首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A novel role of fatty acid-binding protein as a vehicle of retinoids   总被引:1,自引:0,他引:1  
Intracellular transport and storage of retinoids were shown to be conducted by fatty acid-binding protein (FABP). When rat liver cytosol was gel filtrated, retinyl palmitate-binding activity was mainly eluted in the fraction with a Mr. of around 14,000, in which both FABP and cellular retinol-binding protein (CRBP) co-existed. From the binding analysis of purified FABP and CRBP to retinyl palmitate, FABP was found to have a relatively high affinity (Kd = 1.4 X 10(-6) M) to retinyl palmitate, while binding of retinyl palmitate to CRBP was scarcely detectable. By using anti-FABP serum, it was shown that FABP was distributed in organs relating to absorption and storage of retinoids, such as jejunum, ileum, and liver. In liver, the protein was localized in the parenchymal cells and with particularly high concentration in the perisinusoidal cells, probably fat-storing cells.  相似文献   

2.
We have investigated the esterification by liver membranes of retinol bound to cellular retinol-binding protein (CRBP). When CRBP carrying [3H]retinol as its ligand was purified from rat liver cytosol and incubated with rat liver microsomes, a significant fraction of the [3H]retinol was converted to [3H]retinyl ester. Esterification of the CRBP-bound [3H]retinol, which was maximal at pH 6-7, did not require the addition of an exogenous fatty acyl group. Indeed, when additional palmitoyl-CoA or coenzyme A was provided, the rate of esterification increased either very slightly or not at all. The esterification reaction had a Km for [3H]retinol-CRBP of 4 +/- 0.6 microM and a maximum velocity of 145 +/- 52 pmol/min/mg of microsomal protein (n = 4). The major products were retinyl palmitate/oleate and retinyl stearate in a ratio of approximately 2 to 1 over a range of [3H]retinol-CRBP concentrations from 1 to 8 microM. The addition of progesterone, a known inhibitor of the acyl-CoA:retinol acyltransferase reaction, consistently increased the rate of retinyl ester formation when [3H]retinol was delivered bound to CRBP. These experiments indicate that retinol presented to liver microsomal membranes by CRBP can be converted to retinyl ester and that this process, in contrast to the esterification of dispersed retinol, is independent of the addition of an activated fatty acid and produces a pattern of retinyl ester species similar to that observed in intact liver. A possible role of phospholipids as endogenous acyl donors in the esterification of retinol bound to CRBP is supported by our observations that depletion of microsomal phospholipid with phospholipase A2 prior to addition of retinol-CRBP decreased the retinol-esterifying activity almost 50%. Conversely, incubating microsomes with a lipid-generating system containing choline, CDP-choline, glycerol 3-phosphate, and an acyl-CoA-generating system prior to addition of retinol-CRBP increased retinol esterification significantly as compared to buffer-treated controls.  相似文献   

3.
The steady-state concentrations of retinol in rat tissues varied as a function of dietary α-tocopherol. The liver, kidney, and intestinal retinol concentrations increased in animals fed an α-tocopherol-deficient diet despite a decrease (liver) or no change (kidney and intestine) in the concentrations of total vitamin A. In contrast, in lung the concentrations of both retinol and total vitamin A decreased. α-Tocopherol inhibited retinyl palmitate hydrolase in vitro in liver, kidney, and intestine; had minimal effect on the testes hydrolase; and stimulated the lung hydrolase. Fifty percent inhibition of the liver hydrolase was provided by an α-tocopherol concentration (100 μm), close to that reported in livers of rats fed a purified diet, constituted with moderately low amounts of α-tocopheryl acetate. Phylloquinone (vitamin K1) inhibited the retinyl palmitate hydrolase in vitro in all tissues tested, and was about fivefold more potent than α-tocopherol. The effects of phylloquinone and α-tocopherol on the liver hydrolase were additive, not synergistic. The antioxidant N,N′-diphenyl-p-phenylenediamine, the most effective synthetic vitamin E substitute known, had little effect on the hydrolase. These data show that α-tocopherol effects vitamin A metabolism in several tissues, and suggest that it may be a physiological effector of tissue retinol homeostasis.  相似文献   

