首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 507 毫秒
1.
Deoxycytidine transport and metabolism in choroid plexus   总被引:3,自引:3,他引:0  
In vitro, the transport into and release of [3H]deoxycytidine from the isolated choroid plexus, the anatomical locus of the blood-cerebrospinal fluid barrier, were studied separately. By use of the ability of nitrobenzylthioinosine (NBTI) to inhibit deoxycytidine efflux from choroid plexus, the transport of 1 microM [3H]deoxycytidine into choroid plexus at 37 degrees C was measured. Deoxycytidine was transported into choroid plexus against a concentration gradient by a saturable process that depended on intracellular energy production, but not intracellular binding or metabolism. The Michaelis-Menten constant (KT) for the active transport of deoxycytidine into choroid plexus was 15 microM. The active transport system for deoxycytidine was inhibited by naturally occurring nucleosides and deoxynucleosides, but not by 1 mM probenecid and 2-deoxyribose or 100 microM cytosine and cytosine arabinoside. With less than 1 microM [3H]deoxycytidine in the medium, the choroid plexus accumulated [3H]deoxycytidine against a concentration gradient. However, approximately 50% of the [3H]deoxycytidine was phosphorylated to [3H]deoxycytidine nucleotides at a low extracellular [3H]deoxycytidine concentration (6 nM) in 15-min incubations. This accumulation process depended, in part, on saturable intracellular phosphorylation. These studies provide further evidence that the choroid plexus contains an active nucleoside transport system of low specificity for deoxynucleosides and ribonucleosides, and a separate, saturable efflux system for deoxynucleosides which is very sensitive to inhibition by NBTI.  相似文献   

2.
The transport of [3H]deoxyuridine by the active nucleoside transport system into the isolated rabbit choroid plexus was measured in vitro under various conditions. Choroid plexuses were incubated in artificial CSF containing 1 microM [3H]deoxyuridine and 1 microM nitrobenzylthioinosine for 5 min under 95% O2-5% CO2 at 37 degrees C and the accumulation of [3H]deoxyuridine measured. Nitrobenzylthioinosine was added to the artificial CSF at a concentration (1 microM) that did not inhibit the active nucleoside transport system but did inhibit the separate, saturable nucleoside efflux system. The active transport of deoxyuridine into the choroid plexus depended on Na+ in the medium, as ouabain, substitution of Li+ and choline for Na+, and poly-L-lysine all inhibited deoxyuridine transport. Thiocyanate in place of chloride and penetrating sulfhydryl reagents also inhibited the active transport of deoxyuridine into choroid plexus. The active transport of deoxyuridine into choroid plexus, which is inhibited by naturally occurring ribo- and deoxyribonucleosides (IC50 = 7-21 microM), was not inhibited (IC50 much greater than 150 microM) by nucleosides with certain alterations on the 2', 3', or 5' positions in D-ribose or 2-deoxy-D-ribose (e.g., adenine arabinoside, 3'-deoxyadenosine, xylosyladenosine); or the pyrimidine or purine rings (e.g., 6-azauridine, xanthosine, 7-methylinosine, or 8-bromoadenosine). Other analogues were effective (IC50 = 8-26 microM; e.g., 5-substituted pyrimidine nucleosides, 7-deazaadenosine, 6-mercaptoguanosine) or less effective (IC50 = 46-145 microM; e.g., 5-azacytidine, 3-deazauridine) inhibitors of deoxyuridine transport into the isolated choroid plexus.  相似文献   

