首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The chloroplast protein synthesis factor responsible for the translocation step of polypeptide synthesis on chloroplast ribosomes (chloroplast elongation factor G [EF-G]) has been detected in whole cell extracts and in isolated chloroplasts from Euglena gracilis. This factor can be detected by its ability to catalyze translocation on 70 S prokaryotic ribosomes such as those from E. coli. Chloroplast EF-G is present in low levels when Euglena is grown in the dark and can be induced more than 20-fold when the organism is grown in the light. The induction of this factor by light is inhibited by cycloheximide, a specific inhibitor of protein synthesis on cytoplasmic ribosomes. However, inhibitors of chloroplast protein synthesis such as streptomycin or spectinomycin have no effect on the induction of this factor by light. Furthermore, chloroplast EF-G can be partially induced by light in an aplastidic mutant (strain W3BUL) which has neither significant plastid structure nor detectable chloroplast DNA. These data strongly suggest that the genetic information for chloroplast EF-G resides in the nuclear genome, and that this protein is synthesized on cytoplasmic ribosomes prior to compartmentalization within the chloroplasts.  相似文献   

2.
The low-molecular-weight form of the cytoplasmic protein synthesis elongation factor-1 (EF-1L) from Euglena gracilis has been purified extensively from whole-cell extracts. A four-step purification procedure has been developed which results in a 45-fold enrichment in EF-1L with 10% recovery of the total EF-1 activity present in the post-ribosomal supernatant. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis indicates that the EF-1L is greater than 90% pure. The purified factor is composed of a single subunit of molecular weight 56,000 as determined by gel filtration and polyacrylamide gel electrophoresis under denaturing conditions. Unlike EF-1s purified to date from other organisms, Euglena EF-1L catalyzes polymerization on Escherichia coli and Euglena chloroplast ribosomes, as well as on wheat germ ribosomes. The activity of this factor on 70 S ribosomes is about 5% that observed on eucaryotic 80 S ribosomes. This level of catalytic activity is sufficient to obscure the activity of chloroplast EF-Tu and mitochondrial EF-Tu in whole-cell extracts of Euglena. The activity of EF-1L as measured on either wheat germ or E. coli ribosomes is unstable in the absence of glycerol, is inhibited only slightly by 20 mm, N-ethylmaleimide, is not stimulated by E. coli EF-Ts, and is not inhibited by the antibiotic kirromycin. The relative affinity of EF-1L for guanine nucleotides was also measured and it was observed that its affinity for GTP is approximately six- to eightfold greater than that for GDP.  相似文献   

3.
An improved method for the isolation of Euglena chloroplast ribosomes is described which presents a number of advantages over past procedures. First, ribosomes are prepared from whole cell extracts, thus bypassing the need to isolate intact chloroplasts and resulting in a 10-fold improvement in yield. Second, the inclusion of 40 mm Mg2+ in the preparation buffers, while stabilizing the chloroplast ribosomes, precipitates and, thereby, virtually eliminates the cytoplasmic 89 S ribosomes. Third, greater than 95% of the chloroplast ribosomes sediment at 68 S rather than as the damaged 53 S particle frequently generated in other preparation procedures. Fourth, even with a high-salt wash to remove endogenous factors, the chloroplast ribosomes still sediment at 68 S and are just as active in in vitro protein synthesis as are E. coli ribosomes. These ribosomes have been tested for activity with elongation factors from prokaryotes, eukaryotes, and the chloroplast itself, and the results have been compared to those obtained with E. coli and wheat germ ribosomes. The data may be summarized as follows: (a) Chloroplast ribosomes use E. coliEF-TuTs and EF-G with the same efficiency as do E. coli ribosomes in protein synthesis, (b) E. coli and chloroplast ribosomes can use Euglena chloroplast EF-G to catalyze translocation, but wheat germ ribosomes cannot, (c) Wheat germ EF-1H and EF-2 are highly active in polymerization with wheat germ ribosomes, but ribosomes from neither E. coli nor the chloroplast are able to recognize these factors, (d) All three types of ribosomes accept Phe-tRNA from E. coli EF-Tu although to differing degrees. However, neither chloroplast nor E. coli ribosomes recognize wheat germ EF-1H for the binding of Phe-tRNA.  相似文献   

