首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The divergence in reproductive features and hybrid fertility patterns between two chromosomal races (2 n  = 40, 40St, and 2 n  = 22, 22Rb) of the house mouse in Tunisia were re-assessed on a larger sample of wild and laboratory-bred individuals than studied hitherto. Results showed that litter sizes were significantly smaller in 40St than in 22Rb mice, contrary to previous analyses. This suggests that variation in litter size between the two chromosomal races is more likely related to selective and/or environmental factors acting locally than to interracial reproductive trait divergence. However, the significantly reduced litter size of F1 hybrids compared with parental individuals was confirmed, and further highlighted a sex difference in hybrid infertility, as F1 females produced fewer litters and of smaller size than males. Histological analyses of F1 and backcrosses showed a breakdown of spermatogenesis in males and a significantly reduced primordial follicle pool in females. The degree of gametogenic dysfunction was not related to the level of chromosomal heterozygosity per se , but a significant effect of two Rb fusions on follicle number was observed in hybrid females. These results suggest that genetic incompatibilities contribute to primary gametogenic dysfunction in hybrids between the chromosomal races in Tunisia.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 407–416.  相似文献   

2.
The Robertsonian phenomenon in house mice (Mus musculus domesticus) from Tunisia consists in the presence of only one 22-chromosome Robertsonian race (22Rb) carrying the maximum number of fusions observed until now. The 22Rb populations exclusively occupy urban centers in the Eastern-Central region of Tunisia where standard population with 40-all acrocentric chromosomes (40Std) occur in surrounding neighborhoods and rural environments. In addition to the habitat partition, allozyme and mitochondrial DNA analyses showed that the 22Rb populations were genetically differentiated from the 40Std ones. This differentiation mostly stemmed from an important decrease in genetic variability in the 22Rb populations from the Sahel towns. The extent of morphological, ecological and genetical divergence observed between these chromosomal races in Tunisia is in agreement with the predictions of the chromosomal speciation model of White which advocates that karyotypic differentiation between taxa can lead to their reproductive isolation and independent evolution. Such a process is verified if the Rb process in Tunisia results from local differentiation which is supported by both the genetic and morphological data. However, the hypothesis of an origin by introduction of these mice from another region of Tunisia or from another country cannot be totally dismissed. In this study, an allozymic analysis of mice (22Rb and 40Std) from the geographically distant city of Kairouan was performed. Results showed that 22Rb and 40Std mice from Kairouan shared the same high degree of variability, and were not genetically differentiated. This contrasts with the results registered in the two chromosomal races in the Sahel towns. Such data argue in favor of a local differentiation of the Robertsonian process in Tunisia and suggest that the decrease in variability of the structural nuclear genes in the Sahel 22Rb populations can be related to an introduction from Kairouan into a Sahel locality resulting in a founder effect or followed by a severe bottleneck prior to its dispersion throughout the Sahel region.  相似文献   

3.
Two chromosomal races of house mice are present in Tunisia, one represented by mice carrying the 40-acrocentric standard karyotype and the other by a Robertsonian race (2re = 22) homozygous for nine centric fusions (Rb). A comparative summary on allozyme divergence, geographical distribution and level of reproductive isolation in the Tunisian and European Rb races is presented, to which new data on mitochondrial DNA and morphological divergence are added. The Tunisian 22Rb race revealed unique features not matched by the European chromosomal races, such as a decrease in allozymic variability, a higher level of genetic and morphological differentiation and a mosaic geographical distribution. The mtDNA analysis argued in favour of a local origin of the chromosomal divergence suggesting that the higher level of differentiation between the Tunisian races resulted from the older age of the 22Rb race and/or from a severe botdeneck. The decrease in fertility of chromosomal hybrids between the Tunisian races was compatible with the limited genetic introgression between diem. Furthermore, data on the restricted distribution of hybrid populations suggested that premating reproductive barriers may be evolving. The Tunisian 22Rb race is thus an appropriate model to investigate a chromosomally-mediated speciation event.  相似文献   

4.
The central coastal region of Tunisia harbours two chromosomal races of the house mouse (2 n  = 22, 22Rb; 2 n  = 40, 40Std), which are genetically differentiated and show a high level of reproductive isolation. This study presents an allozyme analysis of house mice from the inland city of Kairouan 75 km from the coastal region. Results showed that the 22Rb and 40Std mice from Kairouan shared the same high degree of variability, and were not genetically differentiated. This contrasts with the genetic data registered for the two chromosomal races from the coastal towns, in which a particularly low genic diversity was observed in the 22Rb populations. As the two races in Kairouan show the same low hybridization rates as the populations in the coastal region, these results argue in favour of a local differentiation of the Rb race in Tunisia, most likely originating in Kairouan. The data further suggest that the decrease in variability observed in the coastal 22Rb populations is related to a founder effect or a bottleneck following the introduction of mice from Kairouan into one of these localities, prior to their dispersion throughout the coastal region.  © 2005 The Linnean Society of London, Biological Journal of the Linnean Society , 2005, 84 , 515–521.  相似文献   

