation of the latter oligosaccharide. Except for Gal3Man9GlcNAc2, the other galactosylated compounds appeared to be mixtures of several isomers.  相似文献   

13.
Marine algae catalyze half of all global photosynthetic production of carbohydrates. Owing to their fast growth rates, Ulva spp. rapidly produce substantial amounts of carbohydrate-rich biomass and represent an emerging renewable energy and carbon resource. Their major cell wall polysaccharide is the anionic carbohydrate ulvan. Here, we describe a new enzymatic degradation pathway of the marine bacterium Formosa agariphila for ulvan oligosaccharides involving unsaturated uronic acid at the nonreducing end linked to rhamnose-3-sulfate and glucuronic or iduronic acid (Δ-Rha3S-GlcA/IdoA-Rha3S). Notably, we discovered a new dehydratase (P29_PDnc) acting on the nonreducing end of ulvan oligosaccharides, i.e., GlcA/IdoA-Rha3S, forming the aforementioned unsaturated uronic acid residue. This residue represents the substrate for GH105 glycoside hydrolases, which complements the enzymatic degradation pathway including one ulvan lyase, one multimodular sulfatase, three glycoside hydrolases, and the dehydratase P29_PDnc, the latter being described for the first time. Our research thus shows that the oligosaccharide dehydratase is involved in the degradation of carboxylated polysaccharides into monosaccharides.  相似文献   

14.
Carbohydrate structures in the interior of a blood group A active substance (MSS) were exposed by one and by two Smith degradations. Reactivities of the original glycoprotein and its Smith degraded products with 13 different lectins and with anti-I Ma were studied by quantitative precipitin assay. MSS and its first Smith degraded product completely precipitated Ricinus communis hemagglutinin with five times less of the first Smith degraded glycoprotein being required for 50% precipitation. The second Smith degraded material precipitated only 90% of the lectin. MSS did not precipitate peanut lectin, whereas its first and second Smith degraded products completely precipitated the lectin. The first Smith degraded glycoprotein also reacted well with Wistaria floribunda, Maclura pomifera, Bauhinia purpurea alba, and Geodia lectins indicating that its carbohydrate moiety could contain dGalNAc, dGalβ1 → 3dGalNAc, dGalβ1 → 4dGlcNAc, dGalβ1 → 3dGlcNAcβ1 → 3dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGalNAc determinants at nonreducing ends. The second Smith degraded material precipitated well with Ricinus communis hemagglutinin, Arachis hypogaea, Geodia cydonium, Maclura pomifera, and Helix pomatia lectins showing that dGalNAc, dGalβ1 → 3dGalNAc, dGalβ1 → 4dGlcNAc residues at terminal nonreducing ends could be involved. Monoclonal anti-I Ma (group 1) serum reacted strongly with the first Smith degraded product indicating large numbers of anti-I Ma determinants, dGalβ1 → 4dGlcNAcβ1 → d 6dGal and/or dGalβ1 → 4dGlcNAcβ1 → 6dGalNAc at nonreducing ends. The comparable activities of the native and Smith degraded products with wheat germ lectin indicate capacity to react with DGlcNAc residues at nonreducing ends and/or at positions in the interior of the chain. The totality of lectin reactivities indicates heterogeneity of the carbohydrate side chains. Oligosaccharides with 3H at their reducing ends released from the protein core of the first and second Smith degraded products were obtained by treatment with 0.05 m NaOH and 1 M NaB3H4 at 50 °C for 16 h (Carlson degradation). The liberated reduced oligosaccharides were fractionated by dialysis, followed by retardion, Bio-Gel P-2, P-4, and P-6 columns. They were further purified on charcoal-celite columns, and by preparative paper chromatography and high-pressure liquid chromatography. Their distribution by size was estimated by the yields on dialysis, Bio-Gel P-2, and Bio-Gel P-6 chromatography, and from the radioactivity of the reduced sugars. Of the oligosaccharide fractions from the first Smith degraded product, about 77% of the carbohydrate side chain residues contained from 1 to 6 sugars, 13% from 7 to perhaps 12 sugars, and 10% was nondialyzable (polysaccharides and glycopeptide fragments). Of the second Smith degraded product, approximately 82% of carbohydrate residues had from 1 to 6 sugars, 14% from 7 to perhaps 20 sugars and 4% was nondialyzable. The biological activity profile of the two Smith degraded products together with the size distributions of the oligosaccharides indicated that their carbohydrate side chains, comprised a heterogeneous population ranging in size from 1 to about 12 sugars. When most of these chains that are shorter than hexasaccharides are fully characterized it may be possible to reconstruct the overall structure of the carbohydrate moiety of the blood group substances and account for their biological activities.  相似文献   

