首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A broad expression of aromatase and estrogen receptors (ERs) in the testis suggests an important role for estrogens in regulating testicular cell function and reproductive events. The aim of the present study was to show whether Leydig cells in vitro isolated from cryptorchid testes of two inbred strains of mice, KE and CBA, are a site of estrogen synthesis. Using immunocytochemistry, aromatase, estrogen receptor alpha(ERalpha), and estrogen receptor beta(ERbeta) were localized in cultured Leydig cells. Immunoreactive aromatase was found in the cytoplasm of control Leydig cells and those isolated from cryptorchid males, however the intensity of immunostaining was different, being stronger in Leydig cells deriving from cryptorchid mice. The strongest aromatase immunostaining was found in cryptorchid-KE Leydig cells. Strong immunoexpression of ERalpha was detected in the nuclei of both KE-and CBA-Leydig cells. The intensity of ERalpha immunostaining was stronger in cultured cells deriving from cryptorchid testes. ERbeta immunoexpression was detected predominantly in KE-Leydig cells. Control CBA-Leydig cells were negative for ERbeta or the result was inconclusive, whereas in cryptorchid CBA-Leydig cells a weak immunostaining was present in their nuclei. Western blot analysis confirmed the results obtained by immunocytochemistry. In KE- and CBA-Leydig cells aromatase as a band of 55 kDa protein was present, whereas ERalpha molecular weight was 67 kDa on Western blots. No band was detected for ERbeta. Radioimmunological analysis revealed that androgen and estrogen levels secreted by Leydig cells in vitro were strain-dependent. Additionally, in KE-Leydig cells that derived from cryptorchid mice estrogen level was distinctly higher in comparison with that of the respective control.  相似文献   

3.
Recent studies point to a key role for the estrogen synthesizing enzyme P450 aromatase (P450 arom) in ovary determination in fish, birds and reptiles. It is unclear whether estrogen synthesis is important in sex determination of Xenopus gonad. To determine whether the aromatase gene is transcribed in the gonads of Xenopus tadpoles during the sex determination, we cloned a P450 arom cDNA and examined the level of P450 arom and estrogen receptor (ER) gene expression in association with estrogen activity. cDNA clones for P450 arom were isolated from a Xenopus ovarian cDNA library. There was an open reading frame (ORF) of 1500 bp from the ATG start to TAA stop codons encoding 500 predicted amino acids. cDNAs for P450 arom have previously been cloned from various vertebrates. The homology between the Xenopus P450 aromatase and the human P450 arom was higher. The expression of the P450 arom gene was mainly limited to reproductive organs. To determine the beginning of estrogen activity in gonads of embryos, expression of the aromatase and ER gene was also examined by RQ-RT-PCR. Both Xenopus aromatase and ER mRNA was detected at stage 51 in gonads. These observations are consistent with estrogens having a key role in ovarian development in various other vertebrates.  相似文献   

4.
5.
6.
7.
Banerjee A  Anjum S  Verma R  Krishna A 《Steroids》2012,77(6):609-620
The aim of present study was to investigate the changes in the testicular expression of aromatase, ER alpha, ER beta and iNOS protein and correlate these with serum testosterone and nitric oxide levels, to elucidate the role of estrogen and nitric oxide in the testis during aging. This study showed localization of aromatase and ER alpha mainly in the Leydig cell and showed close correlation of testicular aromatase level with circulating testosterone level suggesting that estrogen may be modulating testicular steroidogenesis. Localization ER alpha mainly in the mitotically active germ cell suggest possible role of estrogen in germ cell proliferation. This study showed basal level of nitric oxide during reproductively active period, whereas increased serum nitric oxide coincides with decreased testicular activity in old age. This study showed inverse correlation between aromatase and NO level. Treatment with either SNP or L-NAME on testicular steroidogenic factor (3-beta HSD/ StAR) or germ cell survival factor (Bcl2) showed that increased NO causes decreased steroidogenesis and increased germ cell apoptosis. In conclusion this study suggest that estrogen modulate steroidogenesis and germ cell survival in reproductively active period whereas in old age decreased estrogen concentration causes increased nitric oxide which in turn decreases testicular steroidogenesis and germ cell apoptosis.  相似文献   

