首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The structurally correlated dihedral angles epsilon and zeta are known for their large variability within the B-DNA backbone. We have used molecular modelling to study both energetic and mechanical features of these variations which can produce BI/BII transitions. Calculations were carried out on DNA oligomers containing either YpR or RpY dinucleotides steps within various sequence environments. The results indicate that CpA and CpG steps favour the BI/BII transition more than TpA or any RpY step. The stacking energy and its intra- and inter-strand components explain these effects. Analysis of neighbouring base pairs reveals that BI/BII transitions of CpG and CpA are easiest within (Y)n(R)n sequences. These can also induce a large vibrational amplitude for TpA steps within the BI conformation.  相似文献   

2.
We have used single strand specific nucleases to map DNA distortion in the adult chicken beta A-globin gene. We have detected two structures of that kind and have mapped nuclease-cutting sites at one base resolution. One prominent site is centered at -190 relative to the RNA capping site and is positioned at the center of a stretch of contiguous C residues. The second site is near the first intron/exon junction (+620) and appears as a series of discrete 1-base-long enzyme-cutting sites. Based upon the pattern of nuclease cutting and the kinetics of nuclease cutting we conclude that the "poly(C)" stretch may assume a looped geometry in supertwisted DNA molecules which is similar to that proposed by Felsenfeld (Nickol, J. M., and Felsenfeld, G. (1983) Cell 35, 467-477). We show that S1 nuclease cuts within the intron occur mainly at the end points of polypurine segments and suggest that such end points may assume a distorted transitional geometry. We find that Neurospora crassa endonuclease cuts both the promotor and intron sites in linear DNA molecules but that in linear DNA the cutting process is limited by a first order conformation change of the DNA substrate. Based upon those kinetics we propose that in unstressed DNA, each of the two sites can convert between a distorted and undistorted geometry. In the enzyme assay buffer at 37 degrees C, the time constant for the equilibrium is nearly 10 h for the promotor site and 7 h for the intron.  相似文献   

3.
The process by which DNA-interactive proteins locate specific sequences or target sites on cellular DNA within Escherichia coli is a poorly understood phenomenon. In this study, we present the first direct in vivo analysis of the interaction of a DNA repair enzyme, T4 endonuclease V, and its substrate, pyrimidine dimer-containing plasmid DNA, within UV-irradiated E. coli. A pyrimidine dimer represents a small target site within large domains of DNA. There are two possible paradigms by which endonuclease V could locate these small target sites: a processive mechanism in which the enzyme "scans" DNA for dimer sites or a distributive process in which dimers are located by random three-dimensional diffusion. In order to discriminate between these two possibilities in E. coli, an in vivo DNA repair assay was developed to study the kinetics of plasmid DNA repair and the dimer frequency (i.e. the number of dimer sites on a given plasmid molecule) in plasmid DNA as a function of time during repair. Our results demonstrate that the overall process of plasmid DNA repair initiated by T4 endonuclease V (expressed from a recombinant plasmid within repair-deficient E. coli) occurs by a processive mechanism. Furthermore, by reducing the temperature of the repair incubation, the endonuclease V-catalyzed incision step has been effectively decoupled from the subsequent steps including repair patch synthesis, ligation, and supercoiling. By this manipulation, it was determined that the overall processive mechanism is composed of two phases: a rapid processive endonuclease V-catalyzed incision reaction, followed by a slower processive mechanism, the ultimate product of which is the dimer-free supercoiled plasmid molecule.  相似文献   