4.
Hepatic stellate cells (HSC) store vitamin A as retinyl esters and control circulating retinol levels. Upon liver injury, quiescent (q)HSC lose their vitamin A and transdifferentiate to myofibroblasts, e.g. activated (a)HSC, which promote fibrosis by producing excessive extracellular matrix. Adipose triglyceride lipase/patatin-like phospholipase domain-containing protein 2 (ATGL/PNPLA2) and adiponutrin (ADPN/PNPLA3) have so far been shown to mobilize retinol from retinyl esters in HSC. Here, we studied the putative role of hormone-sensitive lipase (HSL/LIPE) in HSC, as it is the major retinyl ester hydrolase (REH) in adipose tissue.Lipe/HSL expression was analyzed in rat liver and primary human and rat qHSC and culture-activated aHSC. Retinyl hydrolysis was analyzed after Isoproterenol-mediated phosphorylation/activation of HSL.Primary human HSC contain 2.5-fold higher LIPE mRNA levels compared to hepatocytes. Healthy rat liver contains significant mRNA and protein levels of HSL/Lipe, which predominates in qHSC and cells of the portal tree. Q-PCR comparison indicates that Lipe mRNA levels in qHSC are dominant over Pnpla2 and Pnpla3. HSL is mostly phosphorylated/activated in qHSC and partly colocalizes with vitamin A-containing lipid droplets. Lipe/HSL and Pnpla3 expression is rapidly lost during HSC culture-activation, while Pnpla2 expression is maintained. HSL super-activation by isoproterenol accelerates loss of lipid droplets and retinyl palmitate from HSC, which coincided with a small, but significant reduction in HSC proliferation and suppression of Collagen1A1 mRNA and protein levels.In conclusion, HSL participates in vitamin A metabolism in qHSC. Equivalent activities of ATGL and ADPN provide the healthy liver with multiple routes to control circulating retinol levels.  相似文献   

5.
O Halevy  D Sklan 《Life sciences》1988,42(8):897-903
Several physical aspects of a high molecular weight lipid-protein aggregate separated by gel chromatography from chick and rat liver cytosol and its possible role in intracellular fatty acid metabolism were investigated. Electron microscopic examination of the high molecular weight lipid-protein aggregate indicated spherical particles with a diameter range of 200-600 A. This structure is consistent with a microemulsion particle of triglyceride encapsulated by phospholipid and protein. Uptake of fatty acids by microsomes occurred from the same lipid-protein aggregate, and the triglycerides synthesized in microsomes also became associated with these particles in the cytosol. The lipid-protein aggregate prepared by different homogenization methods showed identical ratios of components, but these ratios changed following incubation. These findings lend support to the concept that this aggregate plays a physiological role in intracellular lipid metabolism, and may be identifiable with previously reported subcellular fatty acid and triglyceride pools.  相似文献   

6.
The main site of vitamin A storage in the liver is the hepatic stellate cells (HSC). Involvement of HSC in vitamin A metabolism has mainly been studied using primary culture, which represents the most physiological model but technically suffers several drawbacks (yield, low reproducibility, etc.). To circumvent these problems, we have previously established and characterised an immortalised rat HSC line named PAV-1. This study aimed to investigate in PAV-1 and in primary HSC (i) the incorporation of retinol and its esterification, (ii) the cellular retinol-binding protein (CRBP) content, (iii) the acid retinyl ester hydrolase activity (aREH), (iv) the thermal susceptibility and (v) the lipid composition of the membranes, which may play a crucial role in retinol transport across cellular membrane. In routine conditions of culture, the rate of retinol esterification in PAV-1 was low (5.2%) compared to that obtained with primary HSC (69.9%). Retinol pre-treatment doubled this esterification rate (10.7%) and the CRBP content in PAV-1. The co-incubation with retinol and palmitic acid enabled PAV-1 to esterify retinol with a rate close to that of primary HSC (66.2% vs. 69.9%) and with similar retinyl ester profiles. aREH activity was higher in primary HSC than in PAV-1. Thermal susceptibility and phospholipid composition of membranes in PAV-1 treated cells were similar to those of primary HSC. In conclusion, our study shows that PAV-1 cells treated with retinol and palmitic acid is a sound and convenient model for studying vitamin A mobilisation, a fundamental physiological event occurring in HSC.  相似文献   

