首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用四氮唑蓝光化学还原法对所合成的KCu(IDA)(Ser)·2H2O、KCu(IDA)(Ala)·H2O、Cu(IDA)(en)、KCu(IDA)(Gly)·H2O和Cu(IDA)·2H2O(IDA=N(羧基甲基)-甘氨酸,Ser=丝氨酸,Ala=丙氨酸,en=乙二胺,Gly=甘氨酸)等5种氨基酸─铜(Ⅱ)配合物进行了活性测定,发现它们均具有天然超氧化物歧化酶活性,其活性依次为0.34、0.45、0.50、0.54、0.72Cuμmol·L-1。  相似文献   

2.
In this paper are presented the features of copper (II) and zinc (II) heteronuclear complexes of the cyclic peptide—c(HKHGPG)2. The coordination properties of ligand were studied by potentiometric, UV–Vis and CD spectroscopic methods. These experiments were carried out in aqueous solutions at 298 K depending on pH. It turned out that in a physiological pH dominates Cu(II)/Zn(II) complex ([CuZnL]4+) which could mimic the active center of superoxide dismutase (Cu,ZnSOD). In next step we performed in vitro research on Cu,ZnSOD activity for [CuZnL]4+ complex existing in 7.4 pH by the method of reduction of nitroblue tetrazolium (NBT). Also mono- and di-nuclear copper (II) complexes of this ligand were examined. The ability of inhibition free radical reaction were compared for all complexes. The results of these studies show that Cu(II) mono-, di-nuclear and Cu(II)/Zn(II) complexes becoming to new promising synthetic superoxide dismutase mimetics, and should be considered for further biological assays.  相似文献   

3.
The superoxide dismutase-mimetic activity and the electrochemical behavior of the binuclear complex [Cu(TSA)2py]2 is reported. The complex exhibits a marked SOD activity in the nitroblue tetrazolium assay. Its redox response is in agrement with two copper atoms partially coupled through the carboxylate moieties. The electrode reactions lie in the range of the superoxide/peroxide and oxygen/superoxide couples. This fact is indicative that this complex can act as catalyst for the SOD reaction.  相似文献   

4.
Superoxide dismutase (SOD) activity in rat liver cytosol and submitochondrial fractions was characterized as enzymatic and nonenzymatic (due to the SOD-like activity of copper) by four approaches: (i) aerobic NBT2+ (nitroblue tetrazolium) photoreduction in the absence of EDTA; (ii) aerobic NBT2+ photoreduction in the presence of 10?4m EDTA; (iii) anaerobic NBT2+ photoreduction; and (iv) o-dianisidine photooxidation. Under normal conditions nonenzymatic SOD activity has been observed only in the intermembrane space. The single subcutaneous injection of rats with CuSO4 solution (5 mg Cu/kg body wt) led to (i) an elevation of the copper level in all submitochondrial fractions; (ii) an increase in enzymatic SOD activity in only cytosol and intermembrane spaces; (iii) the appearance of a new electrophoretic SOD activity band in the intermembrane space preparations; and (iv) the appearance of nonenzymatic SOD-like activity in the outer and inner mitochondrial membranes, and a twofold increase in lipid hydroperoxides. This suggests that the increased nonenzymatic copper in vivo has a prooxidant effect, and does not catalyze the dismutation of O2? as it has been shown in in vitro experiments [E. M. Russanov S. G. Ljutakova, and S. I. Leutcher (1982) Arch. Biochem. Biophys.215, 220–229]. The peculiarities of the SOD activity in the intermembrane space are explained by the lysosomal localization of the granular CuZnSOD.  相似文献   

