首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It has been previously demonstrated in our laboratory that uridine nucleosidase (EC 3.2.2.3) is subjected in yeast to inactivation. An inactivating fraction has been isolated and purified to homogeneity with a procedure which includes gel filtration, adsorption chromatography, and electrofocusing techniques. The molecular weight of the enzyme, estimated either by sodium dodecyl sulfate disc gel electrophoresis or by gel filtration is approximately 44,000. No quaternary structure was evidenced. The inactivating activity possesses proteolytic activity against casein and hemoglobin with pH optima of 2.5 and 3.2, respectively. The optimal pH for uridine nucleosidase inactivation is around 4.7. The inactivating activity as well as the proteolytic activity of the preparation can be inhibited by IA but not by IB2 and IC, yeast macromolecular inhibitors for proteinase A (EC 3.4.23.8), B (EC 3.4.22.9), and C (EC 3.4.12.8), respectively. The apparent isoelectric point is pH 4.03. The carbohydrate content is 8.5%. A comparison of the properties of the inactivating protein with those of known yeast proteinases leads to the conclusion that it is identical with the enzyme previously designated as proteinase A, which for the first time has been obtained homogeneous and characterized. It has been shown that proteinase A could play a physiological role in the uridine nucleosidase inactivation process when it is associated, as a complex, with proteinase B.  相似文献   

2.
Poulle M  Jones BL 《Plant physiology》1988,88(4):1454-1460
A proteinase was purified from germinated barley (green malt from Hordeum vulgare L. cv Morex) by acidic extraction, ammonium sulfate fractionation and successive chromatographies on CM-cellulose, hemoglobin sepharose, Sephadex G-75 and organomercurial agarose columns. The overall purification and final recovery were 290-fold and 7.5%, respectively. The purified enzyme was homogeneous on analytical gel electrophoresis, yielding a single protein associated with protease activity. An apparent molecular weight of about 20 kilodaltons was estimated for the native enzyme from gel filtration. SDS-gel electrophoresis revealed a single polypeptide of about 30 kilodaltons. The optimum pH for the hydrolysis of hemoglobin was around 3.8. The enzyme was strongly inhibited by leupeptin but was insensitive to phenylmethylsulfonyl fluoride, indicating that it was a cysteine proteinase. It hydrolyzed several large proteins from various origins. The ability of the enzyme to digest barley storage proteins in vitro was examined using SDS-gel electrophoresis. The hydrolysis patterns obtained showed that the enzyme rapidly hydrolyzed the large hordein polypeptides into relatively small fragments. The results of this study suggest that this 30 kilodalton enzyme is one of the predominant cysteine proteinases secreted into the starchy endosperm during barley germination and that it plays a major role in the mobilization of storage proteins.  相似文献   

3.
Inosine nucleosidase (EC 3.2.2.2), the enzyme which hydrolyzes inosine to hypoxanthine and ribose, has been partially purified from Lupinus luteus L. cv. Topaz seeds by extraction of the seed meal with low ionic strength buffer, ammonium sulfate fractionation, and chromatography on aminohexyl-Sepharose, Sephadex G-100, and hydroxyapatite.

Molecular weight of the native enzyme is 62,000 as judged by gel filtration. The inosine nucleosidase exhibits optimum activity around pH 8. Energy of activation for inosine hydrolysis estimated from Arrhenius plot is 14.2 kilocalories per mole. The Km value computed for inosine is 65 micromolar.

Among the inosine analogs tested, the following nucleosides are substrates for the lupin inosine nucleosidase: xanthosine, purine riboside (nebularine), 6-mercaptopurine riboside, 8-azainosine, adenosine, and guanosine. The ratio of the velocities measured at 500 micromolar concentration of inosine, adenosine, and guanosine was 100:11:1, respectively. Specificity (Vmax/Km) towards adenosine is 48 times lower than that towards inosine.

In contrast to the adenosine nucleosidase activity which is absent from lupin seeds and appears in the cotyledons during germination (Guranowski, Pawełkiewicz 1978 Planta 139: 245-247), the inosine nucleosidase is present in both lupin seeds and seedlings.