3.
In vitro, the accumulation and release of [methyl-3H]thymidine ([3H]thymidine) by the isolated choroid plexus, the anatomical locus of the blood-cerebrospinal fluid barrier, was studied. With concentrations of [3H]thymidine in the medium of 1.0 μm (or greater), the choroid plexus accumulated [3H]thymidine against a concentration gradient by a process that depended on intracellular energy production but did not depend on intracellular binding or metabolism of the [3H]thymidine. This transport process was inhibited (although differentially) by various nucleosides and low temperatures but not by 2-deoxyribose or pyrimidine bases. With concentrations of less than 1.0 μm [3H]thymidine in the medium, the choroid plexus accumulated [3H]thymidine against a concentration gradient. However, the majority of the [3H]thymidine within the choroid plexus was metabolized to [3H]thymidine nucleotides at low extracellular [3H]thymidine concentrations (3 nm). This accumulation process depended, in large part, on saturable intracellular phosphorylation. Thymidine was the principal form released from choroid plexuses that had been incubated for various times in media containing concentrations of thymidine from 3 to 1.0 mm. The release of thymidine from choroid plexus was depressed by cold temperatures and a very high (2.56 mmol/kg) intracellular thymidine concentration.  相似文献   

4.
Abstract: The localization and mechanism of thymidine and deoxyuridine transport in the central nervous system were studied in vivo and in vitro . Previous studies have shown that thymidine enters brain from blood in part via the CSF. In vitro , isolated adult bovine cerebral microvessels, which readily concentrated and phosphorylated deoxyglucose, were unable to concentrate thymidine and deoxyuridine. In vivo , [3H]thymidine (0.2 μ M ) and [3H]deoxyuridine(0.4 μ M ) were not extracted more readily than [14C]sucrose in a single pass through the cerebral circulation of rats. In vivo , [3H]thyrnidine retention in CSF and brain after entry from blood was increased when the efflux of [3H]thymidine from CSF and the phosphorylation of [3H]thymidine in brain were depressed by the intraventricular injection of unlabeled thymidine. These studies and previous work suggest that the transfer of thymidine (and deoxyuridine) through the blood-brain barrier in either direction must be extremely low. The present studies are consistent with the postulate that thymidine is transported by an active transport system in the choroid plexus that transfers thymidine from blood into the CSF; from the CSF, the thymidine enters brain cells and is phosphorylated.  相似文献   

5.
VITAMIN B6 TRANSPORT IN THE CENTRAL NERVOUS SYSTEM: IN VITRO STUDIES   总被引:10,自引:10,他引:0  
Abstract— The transport into and release of tritium labeled vitamin B6 ([3H]B6) from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated [3H]B6 by an energy dependent uptake system when [3H]pyridoxine (PIN) was added to the incubation medium. Most of the [3H] within the tissues was phosphorylated [3H]B6. In each tissue, the nonphosphorylated vitamers inhibited the uptake of [3H]PIN from the medium significantly more than the phosphorylated vitamers. The concentrations of the nonphosphorylated B6 vitamers necessary to inhibit brain and choroid plexus uptake of [3H]PIN from the medium by 50% were approx 0.4 μm and 5–10μm respectively after a 30 min incubation. Both brain slices and choroid plexus readily released (46 and 56% respectively in 30 min) previously accumulated [3H]B6 into artificial CSF. However, brain slices released only nonphosphorylated [3H]B6, whereas the choroid plexus released predominantly phosphorylated [3H]B6. Addition of unlabeled PIN to the release media significantly increased the percentage of [3H]B6 released by both brain slices and choroid plexus. The results of these in vitro studies provide evidence that: (1) both brain slices and chloroid plexus possess specific uptake and release mechanisms for B6, and (2) these mechanisms tend to regulate intracellular B6 levels. These studies also suggest that the choroid plexus serves as a locus for the transfer of B6 from blood to CSF and is the source of most of the phosphorylated B6 in CSF.  相似文献   

6.
Radioimmunoassay techniques have been developed for the assay of thymidine, uridine, deoxyuridine, and deoxycytidine. Plasma levels of the first three nucleosides have been measured, and an upper limit has been determined for the plasma concentration of deoxycytidine. The assays involve displacement of a [3H]pyrimidine nucleoside from the appropriate labeled rabbit immunoglobulin. By assaying a mixture of uridine and deoxyuridine in the presence and absence of borax, the concentrations of both nucleosides have been measured. In seven healthy adults, plasma levels of uridine were 21.1 ± 8.4 μm (mean ± SD) and of deoxyuridine were 0.62 ± 0.39 μm. In cancer patients, thymidine levels were 7.5 ± 2.7 × 10?7m. The upper limit for plasma deoxycytidine levels in six healthy adults was 0.71 ± 0.1 μm.  相似文献   

