首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Summary DNA containing the Escherichia coli dam gene and sequences upstream from this gene were cloned from the Clarke-Carbon plasmids pLC29-47 and pLC13-42. Promoter activity was localized using pKO expression vectors and galactokinase assays to two regions, one 1650–2100 bp and the other beyon 2400 bp upstream of the dam gene. No promoter activity was detected immediately in front of this gene; plasmid pDam118, from which the nucleotide sequence of the dam gene was determined, is shown to contain the pBR322 promoter for the primer RNA from the pBR322 rep region present on a 76 bp Sau3A fragment inserted upstream of the dam gene in the correct orientation for dam expression. The nucleotide sequence upstream of dam has been determined. An open reading frame (ORF) is present between the nearest promoter region and the dam gene. Codon usage and base frequency analysis indicate that this is expressed as a protein of predicted size 46 kDa. A protein of size close to 46 kDa is expressed from this region, detected using minicell analysis. No function has been determined for this protein, and no significant homology exist between it and sequences in the PIR protein or GenBank DNA databases. This unidentified reading frame (URF) is termed urf-74.3, since it is an URF located at 74.3 min on the E. coli chromosome. Sequence comparisons between the regions upstream of urf-74.3 and the aroB gene show that the aroB gene is located immediately upstream of urf-74.3, and that the promoter activity nearest to dam is found within the aroB structural gene. This activity is relatively weak (about 15% of that of the E. coli gal operon promoter). The promoter activity detected beyond 2400 bp upstream of dam is likely to be that of the aroB gene, and is 3 to 4 times stronger than that found within the aroB gene. Three potential DnaA binding sites, each with homology of 8 of 9 bp, are present, two in the aroB promoter region and one just upstream of the dam gene. Expression through the site adjacent to the dam gene is enhanced 2-to 4-fold in dnaA mutants at 38°C. Restriction site comparisons map these regions precisely on the Clarke-Carbon plasmids pLC13-42 and pLC29-47, and show that the E. coli ponA (mrcA) gene resides about 6 kb upstream of aroB.  相似文献   

2.
The damX gene product of Salmonella enterica serovar Typhimurium is a protein located in the inner membrane. DamX migrates as a 70-kDa protein in SDS-PAGE even though the predicted protein size is 46 kDa. Synthesis of DamX protein occurs in both exponential- and stationary-phase cultures. Disruption of damX causes severe sensitivity to bile. Lack of the outer membrane protein AsmA suppresses bile sensitivity in Salmonella damX mutants.The damX locus, also known as Urf74.3, is an open reading frame (ORF) located in an operon that also contains the aroB, aroK, rpe, gph, and dam genes (11, 12). The region is highly conserved in Escherichia coli and Salmonella enterica (2, 13). The known genes contained in the operon are functionally heterogeneous: aroB and aroK are involved in aromatic amino acid metabolism; dam encodes DNA adenine methyl transferase; trpS is the gene for tryptophan aminoacyl-tRNA synthetase; and the rpe and gph genes are involved in carbohydrate metabolism (8, 11). The product of the E. coli damX (Urf74.3) gene has previously been described as a 70-kDa protein (8, 11), and two recent studies have shown that DamX accumulates in the E. coli septal ring (1, 6). Below, we show that the damX gene product of Salmonella enterica serovar Typhimurium is an inner membrane protein whose absence causes bile sensitivity. The study has been carried out with strain ATCC 14028. However, the nucleotide sequences of the damX-dam chromosomal region are 100% identical in strains LT2 (13) and SL1344 (ftp://ftp.sanger.ac.uk/pub/pathogens/Salmonella).  相似文献   

3.
Some novel transcription attenuation mechanisms used by bacteria   总被引:2,自引:0,他引:2  
  相似文献   

4.
5.
6.
Summary Translation of mitochondrial cytochrome b mRNA in yeast is activated by the product of the nuclear gene CBS1. CBS1 encodes a 27 kDa precursor protein, which is cleaved to a 24 kDa mature protein during the import into isolated mitochondria. The sequences required for mitochondrial import reside in the amino-terminal end of the CBS1 precursor. Deletion of the 76 amino-terminal amino acids renders the protein incompetent for mitochondrial import in vitro and non-functional in vivo. When present on a high copy number plasmid and under the control of a strong yeast promoter, biological function can be restored by this truncated derivative. This observation indicates that the CBS1 protein devoid of mitochondrial targeting sequences can enter mitochondria in vivo, possibly due to a bypass of the mitochondrial import system.  相似文献   