  相似文献   

4.
Bacillus stearothermophilus MK232, which produced a highly thermostable neutral protease, was isolated from a natural environment. By several steps of mutagenesis, a hyper-producing mutant strain, YG185, was obtained. The enzyme productivity was twice as much as that of the original strain. This extracellular neutral protease was purified and crystallized. The molecular weight of the enzyme was 34,000 by SDS-polyacrylamide gel electrophoresis and gel filtration. The optimum pH and temperature for the enzyme activity were 7.5 and 70°C, respectively, and the enzyme was stable at pH 5–10 and below 70°C. The thermostability and specific activity of the new protease are around 10% and 40% higher than those of thermolysin (the neutral protease from Bacillus thermoproteolyticus), respectively. The enzyme was inactivated by EDTA, but not by phenylmethylsulfonyl fluoride. These results indicate that the enzyme is a highly thermostable neutral-(metallo)protease.  相似文献   

5.
Summary A protease has been purified from Trypanosoma congolense bloodstream forms by osmotic disruption, freeze-thawing of the cells, followed by chromatography using Thiopropyl-Sepharose and gel filtration.The enzyme is a thiolprotease. A combination of SDS-polyacrylamide gel electrophoresis and contact print zymograms using casein as substrate showed a single proteolytic band with a molecular weight of 31 000. The isoelectric point of the enzyme as ascertained by isoelectric focusing extended from pH 4.4 to 5.5 with a maximum at pH 5.0. The protease cleaved various heat denatured substrates such as casein, hemoglobin, albumin and ovalbumin. The highest enzyme activity was observed at pH 5.5 and pH 6.0 using casein and hemoglobin as substrates respectively. The max. temperature was found to be 50 °C. The enzyme is inactivated by mercurial compounds, iodoacetamide, iodoacetate, chloromethylketones and leupeptin and is activated by dithioerythritol.  相似文献   

6.
Active nonphosphorylated fructose bisphosphatase (EC 3.1.3.11) was purified from bakers' yeast. After chromatography on phosphocellulose, the enzyme appeared as a homogeneous protein as deduced from polyacrylamide gel electrophoresis, gel filtration, and isoelectric focusing. A Stokes radius of 44.5 A and molecular weight of 116,000 was calculated from gel filtration. Polyacrylamide gel electrophoresis of the purified enzyme in the presence of sodium dodecyl sulfate resulted in three protein bands of Mr = 57,000, 40,000, and 31,000. Only one band of Mr = 57,000 was observed, when the single band of the enzyme obtained after polyacrylamide gel electrophoresis in the absence of sodium dodecyl sulfate was eluted and then resubmitted to electrophoresis in the presence of sodium dodecyl sulfate. Amino acid analysis indicated 1030 residues/mol of enzyme including 12 cysteine moieties. The isoelectric point of the enzyme was estimated by gel electrofocusing to be around pH 5.5. The catalytic activity showed a maximum at pH 8.0; the specific activity at the standard pH of 7.0 was 46 units/mg of protein. Fructose 1,6-bisphosphatase b, the less active phosphorylated form of the enzyme, was purified from glucose inactivated yeast. This enzyme exhibited maximal activity at pH greater than or equal to 9.5; the specific activity measured at pH 7.0 was 25 units/mg of protein. The activity ratio, with 10 mM Mg2+ relative to 2 mM Mn2+, was 4.3 and 1.8 for fructose 1,6-bisphosphatase a and fructose 1,6-bisphosphatase b, respectively. Activity of fructose 1,6-bisphosphatase a was 50% inhibited by 0.2 microM fructose 2,6-bisphosphate or 50 microM AMP. Inhibition by fructose 2,6-bisphosphate as well as by AMP decreased with a more alkaline pH in a range between pH 6.5 and 9.0. The inhibition exerted by combinations of the two metabolites at pH 7.0 was synergistic.  相似文献   

7.
《Phytochemistry》1986,25(2):351-357
Acid phosphatase (EC 3.1.3.2) from sunflower seed was purified 1800-fold to homogeneity using both conventional and affinity chromatographic methods. The purified enzyme was a mixture of two enzyme forms distinguishable by polyacrylamide gel electrophoresis (PAGE). Gel exclusion chromatography, which did not distinguish between the two forms, gave an apparent M, of 103 000. Preparative PAGE permitted the separation of the two forms, and SDS-PAGE showed that they contained equivalent peptide subunits of apparent M, 56 000 and 52 000. Amino acid analysis indicated that both enzyme forms have similar amino acid compositions. Data on substrate specificity and pH dependence is presented. The kinetic constants for hydrolysis of p-nitrophenyl phosphate as catalysed by sunflower seed acid phosphatase were independent of pH in the range 3-5. The enzyme was competitively inhibited by inorganic phosphate and non-competitively inhibited by phosphomycin.  相似文献   