7.
The transport into and release of14C-labeled niacin and niacinamide from rabbit brain slices and isolated choroid plexuses were studied. In vitro, both brain slices and choroid plexus concentrated 14C by specific, energy-dependent mechanisms when [14C]niacinamide was added to the incubation medium. The saturable accumulation velocities, which were linear for 30 min, depended, in part, on incorporation of the [14C]niacinamide into NAD. The XT and Ymax for 14C accumulation with [14C]niacinamide in the medium by brain slices and choroid plexus were 0.80 μM and 1.45 μmolkg?1 (30 min)?1, and 0.23 μM and 18.6 μmol kg?1 (30 min)?1 respectively. In vitro, the choroid plexus, unlike brain slices, vigorously concentrated 14C by a separate, specific energy-dependent process when 14C niacin was added to the incubation medium. The saturable accumulation velocity, which was linear for 30 min, depended completely on the metabolism of [14C]niacin. The KT and Ymax for14C accumulation by choroid plexus with [14C]niacin in the medium were 18.1 μM and 439 μmol kg?1 (30 min)?1 respectively. Whether preincubated in [14C]niacin or [14C]niacinamide, choroid plexus released predominantly [14C]niacinamide.  相似文献   

8.
Deoxycytidine Transport and Metabolism in the Central Nervous System   总被引:4,自引:2,他引:2  
Abstract: The mechanisms by which deoxycytidine enters and leaves brain, choroid plexus, and CSF were investigated by injecting [3H]deoxycytidine intraarterially, intravenously, and intraventricularly. After intracarotid injection of deoxycytidine (1.0 μM) into rats, deoxycytidine did not pass through the blood-brain barrier at a faster rate than sucrose. [3H]Deoxycytidine, either alone or together with unlabeled deoxycytidine, was infused at a constant rate into conscious adult rabbits. At 130 min, [3H]deoxycytidine readily entered CSF, choroid plexus, and brain. In brain, approx. 60% of the nonvolatile radioactivity was attributable to [3H]deoxycytidine phosphates. The addition of 0.22 mmol/kg unlabeled deoxycytidine to the infusion syringe decreased the phosphorylation of [3H]deoxycytidine in brain by approx. 50%; the addition of 2.2 mmol/kg of unlabeled deoxycytidine to the infusion syringe decreased the relative entry of [3H]deoxycytidine into CSF and brain by approx. 50 and 75%, respectively. Two hours after the intraventricular injection of [3H]deoxycytidine, [3H]deoxycytidine was rapidly cleared from CSF, in part, to brain, where approx. 65% of the [3H]deoxycytidine was converted to [3H]deoxycytidine phosphates. The intraventricular injection of unlabeled deoxycytidine with the [3H]deoxycytidine decreased the phosphorylation of [3H]deoxycytidine in the brain significantly and also decreased the clearance of [3H]deoxycytidine from the CSF. These results were interpreted as showing that the entry of deoxycytidine from blood into CSF occurs by a saturable transport system within the choroid plexus. Once within the CSF, the deoxycytidine can enter brain, undergo phosphorylation to deoxycytidine phosphates, and subsequently be incorporated into DNA.  相似文献   