7.
Approximately 80% of the body vitamin A is stored in liver stellate cells with in the lipid droplets as retinyl esters. In low vitamin A status or after liver injury, stellate cells are depleted of the stored retinyl esters by their hydrolysis to retinol. However, the identity of retinyl ester hydrolase(s) expressed in stellate cells is unknown. The expression of carboxylesterase and lipase genes in purified liver cell-types was investigated by real-time PCR. We found that six carboxylesterase and hepatic lipase genes were expressed in hepatocytes. Adipose triglyceride lipase was expressed in Kupffer cells, stellate cells and endothelial cells. Lipoprotein lipase expression was detected in Kupffer cells and stellate cells. As a function of stellate cell activation, expression of adipose triglyceride lipase decreased by twofold and lipoprotein lipase increased by 32-fold suggesting that it may play a role in retinol ester hydrolysis during stellate cell activation.  相似文献   

8.
Relative retinyl ester hydrolase activities of pig liver homogenates (n = 4) toward 9,13-cis-, 13-cis-, 9-cis-, and all-trans-retinyl palmitate were 6.8 +/- 0.5 (SE), 5.7 +/- 0.5, 2.4 +/- 0.1, and 1, respectively. The range of apparent Km values for the four isomers was 142 to 268 microM, and the pH optima were 8-9 in all cases. Peak activities of retinyl ester hydrolase activities in pig liver cytosol toward 13-cis- and all-trans-retinyl palmitate were found in the 20 to 40% and in the 60 to 80% saturated ammonium sulfate (AS) fractions, respectively. By use of size-exclusion chromatography in 2 M KCl, hydrolase activity eluted at volumes corresponding to greater than 2000, 180, and 15 kDa from the 20-40% AS fraction, and at 180 kDa from the 60-80% AS fraction. On the basis of molecular size, different substrate specificities, detergent effects, and susceptibilities to inhibition by phenylmethylsulfonyl fluoride, we conclude that at least three distinct retinyl ester hydrolases are present in pig liver cytosol.  相似文献   

9.
Retinol bound to cellular retinol-binding protein (CRBP) was available for esterification by liver microsomes in the absence of exogenous acyl donors. Moreover, exogenous acyl-CoA gave little or no stimulation of ester production over what was observed with the endogenous acyl donor. In contrast, unbound retinol was esterified in an acyl-CoA-dependent reaction. The presence of two different enzyme activities, acyl-CoA-dependent and -independent, was demonstrated by differential sensitivities to several enzyme inhibitors. The enzyme reaction with retinol-CRBP and endogenous acyl donor produced retinyl esters normally found in vivo in liver. In addition, rates of esterification with this system were sufficient to maintain liver stores. Liver also contains cellular retinol-binding protein, type II (CRBP(II] during the perinatal period. Radioimmunoassay revealed highest levels of CRBP(II) in liver 3-4 days after birth. Examination of retinol esterification by microsomes from the liver of 3-day-old rats revealed a retinyl ester synthase activity with lower Km and higher Vmax than that found in the adult. The activity could use either retinol-CRBP or retinol-CRBP(II) and an endogenous acyl donor. The microsomes from 3-day-old liver had greater esterifying ability than microsomes from adult liver, perhaps due to the presence of two retinyl ester synthase enzymes.  相似文献   