5.
Cyanide catalyzed the oxidation of α-hydroxycarbonyls and of related compounds. In the cases of glyceraldehyde 3-phosphate and of dihydroxyacetone phosphate the tautomeric enediol was the obligatory intermediate which reacted with cyanide yielding the active reductant. Cytochrome c, nitroblue tetrazolium, and dioxygen were all reduced by this reductant. In the case of dioxygen the product was the superoxide radical which could then secondarily reduce cytochrome c or nitroblue tetrazolium. In air-equilibrated reaction mixtures, at 25 °C, approximately 35% of cytochrome c reduction and 95% of nitroblue tetrazolium reduction was mediated by superoxide, as judged from susceptibilities to inhibition by superoxide dismutase. Since the oxidations observed were univalent, carbon-centered radicals appear to be necessary intermediates, and their secondary reactions generated a multiplicity of products, seen as smears on thin-layer chromatograms. Free cyanide must be regenerated during these secondary reactions, since cyanide functioned catalytically in the overall process. A partial mechanism has been proposed in explanation of these observations.  相似文献   

6.
The possible time- and/or light-dependent decomposition of the purple Cu(I), Cu(II)-complex of D-penicillamine (Cu(II)6Cu(I)8(D-penicillamine)12Cl)5? was examined. Superoxide dismutase activity of the freshly prepared complex was assayed using the nitroblue tetrazolium assay. The formazan colour formation was inhibited by 50% in the presence of approximately 500 μM copper. Ageing of the copper complex, especially in the light, resulted in a marked increase of EDTA-sensitive activity. Upon gel chromatography of the aged samples the original low inhibitory activity was restored. All EDTA-sensitive inhibitory activity was found in a clearly separated low Mr copper-containing fraction. Aerobic irradiation with a tungsten lamp at 30 °C accelerated the decomposition of (Cu(II)6Cu(I)8(D-penicillamine)12Cl)5?. ?Cu518 = 1800 M?1 cm?1 dropped to ?Cu640 = 60 M?1 cm?1. The photochemical conversion of (Cu(II)6? Cu(I)8(D-penicillamine)12Cl)5? was complete within 48 h. Due to the identical electronic absorption profile of both, the decomposition product and Cu(II) D-penicillamine disulphide the latter complex was assigned to be the unknown low Mr copper-compound. Circular dichroism and electron paramagnetic resonance measurements support this conclusion.  相似文献   

7.
Copper(II) and nickel(II) complexes of macrocyclic polyamine derivatives possessing partial oligopeptide-like structures are found to suppress the xanthine-xanthine oxidase-mediated reduction of nitroblue tetrazolium and also to suppress formazan formation by potassium superoxide. The activity in the superoxide dismutase assay is dependent on ring size, type and number of donor atoms, metal ion, and substituents on the macrocycles. Some of those are more active than the known O2? scavengers such as copper(II)-salicylate and copper(II)-amino acid (or peptide) complexes. Nickel (II)-naphthylmethyl-dioxo-[16]ane N5, 13, 1 : 1 complex (NiH?2L) is the most active among the 30 chelates examined.  相似文献   

8.
The reduction of ferricytochrome c in the presence of 6-hydroxydopamine/O2 mixtures was examined under various reaction conditions. As the autoxidation of 6-hydroxy-dopamine progressed to completion, there were fluctuations in the net redox reactivity between reducing and oxidizing steady states. This was reflected in a sequence of damped oscillations in the redox state of cytochrome c. Corresponding to the time when 6-hydroxydopamine was 75–100% exhausted, reoxidation of the ferrocytochrome c occurred (prevented by catalase or catalase plus Superoxide dismutase). After the H2O2, in turn, was mostly consumed, the next phase commenced in which the cytochrome c became reduced for a second time. This reductive phase was 52% inhibited by superoxide dismutase. In the subsequent and final phase of the process, a progressive oxidation of cytochrome c lasting at least 24 h was observed. Of the initial reduction of ferricytochrome c, at most 37% can be attributed to direct reduction by 6-hydroxydopamine or its semiquinone. This initial net reduction of cytochrome c was inhibited 51% by superoxide dismutase and 41% by catalase. However, since either catalase or superoxide dismutase inhibited the autoxidation of 6-hydroxydopamine by at least as much as it slowed the reduction of cytochrome c, their effects in slowing the reduction of cytochrome c resulted largely from the decreased production of those free radicals which reduce ferricytochrome c, and only in part from accelerated removal. Elimination of the actions of transition metal ions (whether by passage of the buffer solutions through Chelex 100 resins or by addition of desferrioxamine to the reaction medium) slowed both the reoxidation and rereduction by up to 96%. Addition of mannitol decreased the rate of the first reoxidation by 25% and increased the rate of the rereduction by 7%. In general, the oscillations are explicable in terms of changes in the steady state levels of O2 and H2O2, with metal ions playing a major role and hydroxyl radicals a minor role in both the reoxidation and rereduction.  相似文献   