8.
Controlled, limited proteolysis of homogeneous calf thymus terminal deoxynucleotidyl transferase (EC 2.7.7.31) using immobilized Staphylococcus aureus V-8 protease results in a low molecular weight form of the enzyme which possesses unaltered catalytic activity. Analysis of the products of limited proteolysis using sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that only the large subunit, β, is modified from a molecular weight of 30,500 to 25,500. The small subunit, α, which has a molecular weight of 9500, is unchanged. A shift in the apparent isoelectric pH of the calf enzyme following proteolysis is observed from pI = 8.2 to 7.8. Both forms of the enzyme are homogeneous in the isoelectric focusing gel system, as determined by coincidence of single protein bands with terminal transferase activity on the gel. The specific activities of cleaved and uncleaved terminal transferase proteins, as well as their thermal stabilities, are comparable. These results suggest that the polypeptide domain involved in terminal transferase enzymatic activity can be probed further by novel methods involving limited proteolysis without concomitant loss in enzymatic function.  相似文献   

9.
It has been previously demonstrated that commercial bacterial fibrinolysin (EC 3.4.21.7) selectively cleaves the bond between Met-53 and Ala-54 in ovine prolactin (199 amino acids). A one-step purification procedure on DEAE-cellulose for Protease F, which is the active component of bacterial fibrinolysin, and properties of the purified enzyme are reported. The enzyme is homogeneous as judged by acrylamide gel electrophoresis. Its molecular weight, calculated from gel filtration experiments on Sephadex G-100, is around 13,800. Amino acid analyses do not reveal the presence of any half-cystines. The presence of one tryptophan residue per enzyme molecule was resolved from the fluorescence spectrum. Amino terminal analysis showed that leucine was at the amino terminal position. Protease F hydrolyzes casein and synthetic specific substrates for chymotrypsin and elastase esterases but not for trypsin esterases. It is fully inhibited by phenylmethylsulfonyl fluoride, by chicken ovoinhibitor, and by Chymotrypsin Inhibitor I from potatoes but not by the trypsin-chymotrypsin inhibitors from soybeans and chick peas or by tosyl-L-phenylalanine chloromethyl ketone. The enzyme is stable at room temperature and in the cold, it is not affected by dialysis or by freezing and thawing, but it is inactivated during freeze-drying. The circular dichroism spectra of Protease F indicate an approximate 20% alpha-helix content of the enzyme with a considerable similarity to those of subtilisin, elastase, and beta-trypsin. The relatively low molecular weight of Protease F, the absence of intrachain disulfide bridges, and the fact that it is inhibited by several, but not all, chymotrypsin inhibitors suggest that it may differ phylogenetically from the known serine proteases.  相似文献   

10.
The sulphatase A (aryl-sulphate sulphohydrolase, EC 3.1.6.1) of ox liver hydrolyses adenosine 3′,5′-monophosphate (cyclic AMP) to adenosine 5′-phosphate at an optimum pH of approx. 4.3, close to that for the hydrolysis of cerebroside sulphate, a physiological substrate for sulphatase A. The Km is 11.6 mM for cyclic AMP.On polyacrylamide gel electrophoresis sulphatase A migrates as a single protein band which coincides with both the arylsulphatase and phosphodiesterase activities, suggesting that these are due to a single protein. Cyclic AMP competitively inhibits the arylsulphatase activity of sulphatase A, showing that both activities are associated with a single active site on the enzyme. Sulphatase A also hydrolyses guanosine 3′,5′-monophosphate, but not uridine 3′,5′-monophosphate nor adenosine 2′,3′-monophosphate.  相似文献   