15.
Solvolytic depolymerization of chondroitin and dermatan sulfates   总被引:1,自引:0,他引:1  
It is essential to establish a library of glycosaminoglycan oligosaccharides from the chondroitin and dermatan sulfates to investigate their biological functions and structure-activity relationships (SARs). There are several approaches to obtain oligosaccharides using chemical and enzymatic degradation procedures; however, purification of each resulting oligosaccharide is complicated because of the diversity of sulfonation patterns present in these oligosaccharides. We have developed a new method for the solvolytic degradation for chondroitin and dermatan sulfates to obtain an oligosaccharide mixture that can be easily purified into chondro/dermato oligosaccharides for characterization by both 1H NMR and MALDI-TOFMS. These oligosaccharides have a methyl-esterified uronate residue and a methyl 2-acetamido-2-deoxy-d-galactofuranoside at the nonreducing and reducing ends, respectively. All other internal repeating disaccharide units were desulfonated, but maintained their core carbohydrate structures.  相似文献   

16.
Membrane preparations from hen oviduct catalyze the transfer of mannose from GDP-mannose into three components: mannosyl phosphoryl polyisoprenol, oligosaccharide-lipid, and glycoprotein. Eivence that mannosyl phosphoryl polyisoprenol serves as a mannosyl donor for synthesis of both oligosaccharide-lipid and glycoproteins was previously reported (Waechter, C.J., Lucas, J.J., and Lennarz, W.J. (1973) J. Biol. Chem. 248, 7570-7579). In this study the oligosaccharide-lipid has been isolated, and the oligosaccharide has been partially characterized. Based on paper chromatography the oligosaccharide chain contains 7 to 9 glycose units. The glycose at the reducing terminus is N-acetylglucosamine, whereas mannose is found at the nonreducing end. When UDP-N-acetyl[14C]glucosamine is incubated with oviduct membranes in the absence of GDP-mannose, a 14C-labeled chitobiosyl lipid, but little oligosaccharide-lipid is synthesized. When GDP-mannose is also present in the incubation mixture an oligosaccharide-lipid is formed containing N-acetyl[14C]glucosaminyl residues. This oligosaccharide-lipid is chromatographically identical with the [14C]mannose-containing oligosaccharide-lipid isolated in the earlier study cited above. When the N-acetyl[14C]glucosamine-oligosaccharide released from the oligosaccharide-lipid by mild acid is treated with partially purified alpha-mannosidase the major radioactive product is [14C]chitobiose. Evidence that the [14C]mannose-containing oligosaccharide-lipid serves as an oligosaccharide donor for glycoprotein synthesis was obtained by incubation of partially purified oligosaccharide-lipid with the membranes. The products of this incubation were shown to be glycoproteins on the basis of their sensitivity to pronase, as determined by both gel filtration and paper electrophoresis. Similar experiments, using oligosaccharide-lipid doubly labeled with [14C]mannose and N-acetyl[3H]glucosamine, provided evidence that the oligosaccharide chain of the oligosaccharide-lipid is transferred en bloc to glycoprotein s.  相似文献   

17.
A fucoidan containing L-fucose, sulfate, and O-acetyl groups at a molar ratio 3:2:1, as well as minor amounts of xylose, galactose, and uronic acids was isolated from the brown alga Analipus japonicus collected in the Sea of Japan. The structures of the native polysaccharide and the products of its desulfation and deacetylation were studied by the methods of methylation, periodate oxidation, and NMR spectroscopy. It was shown that a polysaccharide molecule mainly consists of a linear carbohydrate chain of (1→3)-linked α-L-fucopyranose residues, which bears numerous branches in the form of single α-L-fucopyranose residues (three branches at position 4 and one branch at position 2 per each ten residues of the main chain). Sulfate groups occupy positions 2 and (to a lesser extent) 4, most of the terminal nonreducing fucose residues being sulfated twice. The acetyl groups are located predominantly at positions 4. The structural role of minor monosaccharides was not established.  相似文献   