4.
Wild-type cells of the unicellular green alga Chlamydomonas reinhardi have been grown for several generations in the presence of rifampicin, an inhibitor of chloroplast DNA-dependent RNA polymerase, spectinomycin and chloramphenicol, two inhibitors of protein synthesis on chloroplast ribosomes, and cycloheximide, an inhibitor of protein synthesis on cytoplasmic ribosomes. The effects of cycloheximide are complex, and it is concluded that this inhibitor cannot give meaningful information about the cytoplasmic control over the synthesis of chloroplast components in long-term experiments with C. reinhardi. In the presence of acetate and at the appropriate concentrations, the three inhibitors of chloroplast protein synthesis retard growth rates only slightly and do not affect the synthesis of chlorophyll; however, photosynthetic rates are reduced fourfold after several generations of growth. Each inhibitor produces a similar pattern of lesions in the organization of chloroplast membranes. Only rifampicin prevents the production of chloroplast ribosomes.  相似文献   

5.
Ribosomal protein synthesis during chloroplast development in Euglena gracilis has been studied by using inhibitors specific for either chloroplast or cytoplasmic protein syntheses. Fifty proteins of cytoplasmic and 39 of chloroplast ribosomes have been examined. Synthesis of all cytoplasmic ribosomal proteins is strongly inhibited by cycloheximide. Lincomycin (LIN) seems to have no effect on the synthesis of these proteins. In contrast, formation of 12 chloroplast ribosomal proteins is inhibited by cycloheximide (CHI), that of 9 by lincomycin, and that of 6 by both of these antibiotics; the technique used in this study did not permit definite determination of the sites of synthesis of the remaining proteins.  相似文献   

6.
Photoreactivating (PR) enzyme activity has already been demonstrated by us in cell-free extracts of Euglena gracilis var. bacillaris Pringsheim using the Hemophilus transformation assay. This activity can also be detected in extracts using a direct non-biological assay for the photorepair of thymine dimers in DNA. PR enzyme is found in extracts of both wild-type cells and cells of an aplastidic mutant, W3BUL, lacking detectable chloroplast DNA, indicating that the PR enzyme is neither coded nor translated exclusively in the chloroplast, but is probably coded in the nucleus and translated in the cytoplasm. Growing cultures of wild-type cells manifest a large increase in PR enzyme activity in vitro upon entering stationary phase. This correlates with the increased photoreactivability of chloroplast inheritance in vivo in stationary phase cells, previously found for Euglena, and suggests that a substantial part of the newly synthesized PR enzyme is available to repair plastid DNA. When dark-grown nondividing wild-type cells are exposed to light, there is a large increase in the specific activity of PR enzyme measured in vitro. This increase is prevented by cycloheximide but not by chloramphenicol or streptomycin, indicating that the enzyme is synthesized on 87s cytoplasmic ribosomes rather than 68s chloroplast ribosomes. Wavelengths of light effective for PR of chloroplast DNA in vivo are also effective for the light induction of PR enzyme. A brief illumination (45 min) of dark-grown nondividing wild-type cells triggers the synthesis of PR enzyme which continues in the absence of light. Growing cultures of W3BUL also exhibit a preferential synthesis of PR enzyme in the staionary phase of growth, but the specific activity in vitro is consistently ten times higher than that of wild-type. Dark-grown non-dividing cultures of W3BUL also show a cycloheximide-sensitive light induction of PR enzyme synthesis which, however, is dependent on the continued presence of light. The light induction of PR enzyme synthesis can be regarded as the induction of an enzyme by one of its substrates.  相似文献   