9.
Riboflavin Homeostasis in the Central Nervous System   总被引:4,自引:2,他引:2  
Abstract: The mechanisms by which riboflavin, which is not synthesized in mammals, enters and leaves brain, CSF, and choroid plexus were investigated by injecting [14C]riboflavin intravenously or intraventricularly. Tracer amounts of [14C]riboflavin with or without FMN were infused intravenously at a constant rate into normal, starved, or probenecid-pretreated rabbits. At 3 h, [14C]riboflavin readily entered choroid plexus and brain, and, to a much lesser extent, CSF. Over 85% of the [14C]riboflavin in brain and choroid plexus was present as [14C]FMN and [14C]FAD. The addition of 0.2 mmol/kg FMN to the infusate markedly depressed the relative entry of [14C]riboflavin into brain, choroid plexus, and, less so, CSF, whereas starvation increased the relative entry of [14C]riboflavin into brain and choroid plexus. After intraventricular injection (2 h), most of the [14C]riboflavin was extremely rapidly cleared from CSF into blood. Some of the [14C]riboflavin entered brain, where over 85% of the 14C was present as [14C]FMN plus [14C]FAD. The addition of 1.23μmol FAD (which was rapidly hydrolyzed to riboflavin) to the injectate decreased the clearance of [14C]riboflavin from CSF and the phosphorylation of [14C]riboflavin in brain. Probenecid in the injectate also decreased the clearance of [14C]riboflavin from CSF. These results show that the control of entry and exit of riboflavin is the mechanism, at least in part, by which total riboflavin levels in brain cells and CSF are regulated. Penetration of riboflavin through the blood-brain barrier, saturable efflux of riboflavin from CSF, and saturable entry of riboflavin into brain cells are three distinct parts of the homeostatic system for total riboflavin in the central nervous system.  相似文献   

10.
The mechanisms by which biotin enters and leaves brain, choroid plexus and cerebrospinal fluid (CSF) were investigated by injecting [3H]biotin either intravenously or intraventricularly into adult rabbits. [3H]biotin, either alone or together with unlabeled biotin was infused at a constant rate into conscious rabbits. At 180 minutes, [3H]biotin had entered CSF, choroid plexus, and brain. In brain, CSF, and plasma, greater than 90% of the nonvolatile3H was associated with [3H]biotin. The addition of 400 mol/kg unlabeled biotin to the infusion syringe decreased the penetration of [3H]biotin into brain and CSF by approximately 70 percent. Two hours after an intraventricular injection, [3H]biotin was cleared from the CSF more rapidly than mannitol and minimal metabolism of the [3H]biotin had occurred in brain. However, 18 hours after an intraventricular injection, approximately 35% of the [3H]biotin remaining in brain had been covalently incorporated into proteins, presumably into carboxylase apoenzymes. These results show that biotin enters CSF and brain by saturable transport systems that do not depend on metabolism of the biotin. However, [3H]biotin is very slowly incorporated covalently into proteins in brain in vivo.  相似文献   

11.
A thin-layer chromatographic method for the separation of thymidine and deoxyuridine nucleotides and nucleosides is described. This procedure involves the following sequence of steps: (i) Ion-exchange thin-layer chromatography to afford separation into fractions of increasing degree of phosphorylation, (ii) conversion of each fraction into an equivalent mixture of thymine and uracil through the combined actions of alkaline phosphatase and thymidine phosphorylase, and (iii) partition thin-layer chromatographic separation of thymine and uracil. A key feature of the method is the specificity afforded by the second step which converts only thymidine and deoxyuridine nucleotides and nucleosides to the corresponding pyrimidine bases. An application of the method to the study of [3H]deoxyuridine metabolism in L1210 cells, as well as the effect of methotrexate on this metabolism is also described.  相似文献   