5.
Fertility in first‐generation hybrids of roach, Rutilus rutilus, and silver bream, Blicca bjoerkna, was investigated. Sperm and egg production of hybrids at first sexual maturity were examined. Eggs from female hybrids were artificially fertilized with the sperm of a corresponding hybrid male; a hybrid male from the reciprocal crossbreeding; a parental species male R. rutilus; and a parental species male B. bjoerkna. The results revealed that gametogenesis was normal in female hybrids. However, in male hybrids, a low efficiency of gametogenesis was observed. The semen of male hybrids was extremely dilute, with spermatozoa concentration lower than that in parental species. Nevertheless, these F1 hybrids (males and females) from reciprocal crossbreeding were fertile. F2 and backcross generations were produced, but F2 crosses from the female hybrid and corresponding hybrid male displayed a drastically slower hatching rate. Also higher proportions of deformed embryos were hatched than in other post‐F1‐generation crosses.  相似文献   

6.
Barbash DA  Ashburner M 《Genetics》2003,163(1):217-226
Hybrid daughters of crosses between Drosophila melanogaster females and males from the D. simulans species clade are fully viable at low temperature but have agametic ovaries and are thus sterile. We report here that mutations in the D. melanogaster gene Hybrid male rescue (Hmr), along with unidentified polymorphic factors, rescue this agametic phenotype in both D. melanogaster/D. simulans and D. melanogaster/D. mauritiana F(1) female hybrids. These hybrids produced small numbers of progeny in backcrosses, their low fecundity being caused by incomplete rescue of oogenesis as well as by zygotic lethality. F(1) hybrid males from these crosses remained fully sterile. Hmr(+) is the first Drosophila gene shown to cause hybrid female sterility. These results also suggest that, while there is some common genetic basis to hybrid lethality and female sterility in D. melanogaster, hybrid females are more sensitive to fertility defects than to lethality.  相似文献   

7.
An unusual chromosomal hybrid zone of the house mouse, Mus musculus domesticus, exists in Upper Valtellina, Northern Italy, consisting of four Robertsonian (Rb) races and the standard (all-acrocentric, or 2n = 40) race, all hybridizing freely within 10 km2. The hybrid zone in Valtellina provides an excellent opportunity to study the role of Rb fusions in reproductive isolation and speciation. This hybrid zone has already been well studied for the distribution of Rb fusions and the fertility of hybrids, but in order to understand the dynamics of the zone, a basic understanding of the origin and genetic similarity of the chromosomal races is necessary. This paper presents the results of three different methods of measuring genetic differentiation: multivariate analysis of morphological traits and analyses of allozyme variation and mitochondrial DNA sequences. The standard race is clearly distinguishable from the three Rb races by all three methods, but the Rb races are not distinguishable from one another. This provides strong evidence for our previous suggestions that the well-established Rb races in Valtellina are closely related, and that the standard race was introduced into the valley more recently from a distant source. The fact that the Rb races are indistinguishable is also consistent with our hypothesis that a within-village speciation event involving two of the races (Hauffe & Searle, 1992) was a recent occurrence. The low level of allozyme heterozygosity among the Rb races suggests that these populations are the products of at least one bottleneck. The present article substantially extends earlier studies and provides the first detailed morphological and molecular analysis of this complex hybrid zone.  相似文献   