7.
The development of the mitochondrial enzymes fumarase and succinate dehydrogenase has been followed in Euglena cultures division-synchronized by 14-hour light periods alternating with 12-hour dark periods. The activity of both enzymes was unaltered over the light phase, doubled in early dark phase, and thereafter remained constant over the rest of the cycle. The increase in enzyme activity in early dark phase probably represented de novo enzyme synthesis because it was prevented by the addition of cycloheximide at a concentration known to inhibit protein synthesis on Euglena cytoplasmic ribosomes.  相似文献   

8.
9.
Summary The unicellular green alga Chlorella incorporates labeled uridine mainly into the precursors of chloroplast ribosomes. After treatment with rifampicin for 60 min, the uridine incorporation into the particles is completely inhibited. Chloramphenicol treatment results in the same complete inhibition. In constrast, cycloheximide (actidione) slightly stimulates the incorporation of uridine into the chloroplast ribosome precursors.Short-time incorporation of inorganic phosphate into the ribosome fractions is nearly unaffected by rifampicin and chloramphenicol, but it is strongly inhibited by cycloheximide.Isolation and chromatographic separation of nucleic acids after treatment of cells with rifampicin shows that uridine incorporation into RNA is completely inhibited. Chloramphenicol causes only partial inhibition of uridine labeling in the high molecular weight RNA. Here again, cycloheximide stimulates the uridine incorporation.The results indicate that uridine is preferentially incorporated by Chlorella cells into the chloroplast ribosome precursors. Inorganic phosphate is introduced both into cytoplasmic and into chloroplasmic RNA, but because of the quantitative distribution, the cytoplasmic ribosomes are more extensively labeled. Since only inhibitors of bacterial and chloroplasmic RNA-and protein synthesis affect the formation of uridine-labeled ribosomes, this synthesis must take place in the chloroplast itself.
Abkürzungen DNA Desoxyribonucleinsäure - RNA Ribonucleinsäure - MAK-Säule Säule aus methyliertem Albumin mit Kieselgur - Bis-MSB bis-(O-Methylstyryl)-Benzol - PPO 2,5 Diphenyloxazol - Tris Trimethylaminomethan  相似文献   

10.
Selective effects of lincomysin and cycloheximide in detached shoots of Pisum sativum on the synthesis of photosystem I and II proteins, and a chloroplast membrane protein of molecular weight 32000, confirm results obtained from studies of protein synthesis by isolated chloroplasts. A model is proposed in which one role of chloroplast ribosomes is to synthesize membrane proteins required for the immobilization of chloroplast components, such as photosystem I protein, which are synthesized by cytoplasmic ribosomes. 2-(4-Methyl-2,6-dinitroanilino)-N-methylpropionamide rapidly inhibits the synthesis of both the large and small subunits of Fraction I protein in greening detached pea shoots. This observation can be reconciled with the site of synthesis of the large subunit being in the chloroplast by a model which proposes that the small subunit is a positive initiation factor for the synthesis or translation of the messenger RNA for the large subunit.  相似文献   

11.
During chloroplast development in Euglena, the activity of a specific DNase, Euglena alkaline DNase, increases in a manner similar to that of chlorophyll synthesis, but without the lag customarily associated with the early hours of chlorophyll synthesis. The increase in Euglena alkaline DNase activity is not inhibited by chloramphenicol or by streptomycin, but is inhibited by cycloheximide. Euglena alkaline DNase activity is present in a group of aplastidic substrains which contain carotenoids. These results are interpreted to mean that this chloroplast-related DNase is synthesized in the cytoplasm, and that the genetic information for this enzyme is probably nuclear.  相似文献   