8.
Estrogen receptor alpha (ERalpha) may play important roles in many estrogen physiological effects, but little is known about the fluctuation of ERalpha during the estrous cycle. In this study, the dynamic expression of ERalpha mRNA and protein in periodontal tissue during the estrous cycle were examined. Forty 12-week-old female rats were divided into four groups, based on the estrous cycle stage, and sacrificed. Immunohistochemistry and in situ hybridization were used to detect dynamic changes in ERalpha protein and mRNA in periodontal tissue during the estrous cycle, and data were analyzed by one-way ANOVA and cosinor analysis for temporal patterns. Significant differences (p<0.05) were found in the expression of ERalpha protein and mRNA among the four groups. The expression of ERalpha protein and mRNA exhibited an infradian rhythm with a period of about 120 h (five days). The phase and amplitude differences between ERalpha protein and mRNA were not significant (p>0.05). The results suggest the expression of ERalpha is dynamic during the estrous cycle and that in the future chronobiologic methods should be used to study the mechanism of estrogen effect on periodontal tissue.  相似文献   

9.
Social and sexual incentive motivation, defined as the intensity of approach to a social and a sexual incentive, respectively, were studied in female Swiss Webster mice. In the first experiment, the social incentive was a castrated mouse of the same strain as the females, whereas the sexual incentive was an intact male mouse of the same strain. Ovariectomized females were first tested after oil treatment and then after administration of estradiol benzoate + progesterone in doses sufficient to induce full receptivity. The hormones increased sexual incentive motivation while leaving social incentive motivation unaffected. This suggests that sexual incentive motivation in the female mouse is dependent on ovarian hormones. In the next experiment, ovariectomized females were tested with an intact, male estrogen receptor α knockout and its wild type as incentives, first without hormones and then when fully receptive. There were no differences in incentive properties between the wild type and the knockout. In a similar experiment, we used an intact male estrogen receptor β knockout and its corresponding wild type as incentives. The wild type turned out to be a more attractive social incentive than the knockout, while they were equivalent as sexual incentives. Finally, an intact male oxytocin knockout and its wild type were used as incentives. The knockout turned out to be a superior incentive, particularly a superior sexual incentive. The fact that the estrogen receptor β and oxytocin knockouts have incentive properties different from their wild types may be important to consider in studies of these knockouts' sociosexual behaviors.  相似文献   

10.
11.
Kininogens serve dual functions by forming a scaffold for the assembly of the protein complex initiating the surface-activated blood coagulation cascade and as precursors for the kinin hormones. While rats have three kininogen genes, for mice, cattle, and humans only one gene has been described. Here, we present sequence and expression data of a second mouse kininogen gene. The two genes, kininogen-I and kininogen-II, are located in close proximity on chromosome 16 in a head-to-head arrangement. In liver and kidney, both genes are expressed and for each gene three alternative splice variants are synthesized. Two of them are the expected high and low molecular weight isoforms known from all mammalian kininogens. However, for both genes also a third, hitherto unknown splice variant was detected which lacks part of the high molecular weight mRNA due to splicing from the low molecular weight donor site to alternative splice acceptor sites in exon 10. The physiological functions of the six kininogen isoforms predicted by these findings need to be determined.  相似文献   