9.
Putative superoxide dismutase activity of iron-EDTA: a reexamination   总被引:2,自引:0,他引:2  
It has been reported that iron-EDTA complexes mimic the action of superoxide dismutase, displaying 0.01% of the activity of the enzyme (Halliwell, B., 1975, FEBS Lett., 56, 34–38). This was purportedly directly confirmed by J. G. McClune, J. A. Fee, G. A. McCluskey, and J. T. Groves, 1977, J. Amer. Chem. Soc., 99, 5220–5222. A reexamination of the behavior of this compound has demonstrated that it does not catalyze the dismutation of O2?, but rather inferferes with assays for superoxide dismutation activity, which are based on the reductions of nitroblue tetrazolium or of cytochrome c. The sources of this interference have been examined. Investigators engaged in searching for mimics of superoxide dismutase are urged to be wary of similar artifacts.  相似文献   

10.
The single crystal X-ray structures of (CuICH3CN4·dibenzo-18-crown-6 (I) and (CuICH3CN) (II) have been determined at room temperature [(I) C28H36Cu4I4N4o6, monoclinic space group P21/n, a = 10.116(4), b = 18.092(8), c = 22.211(9) Å, β = 98.66(3)°, Z = 4; (II) C2H3CuIN, orthorhombic pBN21, a = 13.618(8), b =8.742(2), c = 4.298(2), Z = 4]. (I) exists as a distorted cube with copper and iodine at alternate corners, the fourth coordination site copper occupied by an acetonitrile molecule coordinated through nitrogen. The cluster contains no crystallographic symmetry element and CuCu distances average 2.770(5) Å. The dibenzo-18-crown-6 displays only second sphere type interactions with cluster. (II) displays a pleated double chain type structure with distorted rectangles of alternating Cu and I atoms sharing opposite edges in infinite array. Copper displays tetrahedral geometry by coordination to three iodine atoms and a nitrogen bound acetonitrile molecule.  相似文献   

11.
An extensive search resulted in the identification of pamoic acid as an inhibitor of superoxide dismutases. Pamoic acid appeared to rapidly and reversibly inhibit all types of superoxide dismutases and did so in both the cytochrome c reduction and in the dianisidine photooxidation assays, used to measure this activity. It could nevertheless be shown that pamoic acid did not at all inhibit superoxide dismutase but rather diminished the sensitivity of the assays. The mechanism proposed to account for this effect involved oxidation of pamoate, by O2?, to yield a pamoate radical which can then reduce cytochrome c or oxidize pyrogallol. Pamoate thus competes with superoxide dismutase for the available O2?, without affecting the observable effects of that O2? upon cytochrome c or upon pyrogallol. It consequently makes these assays less responsive to superoxide dismutase, while appearing to be without effect in the absence of superoxide dismutase. Several of the predicted consequences of this proposal were affirmed. Other workers, interested in finding inhibitors for superoxide dismutases, are hereby forwarned of this subtle snare.  相似文献   