12.
Exposure of dark grown resting Euglena to light induced the synthesis of chloroplast valyl-tRNA synthetase. Ethanol, a specific inhibitor of Euglena chloroplast development had little effect on chloroplast valyl-tRNA synthetase induction during the first 12 h of light exposure. Ethanol, however, completely inhibited enzyme synthesis between 12–72 h of light exposure. Malate, an alternative carbon source, had little effect on the photoinduction of valyl-tRNA synthetase. When dark grown resting cells were exposed to 2 h of light and returned to the dark, chloroplast valyl-tRNA synthetase continued to accumulate for 8–12 h at a rate which was less than the rate in cells maintained continuously in the light. The mutant strain W3BUL lacks detectable chloroplast DNA and phototransformable protochlorophyllide, but retains a plastid remnant. Exposure of strain W3BUL to light induced the synthesis of chloroplast valyl-tRNA synthetase and enzyme induction was not inhibited by ethanol. After 72 h of light exposure in the presence or absence of ethanol, enzyme levels in strain W3BUL were comparable to the levels found in the wildtype strain after 8–14 h of light exposure. These results suggest that the nonchloroplast photoreceptor regulates the initial phase of enzyme synthesis. Mutant strain W10BSmL differs from strain W3BUL in that the plastid remnant if present, is greatly reduced. Chloroplast valyl-tRNA synthetase was undetectable in the strain W10BSmL suggesting that the levels of active, cytoplasmically synthesized, chloroplast localized enzymes may be related to the developmental status of the chloroplast through the extent to which the enzyme precursor can be accumulated and or posttranslationally processed into an active enzyme within the chloroplast or chloroplast remnant.This research was supported by National Institutes of Health Grant GM26994, Biomedical support grant RR-0755 and funds from the Research Council, University of Nebraska  相似文献   

13.
Animal mitochondrial protein synthesis factors elongation factor (EF) Tu and EF-Ts have been purified as an EF-Tu.Ts complex from crude extracts of bovine liver mitochondria. The mitochondrial complex has been purified 10,000-fold to near homogeneity by a combination of chromatographic procedures including high performance liquid chromatography. The mitochondrial EF-Tu.Ts complex is very stable and cannot be dissociated even in the presence of high concentrations of guanine nucleotides. No guanine nucleotide binding to this complex can be observed in the standard nitrocellulose filter binding assay. Mitochondrial EF-Ts activity can be detected by its ability to facilitate guanine nucleotide exchange with Escherichia coli EF-Tu. The EF-Tumt exhibits similar levels of activity on isolated mammalian mitochondrial and E. coli ribosomes, but displays minimal activity on Euglena gracilis chloroplast 70 S ribosomes and has no detectable activity on wheat germ cytoplasmic ribosomes. In contrast to the bacterial EF-Tu and the EF-Tu from the chloroplast of E. gracilis, the ability of the mitochondrial factor to catalyze polymerization is not inhibited by the antibiotic kirromycin.  相似文献   

14.
15.
B. Pineau 《Planta》1982,156(2):117-128
Light induction of chloroplast development in Euglena leads to quantitative changes in the protein composition of the soluble cell part. One major part of these is the observed accumulation of ribulose-1.5-bisphosphate carboxylase/oxygenase (RuBPCase) enzyme (EC 4.1.1.39). As measured by immunoelectrophoresis, a small amount of RuBPCase (about 10-6 pmol) is present in a dark-grown cell, whereas a greening cell (72h) contains 10–20 pmol enzyme. Both the cytoplasmic and chloroplastic translation inhibitors, cycloheximide and spectinomycin, have a strong inhibitory effect on the synthesis of the enzyme throughout the greening process of Euglena cells. Electrophoretic and immunological analyses of the soluble phase prepared from etiolated or greening cells do not show the presence of free subunits of the enzyme. For each antibiotic-treated greening cell, the syntheses of both subunits are blocked. Our data indicate that tight reciprocal control between the syntheses of the two classes of subunits occurs in Euglena. In particular, the RuBPCase small subunit synthesis in greening Euglena seems more dependent on the protein synthesis activity of the chloroplast than the syntheses of other stromal proteins from cytoplasmic origin.Abbreviations LSU large subunit of ribulose-1.5-bisphosphate carboxylase - RuBP ribulose-1.5-bisphosphate - RuBP-Case ribulose-1.5-bisphosphate carboxylase - SSU small subunit of ribulose-1.5-bisphosphate carboxylase  相似文献   