12.
13.
14.
15.
Pure cultures of six races of Ditylenchus dipsaci derived from a single female, namely, lucerne race (LR), red clover race (RCR), white clover race (WCR), narcissus race (NR), tulip race (TR) and oat race (OR) were inoculated into eight plant species growing in pots. Onion was host to all six races, and tulip to all except RCR, whereas lucerne was susceptible only to LR and slightly to WCR. Hyacinth was not very susceptible to any race. The TR and OR were the most polyphagous. Severe symptoms were not necessarily associated with large nematode populations. Parthenogenesis did not occur. Ten fertile hybrids between races were produced and the host range of five of these was tested. On average the hybrids multiplied less than their parent races and their host ranges showed no relationship to those of their parent races. RCR and TR inoculated together into tulip produced significantly fewer nematodes than did TR alone and more than RCR alone. Mixed populations of races occur in nature which are probably a mixture of parental races, their hybrids and back-crosses. Repeated back-crossing of the hybrids with parental types and the slower multiplication of the hybrids is an explanation for the variation in host range of known races and the failure to record new races.  相似文献   

16.
以赤点石斑鱼 (Epinephelusakaara)脑垂体中提取的RNA为模板 ,根据芳香化酶的保守序列设计引物 ,利用GeneRacerTM 技术 ,克隆出两种芳香化酶即脑芳香化酶 (P4 5 0aromB)和性腺芳香化酶 (P4 5 0aromA)的cDNA ,其全长分别为 190 1bp (编码 5 0 9aa)和 1833bp (编码 5 18aa)。序列分析结果表明 ,赤点石斑鱼两种芳香化酶cDNA序列的同源性为 5 1 6 % ,氨基酸序列之间同源性为 6 2 5 % ,与斜带石斑鱼两种芳香化酶氨基酸同源性分别为 94 7%和 97 9%。对 8个科的 10种鱼进行了分子系统进化树分析 ,结果与根据传统的形态学和生化特征分类进化地位基本一致。以特异性引物扩增雌、雄赤点石斑鱼各种组织 (垂体、嗅球、端脑、下丘脑、中脑、后脑、延脑、心脏、肾脏、肝脏、脾脏、性腺、鳃、胃、肠、皮肤、脂肪、肌肉、头肾、胸腺、鳔 ) ,以β actin作内标比较各组织芳香化酶基因表达量的差异 ,结果表明 ,赤点石斑鱼脑芳香化酶 (P4 5 0aromB)有广泛的组织分布 ,脑和垂体的表达量很高 ,各组织表达量有明显的雌、雄差异 ;而性腺芳香化酶 (P4 5 0aromA)表达主要集中于垂体和性腺 ,且不论雌雄 ,其性腺表达量均高于脑垂体 ,和P4 5 0aromB的表达模式明显不同 ,表现为在脑部 ,P4 5 0aromB表达量高于P4 5 0aromA ,而在性腺 ,  相似文献   

17.
18.
19.
20.
Estrogens are mitogenic for estrogen receptor (ER)-positive breast cancer cells. Current treatment of ER-positive breast tumors is directed towards interruption of estrogen activity. We report that treatment of ER-positive breast cancer cells with kaempferol resulted in a time- and dose-dependent decrease in cell number. The concentration required to produce 50% growth inhibition at 48 h was approximately 35.0 and 70.0 microM for ER-positive and ER-negative breast cancer cells, respectively. For MCF-7 cells, a reduction in the ER-alpha mRNA equivalent to 50, 12, 10% of controls was observed 24 h after treatment with 17.5, 35.0, and 70.0 microM of kaempferol, respectively. Concomitantly, these treatments led to a 58, 80, and 85% decrease in ER-alpha protein. The inhibitory effect of kaempferol on ER-alpha levels was seen as early as 6 h post-treatment. Kaempferol treatment also led in a dose-dependent decrease in the expression of progesterone receptor (PgR), cyclin D1, and insulin receptor substrate 1 (IRS-1). Immunocytochemical study revealed that ER-alpha protein in kaempferol-treated MCF-7 cells formed an aggregation in the nuclei. Kaempferol also induced degradation of ER-alpha by a different pathway than that were observed for the antiestrogen ICI 182,780 and estradiol. Estradiol-induced MCF-7 cell proliferation and expression of the estrogen-responsive-element-reporter gene activity were abolished in cells co-treated with kaempferol. These findings suggest that modulation of ER-alpha expression and function by kaempferol may be, in part, responsible for its anti-proliferative effects seen in in vitro.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号