11.
《Insect Biochemistry》1991,21(2):165-176
A lysosomal aspartic protease with cathepsin D activity, from the mosquito, Aedes aegypti, was purified and characterized. Its isolation involved ammonium sulfate (30–50%) and acid (pH 2.5) precipitations of protein extracts from whole previtellogenic mosquitoes followed by cation exchange chromatography. Purity of the enzyme was monitored by SDS-PAGE and silver staining of the gels. The native molecular weight of the purified enzyme as determined by polyacrylamide gel electrophoresis under nondenaturing conditions was 80,000. SDS-PAGE resolved the enzyme into a single polypeptide with Mr = 40,000 suggesting that it exists as a homodimer in its non-denatured state. The pI of the purified enzyme was 5.4 as determined by isoelectric focusing gel electrophoresis. The purified enzyme exhibits properties characteristic of cathepsin D. It utilizes hemoglobin as a substrate and its activity is completely inhibited by pepstatin-A and 6M urea but not by 10 mM KCN. Optimal activity of the purified mosquito aspartic protease was obtained at pH 3.0 and 45°C. With hemoglobin as a substrate the enzyme had an apparent Km of 4.2 μ M. Polyclonal antibodies to the purified enzyme were raised in rabbits. The specificity of the antibodies to the enzyme was verified by immunoblot analysis of crude mosquito extracts and the enzyme separated by both non-denaturing and SDS-PAGE. Density gradient centrifugation of organelles followed by enzymatic and immunoblot analyses demonstrated the lysosomal nature of the purified enzyme. The N-terminal amino acid sequence of the purified mosquito lysosomal protease (19 amino acids) has 74% identity with N-terminal amino acid sequence of porcine and human cathepsins D.  相似文献   

12.
A purification procedure for diol dehydrase (dl-1,2-propanediol hydro-lyase, EC 4.2.1.28) of Klebsiella pneumoniae (Aerobacter aerogenes) ATCC 8724 has been developed which gives the highest specific activity for this enzyme obtained so far. The purified enzyme is homogeneous by the criteria of ultracentrifugation (s20,w = 8.9 S) and disc gel electrophoresis in the presence of substrate. The molecular weight of approximately 230,000 was obtained by gel filtration and ultracentrifugal sedimentation equilibrium. The enzyme is composed of components F and S whose molecular weights were determined to be approximately 26,000 and 200,000, respectively, by gel filtration. The incubation of both components F and S with the substrate leads to complete reassociation of the components. Disc gel electrophoresis in the presence of sodium dodecyl sulfate and terminal amino acid analyses indicate that component S consists of at least four nonidentical subunits. The reversible association and heterogeneity of the subunits were also demonstrated with the crude enzyme by immunoelectrophoresis.  相似文献   

13.
An NAD-linked formate dehydrogenase (EC 1.2.1.2.) from methanol-grown Pichia pastoris NRRL Y-7556 has been purified. The purification procedure involved ammonium sulfate fractionation, hollow-fiber H1P10 filtration, ion-exchange chromatography, and gel filtration. Both dithiothreitol (10 mm) and glycerol (10%) were required for stability of the enzyme during purification. The final enzyme preparation was homogeneous as judged by polyacrylamide gel electrophoresis and by sedimentation pattern in an ultracentrifuge. The enzyme has a molecular weight of 94,000 and consists of two subunits of identical molecular weight. Formate dehydrogenase catalyzes specifically the oxidation of formate. No other compounds tested can replace NAD as the electron acceptor. The Michaelis constants were 0.14 mm for NAD and 16 mm for formate (pH 7.0, 25 °C). Optimum pH and temperature for formate dehydrogenase activity were around 6.5–7.5 and 20–25 °C, respectively. Amino acid composition of the enzyme was also studied. Antisera prepared against the purified enzyme from P. pastoris NRRL Y-7556 form precipitin bands with isofunctional enzymes from different strains of methanol-grown yeasts, but not bacteria, on immunodiffusion plates. Immunoglobulin fraction prepared against the enzyme from yeast strain Y-7556 inhibits the catalytic activity of the isofunctional enzymes from different strains of methanol-grown yeasts.  相似文献   

14.
Partially purified β-d-galactosidase (β-d-galactoside galactohydrolase, EC 3.2.1.23) from Bacillus circulans showed high activity towards both pure lactose and lactose in skim milk, and a better thermal stability than the enzyme from yeast or Escherichia coli. During the course of hydrolysis of lactose catalysed by the enzyme, considerable amounts of oligosaccharides were produced. β-d-Galactosidase from B. circulans was immobilized onto Duolite ES-762, Dowex MWA-1 and sintered alumina by adsorption with glutaraldehyde treatment. The highest activity for hydrolysis of lactose was obtained with immobilization onto Duolite ES-762. During a continuous hydrolysis of lactose, the immobilized enzyme was reversibly inactivated, probably due to oligosaccharides accumulating in the gel. The inactivation was reduced when a continuous reaction was operated at a high percent conversion of lactose in a continuous stirred tank reactor (CSTR). The half-life of the immobilized enzyme was estimated to be 50 and 15 days at 50 and 55°C, respectively, when the reaction was carried out in a CSTR with a percent conversion of lactose >70%.  相似文献   