7.
Expression of the Escherichia coli dam gene   总被引:7,自引:0,他引:7  
  相似文献   

8.
Summary This study has identified by sequence analysis a single gene in the bchC locus of Rhodobacter sphaeroides and three genes, designated bchX, Y and Z, in the bchA locus, which was previously thought to contain only a single gene. All four genes may reside within the same operon and are transcribed in the order bchC-X-Y-Z. Complementation analysis of eight transposon insertion mutants within these genes suggests that bchX, Y and Z are essential for the reduction of 2-devinyl-2hydroxyethyl chlorophyllide a and that bchC encodes the 2-desacetyl-2-hydroxyethyl bacteriochlorophyllide a dehydrogenase. Similarity between the putative BchX protein and dinitrogenase reductase proteins suggests that BchX may also be a reductase, supplying electrons for reduction of 2-devinyl-2-hydroxyethyl chlorophyllide a.  相似文献   

9.
The gene coding for the 3-dehydroquinate synthetase (aroB) of Neisseria gonorrhoeae has been cloned by functional complementation of an Escherichia coli aroB mutant. The aroB gene isolated from a gonococcal plasmid library encodes a 359 amino acid protein with a molecular mass of 38.6 kDa. Alignment of different prokaryotic and eukaryotic aroB gene products reveals an overall identity ranging from 33 to 55%. An open reading frame coding for an aroK homologue is located immediately upstream of aroB. Downstream of aroB a region of inverted repeats and a gene showing high homology to yafJ of E. coli has been identified. Disruption of aroB generates a gonococcal mutant that is unable to grow in the absence of aromatic compounds. Complementation of the mutant with the intact aroB gene intrans indicates that the gene is responsible for the auxotrophic phenotype. In infection assays with AroB-deficient gonococcal strains, binding, entry and short-term survival in epithelial cells is not affected. The aroB gene might be useful as a selectable marker and target for attenuation of a gonococcal live vaccine strain or as a biosafe laboratory strain. Received: 23 September 1997 / Accepted: 19 November 1997  相似文献   

10.
Summary Treatment of Escherichia coli and Salmonella typhimurium cells with a low dose of hydrogen peroxide induces expression of a large number of genes, and confers resistance to oxidative stresses. The oxyR gene encodes a positive regulatory protein for a subset of these genes involved in the defense against oxidative damage. We cloned a DNA fragment that contains the E. coli oxyR region on a plasmid vector, and analyzed the nucleotide sequence of the gene. The amino acid sequence of OxyR protein, deduced from the nucleotide sequence, shows a high degree of homology to the sequences of a number of bacterial activator proteins including LysR, cysB, IlvY, MetR and NodD. The product of the oxyR gene identified by the maxicell procedure was a 34 kDa protein, which agrees with the size predicted from the nucleotide sequence of the gene.  相似文献   

11.
The iron-sulfur protein is an essential component of mitochondrial complex II (succinate dehydrogenase, SDH), which is a functional enzyme of both the citric acid cycle and the respiratory electron transport chain. This protein is encoded by a single-copy nuclear gene in mammals and fungi and by a mitochondrial gene in Rhodophyta and the protist Reclinomonas americana. In Arabidopsis thaliana, the homologous protein is now found to be encoded by three nuclear genes. Two genes (sdh2-1 andsdh2-2) likely arose from a relatively recent duplication event since they have similar structures, encode nearly identical proteins and show similar expression patterns. Both genes are interrupted by a single intron located at a conserved position. Expression was detected in all tissues analysed, with the highest steady-state mRNA levels found in flowers and inflorescences. In contrast, the third gene (sdh2-3) is interrupted by 4 introns, is expressed at a low level, and encodes a SDH2-3 protein which is only 67% similar to SDH2-1 and SDH2-2 and has a different N-terminal presequence. Interestingly, the proteins encoded by these three genes are probably functional because they are highly conserved compared with their homologues in other organisms. These proteins contain the cysteine motifs involved in binding the three iron-sulfur clusters essential for electron transport. Furthermore, the three polypeptides are found to be imported into isolated plant mitochondria.  相似文献   