16.
The degradation of the storage carbohydrate, paramylum, is induced by light in wild-type Euglena gracilis Klebs var. bacillaris Pringsheim and in a mutant, W3BUL, which lacks detectable plastid DNA. Treatment of wild type with cycloheximide in the dark produces 60% as much paramylum breakdown as light, whereas treatment with levulinic acid in the dark yields a slightly greater response than light. Both cycloheximide and levulinic acid produce a greater paramylum breakdown in the light than they do in the dark. Treatment of W3BUL with levulinic acid in darkness produces a larger paramylum degradation than light, with values similar to wild type in the light. Treatment of W3BUL with cycloheximide induces paramylum degradation in darkness, and as with wild type, light is slightly stimulatory in the presence of both cycloheximide or levulinic acid. Streptomycin brings about only a very small amount of paramylum breakdown in the dark and only slightly inhibits breakdown in the light. Thus paramylum breakdown induced by light does not require the synthesis of proteins on cytoplasmic or plastid ribosomes. A model which explains these results postulates the existence of a protein which inhibits paramylum breakdown. When the synthesis of this protein is prevented either by light, cycloheximide, or by levulinic acid acting as a regulatory analog of delta amino levulinic acid, paramylum breakdown takes place. Because levulinic acid is a better inducer than light in W3BUL, W3BUL may not be able to form as much delta amino levulinic acid in light as wild type. The small amount of induction by streptomycin is viewed as a secondary regulatory effect attributable to interference with plastid protein synthesis which affects regulatory signals from the plastid to the rest of the cell.  相似文献   

17.
  • 1 In a mendelian (sr3) and an uniparental (sr35) streptomycin resistant mutant of Chlamydomonas reinhardi the influence of streptomycin on protein synthesis on the chloroplast and cytoplasmic ribosomes was investigated in vitro. Hetero-, mixo- and phototrophic agar cultures and heterotrophic liquid cultures were used.
  • 2 Protein synthesis on the cytoplasmic ribosomes, measured by the activity of glyceraldehyde-3-phosphate: NADP dehydrogenase (EC 1.2.1.9), was not inhibited, but rather stimulated by streptomycin.
  • 3 Protein synthesis on the chloroplast ribosomes of sr3, measured by the activity of ribulose-1,5-diphosphate carboxylase (EC 4.1.1.39), was greatly inhibited by streptomycin, especially in hetero- and mixotrophic cultures. In sr35 the chloroplast ribosomes were resistant to streptomycin.
  • 4 Heterotrophically grown cultures of sr3 and of a streptomycin-sensitive strain are yellow in the presence of streptomycin and form no or only reduced thylakoids on solid media. But 70-S organelle-ribosomes are present in a normal amount.
  • 5 The relationship between chloroplast protein synthesis and thylakoid formation is discussed.
  相似文献   