15.
In germinating radish seeds, [U-14C]-4-thiouridine was convertedto 4-thio-UMP, 4-thio-UDP, 4-thio-UTP, 4-thio-UDP glucose and4-thiouracil, of which 4-thiouracil accounted for 60–85%.4-Thio-UTP is incorporated into RNAs of radish seedlings [Shibataet al. (1980) FEBS Lett. 119: 85]. These same metabolites werelabeled following germination of radish seeds with [2-14C]-4-thiouracil.4-Thiouridine was hydrolyzed by the uridine nucleosidase (EC3.2.2.3 [EC] ) of radish seedlings as effectively as was uridine.The activity of uridine nucleosidase was increased by germinationwith 4-thiouridine. These results are a strong indication that4-thiouridine is converted to 4-thiouracil, then to 4-thio-UMPby uracil phosphoribosyltransferase (EC 2.4.2.9 [EC] ). The alternativeformation of 4-thio-UMP from 4-thiouridine by uridine kinase(EC 2.7.1.48 [EC] ) also was suggested. A possible mechanism whichmay cause inhibition of chloroplast biogenesis in 4-thiouridine-culturedseedlings is discussed. (Received October 12, 1981; Accepted January 14, 1982)  相似文献   

16.
Vibrio sp. strain JT0107 is one of the marine bacteria that secrete β-agarases which catalyze the hydrolysis of agarose. The optimum culture conditions for the production of some β-agarases have been determined. To increase agarase activity, aeration and a sufficient concentration of agarose are needed. One of the enzymes that the bacteria secreted into the culture medium was isolated and purified 39-fold using a combination of ultrafiltration and subsequent anion exchange column chromatography. The purified protein migrated as a single band (72 kDa) on sodium dodecyl sulfate polyacrylamide gel electrophoresis and its isoelectric point was 4.7. Amino acid sequence analysis revealed a single N-terminal sequence that had no sequence identity to other marine bacterial agarases. This novel enzyme was found to be an endo-type β-agarase (EC 3.2.1.81) that catalyzes the hydrolysis of the β-1,4 linkage of agarose to yield neoagarotetraose [O-3,6-anhydro-α-l-galactopyranosyl(1→3)-O-β-d-galactopyranosyl(1→4)-O-3,6-anhydro-α-l-galactopyranosyl(1→3)-d -galactose] and neoagarobiose [O-3,6-anhydro-α-l-galactopyranosyl(1→3)-d-galactose]. The optimum pH and temperature for obtaining high activity of the enzyme were at around 8 and 30°C, respectively. The enzyme did not degrade sodium alginate, λ-carrageenan, ι-carrageenan or κ-carrageenan.  相似文献   

17.
Mantis egg fibrolase (MEF) was purified from the egg cases of Tenodera sinensis using ammonium sulfate fractionation, gel filtration on Bio-Gel P-60 and affinity chromatography on DEAE Affi-Gel blue gel. The protease was assessed homogeneous by SDS-polyacrylamide gel electrophoresis and has a molecular mass of 31500 Da. An isoelectric point of 6.1 was determined by isoelectric focusing. Amino acid sequencing of the N-terminal region established a primary structure composed of Ala-Asp-Val-Val-Gln-Gly-Asp-Ala-Pro-Ser. MEF readily digested the Aalpha- and Bbeta-chains of fibrinogen and more slowly the gamma-chain. The nonspecific action of the enzyme results in extensive hydrolysis of fibrinogen and fibrin releasing a variety of fibrinopeptide. The enzyme is inactivated by Cu2+ and Zn2+ and inhibited by PMSF and chymostatin, yet elastinal, aprotinin, TLCK, TPCK, EDTA, EGTA, cysteine, beta-mercaptoethanol, iodoacetate, E64, benzamidine and soybean trypsin inhibitor do not affect activity. Antiplasmin was not sensitive to MEF but antithrombin III inhibited the enzymatic activity of MEF. Among chromogenic protease substrates, the most sensitive to MEF hydrolysis was benzoyl-Phe-Val-Arg-p-nitroanilide with maximal activity at pH 7.0 and 30 degrees C. MEF preferentially cleaved the oxidized B-chain of insulin between Leu15 and Tyr16. D-Dimer concentrations increased on incubation of cross-linked fibrin with MEF, indicating the enzyme has a strong fibrinolytic activity.  相似文献   