12.
13.
Summary The Escherichia coli gene ssyB was cloned and sequenced. The ssyB63 (Cs) mutation is an insertion mutation in nusB, while the nusB5 (Cs) mutation suppresses secY24, indicating that inactivation of nusB causes cold-sensitive cell growth as well as phenotypic suppression of secY24. The correct map position of nusB is 9.5 min rather than I I min as previously assigned. It is located at the distal end of an operon that contains a gene showing significant homology with a Bacillus subtilis gene involved in riboflavin biosynthesis.  相似文献   

14.
The dnaK gene was cloned from the obligate thermophile Bacillus thermoglucosidasius KP1006, together with the grpE and dnaJ genes in the same operon. The dnaK, grpE and dnaJ genes showed high identity with those of other bacterial strains, particularly with those of Bacillus stearothermophilus NUB36, despite an extremely low homology for the corresponding total genomic DNA. There were significant differences in the proline content of the DnaK operon proteins which is closely correlated with the thermostability of enzyme proteins. The proline content was higher in the GrpE, DnaK and DnaJ proteins of the thermophilic as opposed to the mesophilic strains. The overexpression of the B. thermoglucosidasius DnaK protein in Escherichia coli MV1184 results in extreme filamentation without inhibition on cell growth. The B. thermoglucosidasius DnaK protein seemed to exclusively disturb septation in E. coli cells which suggests that it interacts with key protein(s) involved in cell septation.  相似文献   

15.
A cluster of genes for diutan polysaccharide synthesis was isolated from a library of Sphingomonas sp. ATCC 53159 genomic DNA by complementation of glucosyl-isoprenylphosphate transferase-deficient mutants of Sphingomonas elodea ATCC 31461 (producing gellan) and Xanthomonas campestris (producing xanthan). The synthesis of polysaccharide in these strains shares a common first step, transfer of glucose-1-phosphate from UDP-glucose to the isoprenylphosphate lipid. The cluster of 24 genes was compared to genes for biosynthesis of gellan, and S-88 sphingan from Sphingomonas sp. ATCC 31554. Diutan, gellan and S-88 sphingan have a common four-sugar backbone but different side chains, one rhamnose for S-88 sphingan, a two-rhamnose side chain for diutan and no side chain for gellan. The genes for biosynthesis of diutan, gellan and S-88 sphingan were similar in general organization but differed in location of some genes, in particular, dpsG (putative polymerase), dpsR (putative lyase) and dpsS (putative repeat unit transporter). An unidentified reading frame urf31, present in the gene clusters for diutan and S-88 sphingan but not gellan, had similarity to glycosyl transferase group 2 proteins, and was detrimental when cloned in Sphingomonas elodea producing gellan that lacks a side chain, but not in Sphingomonas ATCC 31554 producing S-88 sphingan with a rhamnose side chain. Gene urf31 could possibly encode a side-chain rhamnosyl transferase. Another gene urf31.4 was unique to the diutan gene cluster. A plasmid containing 20 of the 24 genes resulted in a slight increase in the amount of diutan produced, but a significant increase in the rheological properties of diutan.  相似文献   

16.
17.
GTP-binding proteins represent a ubiquitous regulatory mechanism in controlling growth and development in eukaryotes under normal and stress conditions. The IAN/GIMAP proteins belong to a novel family of functionally uncharacterized GTP-binding proteins expressed in both plant and vertebrate cells during anti-pathogenic responses. To gain novel insights into their roles in plants, we did genome-wide analysis of the IAN/GIMAP gene family. We identified 13 Arabidopsis IAN/GIMAP genes, which share similar gene structures and mostly reside in a tandem cluster on chromosomes. Sequence comparison reveals that these genes encode 26–52 kDa proteins with one GTP-binding domain and a conserved box unique to the family. Phylogenetic analysis suggests that the IAN/GIMAP genes of angiosperms and vertebrates may have evolved by independent gene duplication events. GENEVESTIGATOR sources were mined for comprehensive and comparative Arabidopsis IAN/GIMAP gene family expression analysis. These data reveal that IAN/GIMAPs exhibit diverse expression patterns during development and in response to external stimuli, indicating that these paralogous genes are likely involved in complex biological processes in Arabidopsis. Our present findings provide a basis for elucidating the novel GTPase family protein-mediated regulatory mechanisms in the future.  相似文献   