12.
Convenient assays for superoxide dismutase have necessarily been of the indirect type. It was observed that among the different methods used for the assay of superoxide dismutase in rat liver homogenate, namely the xanthine-xanthine oxidase ferricytochromec, xanthine-xanthine oxidase nitroblue tetrazolium, and pyrogallol autoxidation methods, a modified pyrogallol autoxidation method appeared to be simple, rapid and reproducible. The xanthine-xanthine oxidase ferricytochromec method was applicable only to dialysed crude tissue homogenates. The xanthine-xanthine oxidase nitroblue tetrazolium method, either with sodium carbonate solution, pH 10.2, or potassium phosphate buffer, pH 7·8, was not applicable to rat liver homogenate even after extensive dialysis. Using the modified pyrogallol autoxidation method, data have been obtained for superoxide dismutase activity in different tissues of rat. The effect of age, including neonatal and postnatal development on the activity, as well as activity in normal and cancerous human tissues were also studied. The pyrogallol method has also been used for the assay of iron-containing superoxide dismutase inEscherichia coli and for the identification of superoxide dismutase on polyacrylamide gels after electrophoresis.  相似文献   

13.
《Analytical biochemistry》1987,161(2):559-566
Most assays for superoxide dismutase depend upon competition between the enzyme and some indicating scavenger for O2. We have investigated the effects of experimental variables on assays based upon the use of either ferricytochrome c or nitro blue tetrazolium. Our results should help investigators to avoid the numerous potential pitfalls which necessarily surround these assay methods.  相似文献   

14.
Two new mixed ligand complexes of copper(II) with N,N,N,N″,N″-pentamethyldiethylenetriamine and polypyridine ligands have been prepared and characterized by means of spectroscopic, magnetic and single-crystal X-ray diffraction methods. These two complexes are isomorph and isostructure in which the coordination polyhedron about the copper(II) ion is distorted square pyramidal. [Cu(PMDT)(bipy)]2+ and [Cu(PMDT)(phen)]2+ show an absorption wavelength maximum at 625 and 678 nm, respectively, assigned to the d-d transition. Antibacterial, antifungal and superoxide dismutase activities of these complexes have also been measured. It was observed that [Cu(PMDT)(bipy)](ClO4)2 was more effective against P. Pyocyanea and Klebsiella sp. than S. aureus. Similarly, Fusarium sp. was highly susceptible against [Cu(PMDT)(bipy)](ClO4)2 but less susceptible against [Cu(PMDT)(phen)](ClO4)2.  相似文献   

15.
The activity of chelated Cu(II) with four different aspirin-like drugs in various superoxide dismutase assays was examined. Prior to these studies the oxidation state of the involved copper was measured by x-ray photoelectron spectrometry and was found to be +II throughout. All copper complexes were able to suppress the xanthine-xanthine oxidase mediated reduction of both cytochrome c and nitroblue tetrazolium as well as the formazan formation by KO2 in a specific manner. The hydroxylation of benzo-[alpha]-pyrene as well as the demethylation of 7-ethoxycoumarin using induced hepatic rat microsomes could be successfully inhibited by the employed Cu(II) chelates. Cu(II)-acetylsalicylate was the most active copper complex. Our findings support the proposal that Cu(II) chelates are the active forms of aspirin-like antiinflammatory agents.  相似文献   

16.
During the aerobic xanthine oxidase reaction, O2? is produced and accumulates to a steady state determined by a balance between the rate of production of this radical and its rate of dismutation. Addition of ferricytochrome c then results in a biphasic reduction, the very rapid phase of which reflects reaction of the accumulated O2?, while the slower phase corresponds to the continuing production of this radical. Superoxide dismutase suppresses the accumulation of O2? during the xanthine oxidase reaction and thus diminishes the burst of reduction seen upon addition of ferricytochrome c. This effect has been utilized, at pH 10.2, as the basis of an assay that permits measurement of picomolar levels of superoxide dismutase. The theory and practice of this ultrasensitive assay are described.  相似文献   