4.
In this study, we have examined a DNA element specific to the centromere domain of human chromosomes. Purified HeLa chromosomes were digested with the restriction enzyme Sau3AI and fractionated by sedimentation through a sucrose gradient. Fractions showing antigenecity to anticentromere (kinetochore) serum obtained from a scleroderma CREST patient were used to construct a DNA library. From this library we found one clone which has specifically hybridized to the centromere domain of metaphase chromosomes using a biotinylated probe DNA and FITC-conjugated avidin. The clone contained a stretch of alphoid DNA dimer. To determine precisely the relative location of the alphoid DNA stretch and the centromere antigen, a method was developed to carry out in situ hybridization of DNA and indirect immunofluorescent staining of antigen on the same cell preparation. Using this method, we have found perfect overlapping of the alphoid DNA sites with the centromere antigen sites in both metaphase chromosomes and nuclei at various stages in the cell cycle. We have also observed this exact correlation at the attachment sites of artificially extended sister chromatids. These results suggest the possibility that alphoid DNA repeats are a key component of kinetochore structure.  相似文献   

5.
6.
C K Shen 《Nucleic acids research》1983,11(22):7899-7910
Supercoiled recombinant DNAs containing the human adult alpha-globin gene region have been probed with nuclease S1 in vitro. While agarose gel electrophoresis showed only one predominant, double-stranded cleavage generated by S1 within 6 kb of human DNA and 4 kb of pBR322 sequence, a high resolution gel analysis reveals that the unique S1-hypersensitive locus in the human adult alpha-globin gene region actually contains more than 15 authentic S1 cleavage sites closely spaced together. The mapping approach used here locates the specific S1 cleavage sites on both DNA strands at the nucleotide sequence level. Interestingly, most of these sites are mapped within a 90 bp stretch of GC-rich (66%) polypyrimidine . polypurine DNA that is located 1060 to 1150 bp upstream from alpha 1-globin gene. These results provide the first high resolution map of double-stranded S1-cleavage sites induced within a specific DNA sequence under supercoil strain. The distribution and relative cutting frequencies of these sites mapped are consistent with a slippage mechanism in which the simple repeating sequences are organized into base-mismatched duplex on supercoiled DNA.  相似文献   

7.
The murine MHC provides a unique genetic system for studying meiotic recombination. A large number of murine H-2 recombinants cross over within a stretch of the E beta gene referred to as the E beta hot spot. The crossing over of eight such recombinants, derived from the s and k haplotypes, was studied at the nucleotide level. A 3-kb stretch of DNA, 3' to the beta 1 exon of the E beta gene, was sequenced after amplification of the genomic DNA from B10.S (one of the parental strains) by polymerase chain reaction. A number of sequence variations were identified with respect to B10.A (the other parental strain). Examination of these sequence variations by RFLP, simple sequence length polymorphism, as well as direct sequencing after polymerase chain reaction-amplification of genomic DNA from the recombinants led to unambiguous identification of the cross-over sites. Although all eight recombinants crossed over within the beta 1-beta 2 intron, two discrete nonoverlapping sites were involved. Five of the recombinants B10.BASR1, B10.ASR1, B10.ASR12, B10.HTT, and B10.S(9R) crossed over within a maximum of 395 bp of DNA 3' to the beta 1 exon. The remaining three recombinants B10.ASR7, B10.ASR11, and B10.S(8R) crossed over within 950 bp of DNA, adjacent to the cross-over site noted above. Each of these stretches of DNA was completely identical in the two parental haplotypes precluding further dissection of the cross-over sites. These cross-over sites are within those reported for the b and k recombination.  相似文献   

8.
Our previous data indicated that HSP27 plays a role in MCF-7 cell differentiation similar to that it has in HL-60 cells. In the latter case, this involves a control of its levels by proteinase 3/myeloblastin (PR3/Mbn), a serine proteinase hitherto considered specific of the myeloid lineage. Having observed that the treatment of MCF-7 cells with the serine protease inhibitor N-tosyl-l-phenylalanine-chloromethyl ketone (TPCK) increased their content in HSP27 and induced them to acquire a secretory phenotype, we undertook this work to test the assumption that an enzyme similar or identical to PR3/Mbn might be expressed in this cell line. The data show that MCF-7 cells exhibited specific immunopositivity for a monoclonal antibody against PR3/Mbn. Western blot analysis of immunoprecipitates from MCF-7 cell extracts, obtained and checked with PR3/Mbn monoclonal antibodies, confirmed the presence of the 35 kDa glycosylated and 29 kDa mature forms of the protein. Finally, Northern blot analysis confirmed the expression of the corresponding mRNA. Together with our data with TPCK, this substantiates our hypothesis that, as in HL-60 cells, regulation of MCF-7 cells differentiation might involve a postranslation control on HSP27 levels by a serine protease.  相似文献   