8.
The sex ratio of bitterling hybrids (subfamily: Acheilognathinae) is often likely to be biased toward males. Artificial hybridization was carried out in 10 species of bitterlings (three genera) in order to elucidate the masculinization mechanism of hybrids. Tanakia himantegus never produced viable F1 hybrids with other species, while hybrids of most other species were viable. In terms of sex ratio and fertility, hybrids were clearly divided into two groups: congeneric Tanakia hybrids and others. Both male and female congeneric Tanakia hybrids were fertile. The sex ratio was nearly 1:1 in all groups of Tanakia hybrids. Except for the congeneric Tanakia hybrids, sterile males appeared predominantly in groups of hybrids in which females were very rare but remained fertile. Sterile intersexes were also observed in five hybrid groups: T. lanceolata (female) x Acheilognathus cyanostigma (male), Rhodeus uyekii (female) x T. lanceolata (male), A. rhombeus (female) x T. lanceolata (male), A. rhombeus (female) x T. limbata (male), and A. tabira tabira (female) x A. cyanostigma (male). In the development of male-predominant hybrids, although hybrid and control (parental species) hatching and survival rates do not differ, no females appeared in hybrids, contrary to the controls. Taking the female heterogametic sex-determining system (ZW) and the phylogenetic relationship of bitterlings into consideration, the masculinization mechanism of hybrids in bitterlings can be explained by the interaction of two sex chromosomes, derived from each parental species. The basic genetic sex in bitterlings is male (ZZ) and the derivative is female (ZW). When parental species are related, the sex phenotype of hybrids coincides with the genetic sex. However, when the parental species differ, the sex phenotype of the ZW genotype is reversed to become male by an abnormal interaction between the Z and W chromosomes. The rare appearance of females and intersexes in male-predominant hybrids might be due to complete or partial functional expression of the W chromosome.  相似文献   

9.
Sawamura K  Karr TL  Yamamoto MT 《Genetica》2004,120(1-3):253-260
Interspecific crosses between Drosophila melanogaster and Drosophila simulans usually produce sterile unisexual hybrids. The barrier preventing genetic analysis of hybrid inviability and sterility has been taken away by the discovery of a D. simulans strain which produces fertile female hybrids. D. simulans genes in the cytological locations of 21A1 to 22C1-23B1 and 30F3-31C5 to 36A2-7 have been introgressed into the D. melanogaster genetic background by consecutive backcrosses. Flies heterozygous for the introgression are fertile, while homozygotes are sterile both in females and males. The genes responsible for the sterility have been mapped in the introgression. The male sterility is caused by the synergistic effect of multiple genes, while the female sterility genes have been localized to a 170 kb region (32D2 to 32E4) containing 20 open reading frames. Thus, the female sterility might be attributed to a single gene with a large effect. We have also found that the Lethal hybrid rescue mutation which prevents the inviability of male hybrids from the cross of D. melanogaster females and D. simulans males cannot rescue those carrying the introgression, suggesting that D. simulans genes maybe non-functional in this hybrid genotype. The genes responsible for the inviability have not been separated from the female sterility genes by recombination.  相似文献   

10.
M T Yamamoto 《Genetica》1992,87(3):151-158
Interspecific crosses between D. melanogaster and D. simulans or its sibling species result in unisexual inviability of the hybrids. Mostly, crosses of D. melanogaster females x D. simulans males produce hybrid females. On the other hand, only hybrid males are viable in the reciprocal crosses. A classical question is the cause of the unisexual hybrid inviability on the chromosomal level. Is it due to the absence of a D. simulans X chromosome or is it due to the presence of a D. simulans Y chromosome? A lack of adequate chromosomal rearrangements available in D. simulans has made it difficult to answer this question. However, it has been assumed that the lethality results from the absence of the D. simulans X rather than the presence of the D. simulans Y. Recently I synthesized the first D. simulans compound-XY chromosome that consists of almost the entire X and Y chromosomes. Males carrying the compound-XY and no free Y chromosome are fertile. By utilizing the compound-XY chromosome, the viability of hybrids with various constitutions of cytoplasm and sex chromosomes has been examined. The results consistently demonstrate that the absence of a D. simulans X chromosome in hybrid genome, and not the presence of the Y chromosome, is a determinant of the hybrid inviability.  相似文献   

11.
The Pied and Collared Flycatchers Ficedula hypoleuca and F. albicollis hybridize on the Baltic islands of Öland and Gotland. Field studies of hatching success in clutches from 36 breeding hybrid males indicate that male hybrids reproduce successfully. In comparison, 25 hybrid females had normal clutch sizes but failed to hatch nestlings, suggesting female hybrid sterility. The paternity of seven hybrid males was investigated by DNA fingerprinting using two hypervariable minisatellite probes. Of these hybrid males, six were assessed as fertile. Three of the hybrid male families (43%) contained nestlings with extra-pair paternity and the frequency of extra-pair fertilization among 37 nestlings was 22%. One nestling originated from intraspeciflc female nest parasitism. The sterility pattern in hybrids between these two flycatchers with sterile female and fertile male hybrids is in agreement with Haldane's rule.  相似文献   