10.
A new sensitive method for the assay of retinyl ester hydrolase in vitro was developed and applied to liver homogenates of 18 young pigs with depleted-to-adequate liver vitamin A reserves. Radioactive substrate was not required, because the formation of retinol could be adequately quantitated by reversed-phase high-performance liquid chromatography. Optimal hydrolase activity was observed with 500 μM retinyl palmitate, 100 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 2 mg/ml Triton X-100 at pH 8.0. The relative rates of hydrolysis of six different retinyl esters by liver homogenate were: retinyl linolenate (100%), myristate (99%), palmitate (47%), oleate (38%), linoleate (31%), and streate (29%). The enzyme was found primarily in the membrane-containing fractions of liver (59±3%, S.E.) and kidney (76±3%), with considerably lower overall activity in kidney (57–375 nmol/h per g of tissue) than in liver (394–1040 nmol/h per g). Retinyl ester hydrolase activity in these pigs was independent of serum retinol values, which ranged from 3 to 24 μg/dl, and of liver vitamin A concentrations from 0 to 32 μg/g. Pig liver retinyl ester hydrolase from the rat liver enzyme in its substrate specificity, bile acid stimulation, and interanimal variability.  相似文献   

11.
Charge effects on phospholipid monolayers in relation to cell motility   总被引:1,自引:0,他引:1  
A new sensitive method for the assay of retinyl ester hydrolase in vitro was developed and applied to liver homogenates of 18 young pigs with depleted-to-adequate liver vitamin A reserves. Radioactive substrate was not required, because the formation of retinol could be adequately quantitated by reversed-phase high-performance liquid chromatography. Optimal hydrolase activity was observed with 500 microM retinyl palmitate, 100 mM 3-[(3-cholamidopropyl)dimethylammonio]-1-propanesulfonate, and 2 mg/ml Triton X-100 at pH 8.0. The relative rates of hydrolysis of six different retinyl esters by liver homogenate were: retinyl linolenate (100%), myristate (99%), palmitate (47%), oleate (38%), linoleate (31%), and stearate (29%). The enzyme was found primarily in the membrane-containing fractions of liver (59 +/- 3%, S.E.) and kidney (76 +/- 3%), with considerably lower overall activity in kidney (57-375 nmol/h per g of tissue) than in liver (394-1040 nmol/h per g). Retinyl ester hydrolase activity in these pigs was independent of serum retinol values, which ranged from 3 to 24 micrograms/dl, and of liver vitamin A concentrations from 0 to 32 micrograms/g. Pig liver retinyl ester hydrolase differs from the rat liver enzyme in its substrate specificity, bile acid stimulation, and interanimal variability.  相似文献   

12.
13.
Chronic dietary administration of 3,3′,4,4′,5,5′-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA: retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 μg), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

14.
A study was conducted to determine the levels and distributions of retinoids, retinol-binding protein (RBP), retinyl palmitate hydrolase (RPH), cellular retinol-binding protein (CRBP), and cellular retinoic acid-binding protein (CRABP) in different types of isolated liver cells. Highly purified fractions of parenchymal, fat-storing (stellate), endothelial, and Kupffer cells were isolated in high yield from rat livers. The retinoid content of each fraction was measured by HPLC analysis. RBP, CRBP, and CRABP were measured by sensitive and specific radioimmunoassays, and RPH activity was measured by a sensitive microassay. The concentrations of each parameter expressed per 10(6) parenchymal or fat-storing cells were, respectively: retinoids, 1.5 and 83.9 micrograms of retinol equivalents; RBP, 138 and 7.4 ng; RPH, 826 and 1152 pmol FFA formed hr-1; CRBP, 470 and 236 ng; and CRABP, 5.6 and 8.7 ng. When these data were expressed on the basis of per unit mass of cellular protein, the concentrations of RPH, CRBP, and CRABP in the fat-storing cells, which contain 10-fold less protein than the large parenchymal cells, were seen to be greatly enriched over parenchymal cells. The parenchymal cells contained approximately 9% of the total retinoids, 98% of the total RBP, 90% of the total RPH activity, 91% of the total CRBP, and 71% of the total CRABP found in the liver. The fat-storing cells accounted for approximately 88% of the total retinoids, 0.7% of the total RBP, 10% of the RPH activity, 8% of the total CRBP, and 21% of the CRABP in the liver. The endothelial and Kupffer cell fractions contained very low levels of all of these parameters. Thus, the large and abundant parenchymal cells account for greater than 70% of the liver's RBP, RPH, CRBP, and CRABP; but the much smaller and less abundant fat-storing cells contain the majority of hepatic retinoids and greatly enriched concentrations of RPH, CRBP, and CRABP.  相似文献   