9.
DNA-binding proteins are generally thought to locate their target sites by first associating with the DNA at random and then translocating to the specific site by one-dimensional (1D) diffusion along the DNA. We report here that non-specific DNA conveys proteins to their target sites just as well when held near the target by catenation as when co-linear with the target. Hence, contrary to the prevalent view, proteins move from random to specific sites primarily by three-dimensional (3D) rather than 1D pathways, by multiple dissociation/re-association events within a single DNA molecule. We also uncover a role for DNA supercoiling in target-site location. Proteins find their sites more readily in supercoiled than in relaxed DNA, again indicating 3D rather than 1D routes.  相似文献   

10.
11.
The MunI restriction enzyme recognizes the palindromic hexanucleotide sequence C/AATTG (the '/' indicates the cleavage site). The crystal structure of its active site mutant D83A bound to cognate DNA has been determined at 1.7 A resolution. Base-specific contacts between MunI and DNA occur exclusively in the major groove. While DNA-binding sites of most other restriction enzymes are comprised of discontinuous sequence segments, MunI combines all residues involved in the base-specific contacts within one short stretch (residues R115-R121) located at the N-terminal region of the 3(10)4 helix. The outer CG base pair of the recognition sequence is recognized solely by R115 through hydrogen bonds made by backbone and side chain atoms to both bases. The mechanism of recognition of the central AATT nucleotides by MunI is similar to that of EcoRI, which recognizes the G/AATTC sequence. The local conformation of AATT deviates from the typical B-DNA form and is remarkably similar to EcoRI-DNA. It appears to be essential for specific hydrogen bonding and recognition by MunI and EcoRI.  相似文献   

12.
Banding patterns induced by selective DNA extraction with the restriction endonucleases PleI and TfiI reveal the distribution of human satellite DNAs within the major heterochromatic blocks on human metaphase chromosomes. PleI and TfiI are able to discriminate HinfI target sites, depending on the nature of the central base. PleI digestion specifically reveals regions, within major C-bands, that include the major sites of satellite II DNA and permits more precise localization of satellite II domains than does radioactive in situ hybridization. The close correspondence between the cytogenetic results presented here and previously reported molecular data seems to support the idea that the frequency of enzyme target sequences is the main factor in determining the action produced by restriction endonucleases on fixed human chromosomes and that chromatin conformation is not an important factor in limiting enzyme accessibility.  相似文献   

13.
Analysis of the nucleotide sequence of the genome of the lactococcal bacteriophage r1t showed that it may encode at least two proteins involved in DNA replication. On the basis of its similarity with the G38P protein encoded by the Bacillus subtilis phage SPP1, the product of orf11 (Pro11) is thought to be involved in the initiation of phage DNA replication. This protein was overexpressed in Lactococcus lactis and partially purified. Gel retardation analysis using various r1t DNA fragments indicates that Pro11 specifically binds to a sequence located within its cognate gene. DNase I footprinting showed that Pro11 protects a stretch of DNA of 47 bp. This region spans four 6-bp short direct repeats, which suggests that the region contains four binding sites for Pro11. 1,10-Phenanthroline-copper footprinting confirmed the protection of the hexamers. An asymmetric protection pattern of each strand was observed, suggesting that Pro11 contacts each DNA strand separately at contiguous hexamers. We propose a model for the binding of Pro11 to its target sites that may account for the torsion strain required for strand opening at the origin of replication.  相似文献   