12.
The Robertsonian fusion is a common chromosomal mutation among mammal species and is especially prevalent in the West European house mouse, Mus musculus domesticus. More than 40 races of the house mouse exist in Europe, including the famous “tobacco mouse” (Poschiavo race) of Val Poschiavo, Switzerland. Documented here is the discovery of an extreme case of karyotypic variation in the neighboring Upper Valtellina, Italy. In a 20-km stretch of the valley, 32 karyotypes were observed, including five chromosomal races and 27 hybrid types. One previously unknown race is reported, the “Mid Valtellina” race, with a diploid number of 2n = 24 and the Robertsonian fusions Rb(1.3), Rb(4.6), Rb(5.15), Rb(7.18), Rb(8.12), Rb(9.14), Rb(11.13), and Rb(16.17). The Poschiavo race (2n = 26), Upper Valtellina race (2n = 24), Lower Valtellina race (2n = 22) and all-acrocentric race (2n = 40) were also present. The races form a patchy distribution, which we term a “mottled hybrid zone.” Geographical position, isolation, extinction, recolonization, and selection against hybrids are all believed to be instrumental in the origin and evolution of this complex system. Previous studies of house mice from Upper Valtellina indicated that two of the races in the valley (the Upper Valtellina and Poschiavo races) may have speciated in the village of Migiondo. We discuss the possibility that there may have been a reinforcement event in this village.  相似文献   

13.
Seven known Ribautodelphax species and four recently discovered taxa were crossed. Forty-three percent of the interspecific crosses were successful. Interspecific crosses generally resulted in low numbers of hybrids. In some combinations prolonged larval development of the hybrid males was observed. Backcrosses showed that both male and female hybrids were fertile. Reproductive isolation was mainly maintained by premating barriers. Insemination tests revealed that prolonged confinement of males and females lowered mating thresholds. The taxonomic status of the known species and new taxa was shown to be in need of revision. No indications for a hybrid origin of the pseudogamous triploid Ribautodelphax females were found.  相似文献   

14.
M Niwa  N Wakasugi 《Jikken dobutsu》1988,37(4):387-392
We studied the reproductive performance of F1 and F2 hybrids of laboratory mice (C57BL/6, B6 and BALB/c) and molossinus mice (MOM and Mol-A). The F1 x F1 crosses were fully fertile. In the F2 x F2 crosses, the copulation rate was slightly lower and the pregnancy rate was markedly depressed: only 5 out of 18 copulated females (27.8%) became pregnant in the F2 hybrids derived from the reciprocal crosses of B6 x MOM, and in the F2 hybrids from BALB/c x Mol-A crosses, the pregnancy rate was 51.4% (18/35). This low fertility was attributed mainly to the F2 females, because there was a much lower pregnancy rate (56.5%; 26/46) in the (B6 x MOM)F2 female x B6 male crosses compared with the B6 female x (B6 x MOM)F2 male crosses (80.6%; 26/32). On the other hand, the pregnant F2 females were judged to have normal reproductive ability, based on observations of the numbers of corpora lutea, implantations and live fetuses at day 14 of pregnancy. Apparently there is segregation of fertile and sterile females at the F2 generation, but it remains to be determined how the loss of fertility is brought about in the sterile F2 females.  相似文献   

15.
16.
Trudy F. C. Mackay 《Genetics》1985,111(2):351-374
The P family of transposable elements in Drosophila melanogaster transpose with exceptionally high frequency when males from P strains carrying multiple copies of these elements are crossed to females from M strains that lack P elements, but with substantially lower frequency in the reciprocal cross. Transposition is associated with enhanced mutation rates, caused by insertion and deletion of P elements, and chromosome rearrangements. If P element mutagenesis creates additional variation for quantitative traits, accelerated response to artificial selection of progeny of M female female X P male male strain crosses is expected, compared with that from progeny of P female female X M male male strain crosses.--Divergent artificial selection for number of bristles on the last abdominal tergite was carried out for 16 generations among the progeny of P-strain males (Harwich) and M-strain females (Canton-S) and also of M-strain males (Canton-S) and P-strain females (Harwich). Each cross was replicated four times. Average realized heritability of abdominal bristle score for the crosses in which P transposition was expected was 0.244 +/- 0.017, 1.5 times greater than average heritability estimated from crosses in which transposition was expected to be rare (0.163 +/- 0.010). Phenotypic variance of abdominal bristle score increased by a factor of four in lines selected from M female female X P male male crosses when compared with those selected from P female female X M male male hybrids. Not all quantitative genetic variation induced by P elements is additive. A substantial fraction of nonadditive genetic variation is implicated by chromosomal analysis, which demonstrates deleterious fitness effects of the mutations when homozygous.--Several putative "quantitative" mutations were identified from chromosomes extracted from the selected lines; these will form the basis for further investigation at the molecular level of the genes controlling quantitative inheritance.  相似文献   