12.
Transport of pyrimidine nucleosides into germinating Petunia hybrida pollen is carrier-mediated, and, except for thymidine, is inhibited by the energy poisons N,N′-dicyclohexylcarbodiimide, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole, 2,4-dinitrophenol, and carbonylcyanide-m-chlorophenylhydrazone. Kinetic studies with analogs deoxyuridine and 5-bromodeoxyuridine show that they too are taken up faster than thymidine and inhibited by the energy poisons. These and other analogs inhibit uridine and cytidine transport more than thymidine, as do the inhibitors parachloromercuribenzoic acid, N-ethylmaleimide, phenylarsine oxide, o-phenanthroline, ethylene diamenetetraacetate, and ethylene glycol-bis (β-aminoethyl ether) N,N,N′N′-tetraacetic acid. Citrate, phosphate, succinate, and tartrate inhibited uptake of all pyrimidine nucleosides. The specific inhibitor of nucleoside transport in animal cells, nitrobenzylthioinosine, has little effect on pollen transport. Uridine and deoxyuridine accumulate against a concentration gradient, suggesting active transport. Except for thymidine, however, transported nucleosides were found to be extensively phosphorylated. Until mutant plants are found which do not phosphorylate uridine, it is not possible to decide unequivocally between active and nonactive transport for uridine. However, consistent with a low level of DNA synthesis in germinating Petunia pollen, it is clear that thymidine transport is nonactive and relatively slow. It is apparent from these experiments that a more sensitive way to study DNA repair in this pollen would be to use 5-bromodeoxyuridine or deoxyuridine instead of thymidine to label repaired DNA. The results show that pollen has the transport systems necessary to take up pyrimidine nucleosides from Petunia styles, where it is known that the concentration of free nucleosides increase after pollination.  相似文献   

13.
Nucleoside Transporter of Cerebral Micro vessels and Choroid Plexus   总被引:1,自引:0,他引:1  
The nucleoside transporter of cerebral microvessels and choroid plexus was identified and characterized using [3H]nitrobenzylthioinosine (NBMPR) as a specific probe. [3H]NBMPR bound reversibly and with high affinity to a single specific site in particulate fractions of cerebral microvessels, choroid plexus, and cerebral cortex of the rat and the pig. The dissociation constants (KD 0.1-0.7 nM) were similar in the various tissue preparations from each species, but the maximal binding capacities (Bmax) were about fivefold higher in cerebral microvessels and choroid plexus than in the cerebral cortex. Nitrobenzylthioguanosine and dipyridamole were the most potent competitors for [3H]NBMPR binding. Several naturally occurring nucleosides displaced specific [3H]NBMPR binding to cerebral microvessels in vitro, in a rank order that correlated well with their ability to cross the blood-brain barrier in vivo. Adenosine analogues and theophylline were less effective in displacing [3H]NBMPR binding than in displacing adenosine receptor ligands. Photoactivation of cerebral microvessels and choroid plexus bound with [3H]NBMPR followed by solubilization and polyacrylamide gel electrophoresis labeled a protein(s) with a molecular weight of approximately 60,000. These results indicate that cerebral microvessels and choroid plexus have a much higher density of the nucleoside transporter moiety than the cerebral cortex and that this nucleoside transporter has pharmacological properties and a molecular weight similar to those of erythrocytes and other mammalian tissues.  相似文献   

14.
The overall goal of this study was to determine the mechanisms by which nucleosides are transported in choroid plexus. Choroid plexus tissue slices obtained from rabbit brain were depleted of ATP with 2,4-dinitrophenol. Uridine and thymidine accumulated in the slices against a concentration gradient in the presence of an inwardly directed Na+ gradient. The Na(+)-driven uptake of uridine and thymidine was saturable with Km values of 18.1 +/- 2.0 and 13.0 +/- 2.3 microM and Vmax values of 5.5 +/- 0.3 and 1.0 +/- 0.2 nmol/g/s, respectively. Na(+)-driven uridine uptake was inhibited by naturally occurring ribo- and deoxyribonucleosides (adenosine, cytidine, and thymidine) but not by synthetic nucleoside analogs (dideoxyadenosine, dideoxycytidine, cytidine arabinoside, and 3'-azidothymidine). Both purine (guanosine, inosine, formycin B) and pyrimidine nucleosides (uridine and cytidine) were potent inhibitors of Na(+)-thymidine transport with IC50 values ranging between 5 and 23 microM. Formycin B competitively inhibited Na(+)-thymidine uptake and thymidine trans-stimulated formycin B uptake. These data suggest that both purine and pyrimidine nucleosides are substrates of the same system. The stoichiometric coupling ratios between Na+ and the nucleosides, guanosine, uridine, and thymidine, were 1.87 +/- 0.10, 1.99 +/- 0.35, and 2.07 +/- 0.09, respectively. The system differs from Na(+)-nucleoside co-transport systems in other tissues which are generally selective for either purine or pyrimidine nucleosides and which have stoichiometric ratios of 1. This study represents the first direct demonstration of a unique Na(+)-nucleoside co-transport system in choroid plexus.  相似文献   