18.
Genome sequence analysis of Xanthomonas oryzae pv. oryzae has revealed a cluster of 12 ORFs that are closely related to the gum gene cluster of Xanthomonas campestris pv. campestris. The gum gene cluster of X. oryzae encodes proteins involved in xanthan production; however, there is little experimental evidence supporting this. In this study, biochemical analyses of xanthan produced by a defined set of X. oryzae gum mutant strains allowed us to preliminarily assign functions to most of the gum gene products: biosynthesis of the pentasaccharide repeating unit for GumD, GumM, GumH, GumK, and GumI, xanthan polymerization and transport for GumB, GumC, GumE, and GumJ, and modification of the pentasaccharide repeating unit for GumF, GumG, and GumL. In addition, we found that the exopolysaccharides are essential but not specific for the virulence of X. oryzae. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users. Sang-Yoon Kim and Jeong-Gu Kim contributed equally to this work.  相似文献   

19.
In order to identify genes involved in cold acclimation, we have constructed a cDNA library from Brassica napus (cv. Samouraï) cold-acclimated etiolated seedlings. By differential screening, a cDNA clone named pBnC24 (Brassica napus Cold), corresponding to a new cold-inducible plant gene, was isolated. Northern blot hybridizations using total RNA from acclimated and unacclimated seedlings confirmed that BnC24 represents a cold-regulated gene. In contrast with a number of cold-inducible plant genes, BnC24 does not seem to be responsive to abscisic acid (ABA). In addition, further screening of the cold-acclimated cDNA library using pBnC24 cDNA as a probe, allowed the isolation of a second type of homologous cDNA. Sequence analysis showed that the two BnC24 genes encode basic 24 kDa proteins, which are highly hydrophilic and rich in alanine, lysine and arginine. The nucleotide and deduced amino acid sequences of these clones do not show any homology with other previously described cold-induced plants genes. However they have strong homology with a recently discovered human tumour gene, bbc1 (breast basic conserved), which seems to be highly conserved in eukaryotes.  相似文献   

20.
TOL plasmid pWW0 from Pseudomonas putida mt-2 encodes catabolic enzymes required for the oxidation of toluene and xylenes. The structural genes for these catabolic enzymes are clustered into two operons, the xylCMABN operon, which encodes a set of enzymes required for the transformation of toluene/xylenes to benzoate/toluates, and the xylXYZLTEGFJQKIH operon, which encodes a set of enzymes required for the transformation of benzoate/toluates to Krebs cycle intermediates. The latter operon can be divided physically and functionally into two parts, the xylXYZL cluster, which is involved in the transformation of benzoate/toluates to (methyl)catechols, and the xylTEGFJQKIH cluster, which is involved in the transformation of (methyl)catechols to Krebs cycle intermediates. Genes isofunctional to xylXYZL are present in Acinetobacter calcoaceticus, and constitute a benzoate-degradative pathway, while xylTEGFJQKIH homologous encoding enzymes of a methylphenol-degradative pathway and a naphthalene-degradative pathway are present on plasmid pVI150 from P. putida CF600, and on plasmid NAH7 from P. putida PpG7, respectively. Comparison of the nucleotide sequences of the xylXYZLTEGFJQKIH genes with other isofunctional genes suggested that the xylTEGFJQKIH genes on the TOL plasmid diverged from these homologues 20 to 50 million years ago, while the xylXYZL genes diverged from the A. calcoaceticus homologues 100 to 200 million years ago. In codons where amino acids are not conserved, the substitution rate in the third base was higher than that in synonymous codons. This result was interpreted as indicating that both single and multiple nucleotide substitutions contributed to the amino acid-substituting mutations, and hence to enzyme evolution. This observation seems to be general because mammalian globin genes exhibit the same tendency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号