17.
Crosses between populations of Tigriopus californicus result in backcross and F2 hybrid breakdown for a variety of fitness related measures. The magnitude of this hybrid breakdown is correlated with evolutionary divergence. We assessed the chromosomal basis of viability differences in nonrecombinant backcross hybrids using markers mapped to individual chromosomes. To assess effects of evolutionary divergence we crossed one population to three different populations: two distantly related (approximately 18% mitochondrial COI sequence divergence) and one closely related (approximately 1% mitochondrial COI sequence divergence). We found that all three interpopulation crosses resulted in significant deviations from expected Mendelian ratios at a majority of the loci studied. In all but one case, deviations were due to a deficit of parental homozygotes. This pattern implies that populations of T. californicus carry a significant genetic load, and that a combination of beneficial dominance and deleterious homozygote-heterozygote interactions significantly affects hybrid viability. Pairwise tests of linkage disequilibrium detected relatively few significant interactions. For the two divergent crosses, effects of individual chromosomes were highly concordant. These two crosses also showed higher heterozygote excess in females than males across the vast majority of chromosomes.  相似文献   

18.
We assessed prezygotic (probability of spawning) and postzygotic (hatching success) reproductive isolation among the three ecologically and morphologically similar species in the Fundulus notatus species complex. We employed a multi-generation breeding experiment to test the hypotheses that karyotypic differences, body size differences, or geographic isolation among populations will increase pre or postzygotic reproductive barriers. Overall, prezygotic barriers were strong and postzygotic barriers weak in crosses of non-hybrid heterospecifics (F1 hybrid crosses) while prezygotic barriers were weaker and postzygotic barriers stronger in crosses involving hybrid individuals (F2 hybrid crosses and backcrosses). Prezygotic barriers among the two smaller species (Fundulus notatus and F. euryzonus) broke down rapidly; first generation hybrids spawned (F2 hybrid crosses and backcrosses) as frequently as parental forms in intraspecific crosses. There was no increase in postzygotic barriers among species with cytogenetic differences. There were increased prezygotic, but not postzygotic, barriers among geographically isolated populations of one species. While pure males and females were just as likely to spawn with hybrids, some types of hybrid females suffered from increased sterility, but not inviability, over hybrid males. Female sterility was only seen in hybrids with a Fundulus euryzonus parent, while other female hybrids produced viable eggs.  相似文献   

19.
Abstract Shared ancestral variation and introgression complicates the reconstruction of phylogenetic relationships among closely related taxa. Here we use overall genomic compatibility as an alternative estimate of species relationships in a group where divergence is rapid and genetic exchange is common. Heliconius heurippa, a butterfly species endemic to Colombia, has a colour pattern genetically intermediate between H. cydno and H. melpomene: its hindwing is nearly indistinguishable from that of H. melpomene and its forewing band is an intermediate phenotype between both species. This observation has lead to the suggestion that the pattern of H. heurippa arose through hybridization. We present a genetic analysis of hybrid compatibility in crosses between the three taxa. Heliconius heurippa x H. cydno and female H. melpomene x male H. heurippa yield fertile and viable F1 hybrids, but male H. melpomene x female H. heurippa crosses yield sterile F1 females. In contrast, Haldane's rule has previously been detected between H. melpomene and H cydno in both directions. Therefore, H. heurippa is most closely related to H. cydno, with some evidence for introgression of genes from H. melpomene. The results are compatible with the hypothesis of a hybrid origin for H. heurippa. In addition, backcrosses using F1 hybrid males provide evidence for a large Z(X)-chromosome effect on sterility and for recessive autosomal sterility factors as predicted by Dominance Theory.  相似文献   

20.
Hybrid females from Drosophila simulans females X Drosophila melanogaster males die as embryos while hybrid males from the reciprocal cross die as larvae. We have recovered a mutation in melanogaster that rescues the former hybrid females. It was located on the X chromosome at a position close to the centromere, and it was a zygotically acting gene, in contrast with mhr (maternal hybrid rescue) in simulans that rescues the same hybrids maternally. We named it Zhr (Zygotic hybrid rescue). The gene also rescues hybrid females from embryonic lethals in crosses of Drosophila mauritiana females X D. melanogaster males and of Drosophila sechellia females X D. melanogaster males. Independence of the hybrid embryonic lethality and the hybrid larval lethality suggested in a companion study was confirmed by employing two rescue genes, Zhr and Hmr (Hybrid male rescue), in doubly lethal hybrids. A model is proposed to explain the genetic mechanisms of hybrid lethalities as well as the evolutionary pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号