18.
Chloroplasts observed, by electron microscopy, to be intact and uncontaminated, with high rates of light-dependent protein synthesis and CO2 fixation were isolated from cells grown on low-vitamin-B12 medium in the light or from cells grown in the same medium in the dark and then exposed to light for 36 h. Both types of chloroplasts were active but less variability was encountered with developing chloroplasts from 36-h cells. The 36-h chloroplasts showed good light-dependent incorporation of 5-amino-levulinic acid (ALA) or l-glutamic acid into chlorophyll (Chl) a which was linear for approx. 1 h. The specific activity of the Chl a remained the same after conversion to pheophytin a, methylpheophorbide a or pyromethylpheophorbide a and rechromatography, indicating that the label was in the tetrapyrrole. Incorporation of ALA was inhibited by levulinic acid, and by chloramphenicol and other inhibitors of translation of 70S-type chloroplast ribosomes at concentrations which did not appreciably inhibit photosynthesis but which blocked plastid protein synthesis nearly completely. Cycloheximide, an inhibitor of translation on 87S cytoplasmic ribosomes of Euglena, was without effect. The 70S inhibitors did not block uptake of labeled ALA. Although labeled glycine was taken up by the plastids, no incorporation into Chl a was observed. Thus the developing chloroplasts appear to contain all of the enzymatic machinery necessary to convert glutamic acid to Chl via the C5 pathway of ALA formation but the Shemin pathway from succinyl coenzyme A and glycine to ALA appears to be absent. The requirement for plastid protein synthesis concomitant with Chl synthesis indicates a regulatory interaction and also indicates that at least one protein influencing Chl synthesis is synthesized on 70S-type plastid ribosomes and is subject to metabolic turnover.Abbreviations ALA 5-aminolevulinic acid - Chl chlorophyll  相似文献   

19.
The apoprotein of the major light harvesting pigment-protein complex from the diatom Phaeodactylum tricornutum (UTEX 646) is composed of two similar polypeptides of 17.5 and 18.0 kilodaltons (kD). The in vivo synthesis of these polypeptides is inhibited by the 80s protein synthesis inhibitor cycloheximide, but not by the 70s ribosome inhibitor chloramphenicol. When total poly(A)+ RNA was used in in vitro protein synthesis, a number of polypeptides were synthesized with a dominant product at 22 kD. When the polypeptides were immunoprecipitated with monospecific antibodies to the 17.5 and 18.0 polypeptides, a single protein zone of 22 kD was detected. Immunoprecipitation with preimmune serum failed to precipitate detectable levels of protein at any relative molecular weight (Mr). These findings indicate that the two apoprotein polypeptides of the diatom light harvesting pigment-protein are translated from polyadenylated message on cytoplasmic ribosomes as either a single or two (or more) similar Mr precursor proteins. These findings also suggest that this protein is encoded in the nucleus.

Photosynthetic light adaptation features of P. tricornutum UTEX 646 indicate that it responds to low light by increasing cell size and numbers of photosystem I and II reaction centers per cell, but does not change photosynthetic rate per cell or photosynthetic unit sizes significantly. When low light cells are exposed to higher photon flux densities, the in vivo incorporation of label into the apoprotein of the light harvesting complex decreases. In contrast, high light grown cells show rapid (<3 hour) increases in apoprotein synthesis when exposed to low light levels. This is the first demonstration of a specific role of photon flux density in regulating the synthesis of a major light harvesting pigment-protein during photosynthetic light adaptation.

  相似文献   

20.
The effect of chloramphenicol (CAP) on cell division and organelle ultrastructure was studied during light-induced chloroplast development in the Chrysophyte alga, Ochromonas danica. Since the growth rate of the CAP-treated cells is the same as that of the control cells for the first 12 hr in the light, CAP is presumed to be acting during that interval solely by inhibiting protein synthesis on chloroplast and mitochondrial ribosomes. CAP markedly inhibits chloroplast growth and differentiation. During the first 12 hr in the light, chlorophyll synthesis is inhibited by 93%, the formation of new thylakoid membranes is reduced by 91%, and the synthesis of chloroplast ribosomes is inhibited by 81%. Other chloroplast-associated abnormalities which occur during the first 12 hr and become more pronounced with extended CAP treatment are the presence of prolamellar bodies and of abnormal stacks of thylakoids, the proliferation of the perinuclear reticulum, and the accumulation of dense granular material between the chloroplast envelope and the chloroplast endoplasmic reticulum. CAP also causes a progressive loss of the mitochondrial cristae, which is paralleled by a decline in the growth rate of the cells, but it has no effect on the synthesis of mitochondrial ribosomes. We postulate that one or more chloroplast ribosomal proteins are synthesized on chloroplast ribosomes, whereas mitochondrial ribosomal proteins are synthesized on cytoplasmic ribosomes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号