14.
15.
The HIV proviral genome contains two copies of a 16 bp homopurine.homopyrimidine sequence which overlaps the recognition and cleavage site of the Dra I restriction enzyme. Psoralen was attached to the 16-mer homopyrimidine oligonucleotide, d5'(TTTTCT-TTTCCCCCCT)3', which forms a triple helix with this HIV proviral sequence. Two plasmids, containing part of the HIV proviral DNA, with either one (pLTR) or two (pBT1) copies of the 16-bp homopurine.homopyrimidine sequence and either 4 or 14 Dra I cleavage sites, respectively, were used as substrates for the psoralen-oligonucleotide conjugate. Following UV irradiation the two strands of the DNA targeted sequence were cross-linked at the triplex-duplex junction. The psoralen-oligonucleotide conjugate selectively inhibited Dra I enzymatic cleavage at sites overlapping the two triple helix-forming sequences. A secondary triplex-forming site of 8 contiguous base pairs was observed on the pBT1 plasmid when binding of the 16 base-long oligonucleotide was allowed to take place at high oligonucleotide concentrations. Replacement of a stretch of six cytosines in the 16-mer oligomer by a stretch of six guanines increased binding to the primary sites and abolished binding to the secondary site under physiological conditions. These results demonstrate that oligonucleotides can be designed to selectively recognize and modify specific sequences in HIV proviral DNA.  相似文献   

16.
Cline SD  Jones WR  Stone MP  Osheroff N 《Biochemistry》1999,38(47):15500-15507
Topoisomerase II is the target for several anticancer drugs that "poison" the enzyme and convert it to a cellular toxin by increasing topoisomerase II-mediated DNA cleavage. In addition to these "exogenous topoisomerase II poisons," DNA lesions such as abasic sites act as "endogenous poisons" of the enzyme. Drugs and lesions are believed to stimulate DNA scission by altering the structure of the double helix within the cleavage site of the enzyme. However, the structural alterations that enhance cleavage are unknown. Since abasic sites are an intrinsic part of the genetic material, they represent an attractive model to assess DNA distortions that lead to altered topoisomerase II function. Therefore, the structure of a double-stranded dodecamer containing a tetrahydrofuran apurinic lesion at the +2 position of a topoisomerase II DNA cleavage site was determined by NMR spectroscopy. Three major features distinguished the apurinic structure ( = 0.095) from that of wild-type ( = 0.077). First, loss of base stacking at the lesion collapsed the major groove and reduced the distance between the two scissile phosphodiester bonds. Second, the apurinic lesion induced a bend that was centered about the topoisomerase II cleavage site. Third, the base immediately opposite the lesion was extrahelical and relocated to the minor groove. All of these structural alterations have the potential to influence interactions between topoisomerase II and its DNA substrate.  相似文献   

17.
Illegitimate (nonhomologous) recombination requires little or no sequence homology between recombining DNAs and has been regarded as being a process distinct from homologous recombination, which requires a long stretch of homology between recombining DNAs. Under special conditions in Escherichia coli, we have found a new type of illegitimate recombination that requires an interaction between homologous DNA sequences. It was detected when a plasmid that carried 2-kb-long inverted repeats was subjected to type II restriction in vitro and type I (EcoKI) restriction in vivo within a delta rac recBC recG ruvC strain. Removal of one of the repeats or its replacement with heterologous DNA resulted in a reduction in the level of recombination. The recombining sites themselves shared, at most, a few base pairs of homology. Many of the recombination events joined a site in one of the repeats with a site in another repeat. In two of the products, one of the recombining sites was at the end of one of the repeats. Removal of one of the EcoKI sites resulted in decreased recombination. We discuss the possibility that some structure made by homologous interaction between the long repeats is used by the EcoKI restriction enzyme to promote illegitimate recombination. The possible roles and consequences of this type of homologous interaction are discussed.  相似文献   