15.
Chronic dietary administration of 3,3',4,4',5,5'-hexabromobiphenyl (HBB), 1 mg/kg diet, caused a decrease in retinol (20-fold) and retinyl esters (23-fold) in the livers of female rats, but resulted in a 6.4-fold increase in retinol and 7.4-fold increase in retinyl esters in the kidneys. Liver acyl-CoA:retinol acyltransferase and retinyl palmitate hydrolase activities were reduced while serum concentration of retinol was unaffected by HBB feeding. Metabolism of a physiological dose of [11-3H]retinyl acetate (10 micrograms), was examined in rats fed either vitamin A-adequate diet, or marginal amounts of vitamin A, or vitamin A-adequate diet containing HBB. A 13-fold greater amount of the administered vitamin A was found in kidneys of HBB-treated rats. In rats fed adequate or low amounts of vitamin A, kidney radioactivity was primarily in the retinol fraction, while in HBB-fed rats the radioactivity was associated mostly with retinyl esters. Fecal and urinary excretion of radioactivity was greatly increased in HBB-treated rats. Chronic HBB feeding results in a loss of ability of liver to store vitamin A, and severely alters the uptake and metabolism of vitamin A in the kidneys. We conclude that HBB causes major disturbances in the regulation of vitamin A metabolism.  相似文献   

16.
Studies were conducted to explore relationships in rat liver between retinyl palmitate hydrolase activity and the hydrolytic activities against cholesteryl oleate and triolein. Previous studies have shown positive correlations between these three lipid ester hydrolase activities. In order to extend this work, the hydrolase activities were further purified and characterized. The activities against cholesteryl oleate and triolein resembled retinyl palmitate hydrolase activity in showing great variability from rat to rat as assayed in vitro. The relative levels of the three activities were highly correlated with each other over a 50-fold range of activity in a series of 66 liver homogenates. Partial purification (approx. 200-fold) in the absence of detergents was achieved by sequential chromatography of an acetone powder extract of liver on columns of phenyl-Sepharose, DEAE-Sepharose and heparin-Sepharose. The three hydrolase activities copurified during each of these chromatographic steps. The properties of the three copurifying activities were similar with regard to stimulation of activity by trihydroxy bile salts, pH optimum (near 8.0), and observance of Michaelis-Menten-type saturation kinetics. The three activities were different in their sensitivity towards the serine esterase inhibitors diisopropylfluorophosphate and phenylmethanesulfonyl fluoride, and in their solubility properties in 10 mM sodium acetate, pH 5.0. Thus, triolein hydrolase activity was much less sensitive than the other two activities to the two inhibitors. In addition, the activity against cholesteryl oleate could be separated from the other two activities by extraction of an acetone powder with acetate buffer, pH 5.0. These results indicate that the three lipid hydrolase activities are due to at least three different catalytically active centers, and at least two distinct and separable enzymes. It is likely that three separate but similar enzymes, that appear to be coordinately regulated, are involved.  相似文献   