18.
A bacterial strain M6, isolated from soil and identified as Arthrobacter globiformis, produced a novel nonreducing oligosaccharide. The nonreducing oligosaccharide was produced from starch using a culture supernatant of the strain as enzyme preparation. The oligosaccharide was purified as a crystal preparation after alkaline treatment and deionization of the reaction mixture. The structure of the oligosaccharide was determined by methylation analysis, mass spectrometry, and (1)H and (13)C NMR spectroscopy, and it was demonstrated that the oligosaccharide had a cyclic structure consisting of four glucose residues joined by alternate alpha-(1-->4)- and alpha-(1-->6)-linkages. The cyclic tetrasaccharide, cyclo-{-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->6)-alpha-D-Glcp(1-->4)-alpha-D-Glcp(1-->}, was found to be a novel oligosaccharide, and was tentatively called cyclic maltosyl-maltose (CMM). CMM was not hydrolyzed by various amylases, such as alpha-amylase, beta-amylase, glucoamylase, isoamylase, pullulanase, maltogenic alpha-amylase, and alpha-glucosidase, but hydrolyzed by isomalto-dextranase to give rise to isomaltose. This is the first report of the cyclic tetrasaccharide, which has alternate alpha-(1-->4)- and alpha-(1-->6)-glucosidic linkages.  相似文献   

19.
N-Acetylgalactosamine 4-sulfate 6-O-sulfotransferase (GalNAc4S-6ST) transfers sulfate from 3'-phosphoadenosine 5'-phosphosulfate (PAPS) to position 6 of N-acetylgalactosamine 4-sulfate (GalNAc(4SO4)). We previously identified human GalNAc4S-6ST cDNA and showed that the recombinant GalNAc4S-6ST could transfer sulfate efficiently to the nonreducing terminal GalNAc(4SO4) residues. We here present evidence that GalNAc4S-6ST should be involved in a unique nonreducing terminal modification of chondroitin sulfate A (CSA). From the nonreducing terminal of CS-A, a GlcA-containing oligosaccharide (Oligo I) that could serve as an acceptor for GalNAc4S-6ST was obtained after chondroitinase ACII digestion. Oligo I was found to be GalNAc(4SO4)-GlcA(2SO4)-GalNAc(6SO4) because GalNAc(4SO4) and deltaHexA(2SO4)-GalNAc(6SO4) were formed after chondroitinase ABC digestion. When Oligo I was used as the acceptor for GalNAc4S-6ST, sulfate was transferred to position 6 of GalNAc(4SO4) located at the nonreducing end of Oligo I. Oligo I was much better acceptor for GalNAc4S-6ST than GalNAc(4SO4)-GlcAGalNAc(6SO4). An oligosaccharide (Oligo II) whose structure is identical to that of the sulfated Oligo I was obtained from CS-A after chondroitinase ACII digestion, indicating that the terminal modification occurs under the physiological conditions. When CS-A was incubated with [35S]PAPS and GalNAc4S-6ST and the 35S-labeled product was digested with chondroitinase ACII, a 35S-labeled trisaccharide (Oligo III) containing [35S]GalNAc(4,6-SO4) residue at the nonreducing end was obtained. Oligo III behaved identically with the sulfated Oligos I and II. These results suggest that GalNAc4S-6ST may be involved in the terminal modification of CS-A, through which a highly sulfated nonreducing terminal sequence is generated.  相似文献   

20.
Enzymatic glycosidation using sugar oxazolines 1-3 having a carboxylate group as glycosyl donors and compounds 4-6 as glycosyl acceptors was performed by employing a chitinase from Bacillus sp. as catalyst. All the glycosidations proceeded with full control in stereochemistry at the anomeric carbon of the donor and regio-selectivity of the acceptor. The N,N'-diacetyl-6'-O-carboxymethylchitobiose oxazoline derivative 1 was effectively glycosidated, under catalysis by the enzyme, with methyl N,N'-diacetyl-beta-chitobioside (4), pent-4-enyl N-acetyl-beta-D-glucosaminide (5), and methyl N-acetyl-beta-D-glucosaminide (6), affording in good yields the corresponding oligosaccharide derivatives having 6-O-carboxymethyl group at the nonreducing GlcNAc residue. The N,N'-diacetyl-6-O-carboxymethylchitobiose oxazoline derivative 2 was subjected to catalysis by the enzyme catalysis; however, no glycosidated products were produced through the reactions with 4, 5, and 6. Glycosidation reactions of the beta-d-glucosyluronic-(1-->4)-N-acetyl-D-glucosamine oxazoline derivative 3 proceeded with each of the glycosyl acceptors, giving rise to the corresponding oligosaccharide derivative having a GlcA residue at their nonreducing termini in good yields.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号