17.
The Rieske iron-sulfur center in the photosynthetic bacterium Rhodopseudomonas sphaeroides appears to be the direct electron donor to ferricytochrome c2, reducing the cytochrome on a submillisecond timescale which is slower than the rapid phase of cytochrome oxidation (t12 3–5 μs). The reduction of the ferricytochrome by the Rieske center is inhibited by 5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole (UHDBT) but not by antimycin. The slower (1–2 ms) antimycin-sensitive phase of ferricytochrome c2 reduction, attributed to a specific ubiquinone-10 molecule (Qz), and the associated carotenoid spectral response to membrane potential formation are also inhibited by UHDBT. Since the light-induced oxidation of the Rieske center is only observed in the presence of antimycin, it seems likely that the reduced form of Qz (QzH2) reduces the Rieske center in an antimycin-sensitive reaction. From the extent of the UHDBT-sensitive ferricytochrome c2 reduction we estimate that there are 0.7 Rieske iron-sulfur centers per reaction center.UHDBT shifts the EPR derivative absorption spectrum of the Rieske center from gy 1.90 to gy 1.89, and shifts the Em,7 from 280 to 350 mV. While this latter shift may account for the subsequent failure of the iron-sulfur center to reduce ferricytochrome c2, it is not clear how this can explain the other effects of the inhibitor, such as the prevention of cytochrome b reduction and the elimination of the uptake of H+II; these may reflect additional sites of action of the inhibitor.  相似文献   

18.
The prion protein (PrPc) is a cuproprotein implicated in a number of human neurodegenerative diseases. Although many physiological functions have been ascribed to PrP, its potential to act as a neuronal antioxidant, based in part on its copper binding ability, is controversial and unresolved. A number of studies have shown that copper bound to PrPc is not redox silent, and recent data shows that the Cu(II) sites at histidines 96 and 111 display reversible electrochemistry. Reversible electrochemistry implies redox cycling whilst the metal remains bound and with the absence of permanent oxidation or reduction of the protein. Despite this indirect evidence of Cu(I) binding to PrP, the nature of the Cu(I) binding site/s is unclear, although previous extended X-ray absorption fine structure (EXAFS) data has implicated methionines in the Cu(I) binding site. Using spectroscopic techniques we find that the PrP region encompassing histidines 96 and 111 can bind a Cu(I) ion in a site comprising His 96, His 111, Met 109 and Met 112. The four-coordinate (His)2(Met)2 Cu(I) site has a Kd = 10−15–10−12 M indicative of high affinity. Mutation of histidine residues reduces the Cu(I) affinity. Although alluding to the fact the PrP could act in a direct superoxide dismutase-like fashion, the Cu(I)–PrP(91–124) site and affinity is comparable to that observed for bacterial periplasmic Cu(I) transporters.  相似文献   

19.
A new type of Cu(II) epr signals have been produced in native and type 2 copper depleted Rhus vernicifera laccase. They are shown to originate from one of the type 3 copper ions that are epr silent in the resting enzyme. The new epr signals show high rhombicity in g tensor and are similar to those observed in other proteins, such as superoxide dismutase and half-met hemocyanin. The half-reduced type 3 copper pair is formed by reduction with an electron from type 1 Cu(I) but only after a reoxidation of the copper pair, either by peroxide or dioxygen. It is suggested that the half-reduction of the type 3 copper pair only occurs in molecules where type 2 copper ion is either reduced or absent.  相似文献   

20.
Endogenous interfering substances can be detected by applying the techniques of parallel-line analysis of variance to the assay of superoxide dismutase (SOD) activities in crude tissue extracts. The technique also allows expression of specific activities in terms of units of activity as defined by commercially available standards as opposed to definition by the specific assay conditions utilized. This analysis may be broadly applied to many of the indirect SOD assays currently in use. In the current investigation, SOD was assayed by its ability to inhibit the rate of reduction of acetylated ferricytochrome c by superoxide anion (O2?) generated via the xanthine-xanthine oxidase reaction. The parallel-line analysis was effective in detecting the presence of interference by exogenous ascorbate in the reaction system, and by unidentified endogenous reactants within extracts of whole blood and ocular choroidal tissues of the rainbow trout, Salmo gairdneri.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号