15.
TRANSPORT OF LYSINE FROM CEREBROSPINAL FLUID OF THE CAT   总被引:1,自引:0,他引:1  
—The clearance from cerebrospinal fluid of l-[14C]lysine and l-[3H]arginine was measured during ventriculo-cisternal perfusions of anaesthetized cats. Increasing in the perfusate the concentration of unlabelled l-lysine produced a gradual reduction in clearance of the labelled amino acids without altering the uptake of l-[14C]lysine by the choroid plexus. Net transport of l-lysine out of cerebrospinal fluid occurred by saturable and non-saturable components. The saturable component satisfied Michaelis-Menton kinetics, while the behaviour of the non-saturable component was consistent with diffusion. A Vmax of 0·017 μmol/min and an affinity constant (kt) of 0·83 mm were estimated. The clearance of l-lysine was unaffected by the addition to the perfusate of high concentrations of selected neutral amino acids, but was stimulated by the presence of l-cystine. Conversely, a high concentration of l-lysine did not affect the clearance of glycine or cycloleucine. The dibasic amino acids appear to be removed from cerebrospinal fluid by a relatively specific, mediated transport system which may serve to regulate their concentrations in the cerebrospinal fluid.  相似文献   

16.
Summary The in-vitro effects of hydroxyurea 5-FU and 5-FUdR have been extensively studied in experimental systems employing cell-line techniques. In this study we investigated the effects of these drugs on the levels of incorporation of labeled nucleosides into DNA in explants of intact rat colonic mucosa maintained in organ culture. The effects of the nucleoside transport inhibitors nitrobenzylthioinosine (NBMPR) and dipyridamole—which are modulators of antimetabolite cytotoxicity—on the incorporation of tritiated thymidine [(3H]TdR) into DNA were also studied. The incorporation of tritiated TdR into DNA was reduced by hydroxyurea but was not altered by either 5-FU or 5-FUdR. The levels of tritiated deoxyuridine were reduced by 5-FU and 5-FUdR in separate experiments; this is in keeping with thymidylate synthase inhibition. NBMPR and dipyridamole also reduced 3H-TdR incorporation into DNA. These results can be explained in terms of the known mechanisms of action of these drugs. This experimental model is therefore useful in assessing the effects of antimetabolites and nucleoside transport inhibitors in intact colonic mucosa.  相似文献   

17.
Abstract: These experiments characterize the nucleoside transport and quantify the neurotoxicity of adenosine and 2′-deoxyadenosine (dAdo) in chick sympathetic neurons. We show that [3H]adenosine transport was sensitive to low temperature, specific inhibitors of nucleoside transport, and an excess concentration of adenosine. However, many of these treatments had a marginal effect on [3H]dAdo transport. Total retention of [3H]dAdo over short and long periods was ~10 times less than that of [3H]adenosine. These data suggest that adenosine and dAdo enter sympathetic neurons by different routes. Uptake of [3H]norepinephrine ([3H]NE) decreased in neurons damaged by nucleosides and increased to control levels when neurons were protected by various agents against adenosine or dAdo toxicity. These results indicate that [3H]NE uptake serves as a quantitative index of toxicity by the nucleosides. Using this approach we demonstrate that phosphorylation of both nucleosides is essential for their lethal action. For example, iodotubercidin prevented nucleoside-induced neuronal death, but the effect was much more pronounced in the case of dAdo toxicity (IC50 of 0.83 ± 0.4 vs. 30 ± 1.6 nM). Another kinase inhibitor, 5′-amino 5′-deoxyadenosine, was effective in protecting neurons against dAdo but had no effect against adenosine toxicity. These results suggest that specific kinases are associated with the phosphorylation of adenosine and dAdo in sympathetic neurons to produce toxic metabolic products. Finally, neurons were susceptible to dAdo toxicity from the time of plating to 4 weeks in culture but were resistant to adenosine toxicity 8 h after plating. In conclusion, our results highlight major differences in the mechanism of neurotoxicity by adenosine and dAdo and provide insights for identification of biochemical pathways leading to neuronal death.  相似文献   