18.
Glyoxalase II [S-(2-hydroxyacyl)glutathione hydrolase], one of the components of the glyoxalase system, catalyzes the hydrolysis of S-lactoylglutathione to glutathione and d-lactic acid. The enzyme was partially purified from the yeast Hansenula mrakii IFO 0895 by successive column chromatographies and polyacrylamide gel electrophoresis. The molecular weight of the enzyme was estimated to be 22,000 daltons by gel-filtration of Sephadex G-150 column chromatography and 24,000 daltons by SDS-polyacrylamide gel electrophoresis. The enzyme was specific to S-lactoyglutathione and S-acetylglutathione. The activity of the enzyme was strongly inhibited by Cu2+, p-chloromercuribenzoate and HgCl2. The enzyme activity was also inhibited by hemimercaptal, a non-enzymatic condensation product between glutathione and methylglyoxal.  相似文献   

19.
A new cysteine protease (SpCP) with a molecular mass of about 50 kDa and optimal functioning at pH 8.0 was isolated from the culture medium of a Serratia proteamaculans 94 psychrotolerant strain using affinity and gel permeation chromatography. The enzyme N terminal amino acid sequence (SPVEEAEGDGIVLDV-) exhibits a reliable similarity to N terminal sequences of gingipains R, cysteine proteases from Porphyromonas gingivalis. Unlike gingipains R, SpCP displays a double substrate specificity and cleaves bonds formed by carboxylic groups of Arg, hydrophobic amino acid residues (Val, Leu, Ala, Tyr, and Phe), Pro, and Gly. SpCP can also hydrolyze native collagen. The enzyme catalysis is effective in a wide range of temperatures. Kinetic studies of Z-Ala-Phe-Arg-pNA hydrolysis catalyzed by the protease at 4 and 37°C showed that a decrease in temperature by more than 30°C causes a 1.3-fold increase in the k cat/K m ratio. Thus, SpCP is an enzyme adapted to low positive temperatures. A protease displaying such properties was found in microorganisms of the Serratia genus for the first time and may serve as a virulent factor for these bacteria.  相似文献   

20.
The proteinase previously found in chromatin prepared from a total rat liver homogenate was purified from the rat liver mitochondrial fraction. The membrane-bound enzyme is solubilized in either 0.6% digitonin or 0.5 m phosphate buffer. After a 1330-fold purification, the enzyme appears homogeneous by acrylamide-gel electrophoresis. Sucrose density gradient centrifugation indicated a molecular weight of 22,500, a molecular weight of 23,500 ± 10% has been estimated by acrylamide gel electrophoresis in the presence of sodium dodecyl sulfate. The enzyme showed a high substrate specificity. Among several proteins tested, only glucagon, nonhistone chromosomal proteins, and histones are good substrates. A limited proteolysis was found for the very-lysine-rich histone H1, which was split into a high molecular weight fragment (Mr 13,000). The highly phosphorylated histone H1 isolated from regenerating rat liver 24 h after partial hepatectomy exhibited the same susceptibility to the proteinase as H1 from normal liver. Large polypeptides of a nonhistone chromosomal protein fraction were degraded more rapidly than the small ones. N-Acetyl-l-tyrosine ethyl ester was used with alcohol dehydrogenase and NAD in a coupled enzyme assay for the proteinase. The apparent Michaelis constant for the hydrolysis of N-acetyl-l-tyrosine ethyl ester is 5.0 × 10?3m. The proteinase has catalytic properties simlar to trypsin and chymotrypsin. The pH optimum was around 8, soybean trypsin inhibitor depressed the enzymatic activity, and the serine modifying reagents diisopropyl phosphofluoridate and phenylmethanesulfonyl fluoride inactivated the enzyme. The affinity reagent for chymotrypsin-like active sites, l-1-tosylamido-2-phenylethyl chloromethyl ketone, inactivated the proteinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号