17.
We recently reported the presence of a neutral, bile salt-independent retinyl ester hydrolase (REH) activity in rat liver microsomes and showed that it was distinct from the previously studied bile salt-dependent REH and from nonspecific carboxylesterases (Harrison, E. H., and M. Z. Gad. 1989. J. Biol. Chem. 264: 17142-17147). We have now further characterized the hydrolysis of retinyl esters by liver microsomes and have compared the observed activities with those catalyzing the hydrolysis of cholesteryl esters. Microsomes and microsomal subfractions enriched in plasma membranes and endosomes catalyze the hydrolysis of retinyl esters at both neutral and acid pH. The acid and neutral REH enzyme activities can be distinguished from one another on the basis of selective inhibition by metal ions and by irreversible, active site-directed serine esterase inhibitors. The same preparations also catalyze the hydrolysis of cholesteryl esters at both acid and neutral pH. However, the enzyme(s) responsible for the neutral REH activity can be clearly responsible for the neutral REH activity can be clearly differentiated from the neutral cholesteryl ester hydrolase(s) on the basis of differential stability, sensitivity to proteolysis, and sensitivity to active site-directed reagents. These results suggest that the neutral, bile salt-independent REH is relatively specific for the hydrolysis of retinyl esters and thus may play an important physiological role in hepatic vitamin A metabolism. In contrast to the neutral hydrolases, the activities responsible for hydrolysis of retinyl esters and cholesterol esters at acid pH are similar in their responses to the treatments mentioned above. Thus, a single microsomal acid hydrolase may catalyze the hydrolysis of both types of ester.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Excess dietary vitamin A is esterified with fatty acids and stored in the form of retinyl ester (RE) predominantly in the liver. According to the requirements of the body, liver RE stores are hydrolyzed and retinol is delivered to peripheral tissues. The controlled mobilization of retinol ensures a constant supply of the body with the vitamin. Currently, the enzymes catalyzing liver RE hydrolysis are unknown. In this study, we identified mouse esterase 22 (Es22) as potent RE hydrolase highly expressed in the liver, particularly in hepatocytes. The enzyme is located exclusively at the endoplasmic reticulum (ER), implying that it is not involved in the mobilization of RE present in cytosolic lipid droplets. Nevertheless, cell culture experiments revealed that overexpression of Es22 attenuated the formation of cellular RE stores, presumably by counteracting retinol esterification at the ER. Es22 was previously shown to form a complex with β-glucuronidase (Gus). Our studies revealed that Gus colocalizes with Es22 at the ER but does not affect its RE hydrolase activity. Interestingly, however, Gus was capable of hydrolyzing the naturally occurring vitamin A metabolite retinoyl β-glucuronide. In conclusion, our observations implicate that both Es22 and Gus play a role in liver retinoid metabolism.  相似文献   

19.
20.
Hepatic stellate cell (HSC) lipid droplets are specialized organelles for the storage of retinoid, accounting for 50-60% of all retinoid present in the body. When HSCs activate, retinyl ester levels progressively decrease and the lipid droplets are lost. The objective of this study was to determine if the HSC population in a healthy, uninjured liver demonstrates heterogeneity in its capacity for retinoid and lipid storage in lipid droplets. To this end, we utilized two methods of HSC isolation, which leverage distinct properties of these cells, including their vitamin A content and collagen expression. HSCs were isolated either from wild type (WT) mice in the C57BL/6 genetic background by flotation in a Nycodenz density gradient, followed by fluorescence activated cell sorting (FACS) based on vitamin A autofluorescence, or from collagen-green fluorescent protein (GFP) mice by FACS based on GFP expression from a GFP transgene driven by the collagen I promoter. We show that GFP-HSCs have: (i) increased expression of typical markers of HSC activation; (ii) decreased retinyl ester levels, accompanied by reduced expression of the enzyme needed for hepatic retinyl ester synthesis (LRAT); (iii) decreased triglyceride levels; (iv) increased expression of genes associated with lipid catabolism; and (v) an increase in expression of the retinoid-catabolizing cytochrome, CYP2S1. CONCLUSION: Our observations suggest that the HSC population in a healthy, uninjured liver is heterogeneous. One subset of the total HSC population, which expresses early markers of HSC activation, may be "primed" and ready for rapid response to acute liver injury.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号