18.
Equilibrative nucleoside transporters (ENTs) are polytopic integral membrane proteins that transport nucleosides and, to a lesser extent, nucleobases across cell membranes. ENTs modulate efficacy for a range of human therapeutics and function in a diffusion-controlled bidirectional manner. A detailed understanding of ENT function at the molecular level has remained elusive. FUN26 (function unknown now 26) is a putative ENT homolog from S. cerevisiae that is expressed in vacuole membranes. In the present system, proteoliposome studies of purified FUN26 demonstrate robust nucleoside and nucleobase uptake into the luminal volume for a broad range of substrates. This transport activity is sensitive to nucleoside modifications in the C(2′)- and C(5′)-positions on the ribose sugar and is not stimulated by a membrane pH differential. [3H]Adenine nucleobase transport efficiency is increased ∼4-fold relative to nucleosides tested with no observed [3H]adenosine or [3H]UTP transport. FUN26 mutational studies identified residues that disrupt (G463A or G216A) or modulate (F249I or L390A) transporter function. These results demonstrate that FUN26 has a unique substrate transport profile relative to known ENT family members and that a purified ENT can be reconstituted in proteoliposomes for functional characterization in a defined system.  相似文献   

19.
The purpose of this study was to investigate the characteristics of transport of endogenous nucleosides into cardiac tissue from coronary circulation. The study was performed on the isolated perfused guinea pig heart, using the rapid paired tracers single-pass technique. The maximal cellular uptake (U(max)) and total cellular uptake (U(tot)) of adenosine, deoxyadenosine, thymidine, uridine, and cytidine were determined. The cellular uptake of adenosine was significantly higher than the cellular uptake of other studied nucleosides. To elucidate the mechanisms of nucleoside transport, competition studies were performed and the influence of S-(p-nitrobenzyl)-6-thioinosine (NBTI) and sodium ion absence on U(max) and U(tot) was investigated. Self- and cross-inhibition studies indicated the saturable mechanism of nucleosides transport into cardiac tissue and the involvement of different transport mechanisms for purine and pyrimidine nucleosides. The study also showed that both equilibrative-sensitive (es) and sodium-dependent transport were responsible for adenosine and thymidine cellular uptake.  相似文献   

20.
—Clearance of [14C]DOPA and [14C]dopamine from CSF was investigated in anaesthetized rhesus monkeys (M. Mulatta) subjected to ventriculocisternal perfusion. The efflux coefficients, kVE, at tracer concentrations (3–5 m ) in the perfusate were 0.0487 ml/min and 0.0325 ml/min for [14C]DOPA and [14C]dopamine, respectively. Carrier DOPA (10 mm ) in the perfusate decreased the efflux of [14C]DOPAsignificantly, but carrier dopamine had no appreciable effect on the clearance of [14C]dopamine. These findings suggest that DOPA is cleared from CSF in part by a saturable mechanism which may be located in the choroid plexus, whereas dopamine leaves the ventricular system by passive diffusion. Radioactivity in the caudate nucleus immediately adjacent to the perfused ventricle averaged 15.5 % and 12.6% of the radioactivity in the perfusates with [14C]DOPA or [14C]dopamine, respectively. These distribution percentages were similar to those found for various extracellular indicators after ventriculocisternal perfusion and may indicate that the efflux of intraventricularly-administered exogenous DOPA and dopamine occurs in part through extracellular channels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号