18.
The EcoRV DNA-(adenine-N(6))-methyltransferase recognizes GATATC sequences and modifies the first adenine residue within this site. We show here, that the enzyme binds to the DNA and the cofactor S-adenosylmethionine (AdoMet) in an ordered bi-bi fashion, with AdoMet being bound first. M.EcoRV binds DNA in a non-specific manner and the enzyme searches for its recognition site by linear diffusion with a range of approximately 1800 bp. During linear diffusion the enzyme continuously scans the DNA for the presence of recognition sites. Upon specific M.EcoRV-DNA complex formation a strong increase in the fluorescence of an oligonucleotide containing a 2-aminopurine base analogue at the GAT-2AP-TC position is observed which, most likely, is correlated with DNA bending. In contrast to the GAT-2AP-TC substrate, a G-2AP-TATC substrate in which the target base is replaced by 2-aminopurine does not show an increase in fluorescence upon M.EcoRV binding, demonstrating that 2-aminopurine is not a general tool to detect base flipping. Stopped-flow experiments show that DNA bending is a fast process with rate constants >10 s(-1). In the presence of cofactor, the specific complex adopts a second conformation, in which the target sequence is more tightly contacted by the enzyme. M.EcoRV exists in an open and in a closed state that are in slow equilibrium. Closing the open state is a slow process (rate constant approximately 0.7 min(-1)) that limits the rate of DNA methylation under single turnover conditions. Product release requires opening of the closed complex which is very slow (rate constant approximately 0.05-0.1 min(-1)) and limits the rate of DNA methylation under multiple turnover conditions. M.EcoRV methylates DNA sequences containing more than one recognition sites in a distributive manner. Since the dissociation rate from non-specific DNA does not depend on the length of the DNA fragment, DNA dissociation does not preferentially occur at the ends of the DNA.  相似文献   

19.
DNA cloning without restriction enzyme and ligase   总被引:1,自引:0,他引:1  
Tseng H 《BioTechniques》1999,27(6):1240-1244
One common problem in using the traditional DNA cloning procedure is that suitable natural restriction sites are often unavailable for a given task. Creating new restriction sites is often time consuming. Here, I describe a simple technique of producing "customized cohesive ends" by a combination of PCR primer design and lambda exonuclease digestion. These complementary cohesive ends can form hybrids to link two sequences. Because the overhangs created by lambda exonuclease are slightly longer than the complementary sequence, after hybrid formation, a stretch of single-strand gap remains, which then is repaired by Klenow (3'-->5' exo-) enzyme. The repair process also stabilizes the linkage. Because of the independence from natural or artificial restriction sites, this method allows rapid and precise insertion of one DNA fragment into another at virtually any position. It also simplifies the planning of a cloning strategy, increases recombinant frequency and is suitable for automation.  相似文献   

20.
Stimulation of the mouse mammary tumor virus with steroids results in the generation of a DNase I-hypersensitive region (HSR) spanning the hormone responsive element (HRE) in the long terminal repeat. Restriction enzymes were used to characterize the accessibility of various sites within the HSR of mouse mammary tumor virus long terminal repeat-reporter constructions in four different cell lines. The glucocorticoid-dependent HSR was found to span minimally 187 bases, a stretch of DNA longer than that associated with histones in the core particle. Although the 5′-most receptor binding site within the HRE is downstream of −190, hypersensitive sites were found further upstream to at least −295. The relationship in the accessibility between pairs of sites in the vicinity of the HSR was further examined in one cell line by a two-enzyme restriction access assay. In the uninduced state, the accessibilities at these sites were found to be independent of each other. In contrast, when stimulated with hormone, the accessibilities at these sites were observed to become linked. That is, once a distinct promoter was activated, all of the sites within the HSR of that molecule became accessible. The HSR formed along an invariant stretch of DNA sequence despite the multiplicity of nucleosome frames in the nucleosome B region, where the HRE is located. The results indicate that the macroscopic length of the HSR does not arise from core length-remodeling events in molecules containing Nuc-B in alternative positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号