首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The metabotropic glutamate receptor (mGluR) agonist (R,S)-3,5-dihydroxyphenylglycine (DHPG) is involved in several forms of hippocampal synaptic plasticity. DHPG application can induce slow-onset potentiation, a form of long-term potentiation (LTP), in the dentate gyrus and in the CA1 region in vivo. The induction of LTP correlates with increased expression levels of neuronal calcium sensor (NCS), considered as key elements for plasticity. In this study we investigated mGluR- and time-dependent changes in the expression of two different NCS proteins. Following DHPG application in vivo NCS-1 and VILIP-1 expression increased, with significant levels reached after 8 and 24h. The effect was attenuated by treatment with the group I mGluR specific antagonist S-4-carboxyphenylglycine. The immediate early gene (IEG) arg3.1/arc showed highest expression levels 2h after DHPG-treatment. Therefore, mGluRs at concentrations which induce synaptic plasticity regulate the expression of IEGs and NCS proteins in different time frames and thus contribute to late phases of synaptic plasticity.  相似文献   

2.
Jin Y  Kim SJ  Kim J  Worley PF  Linden DJ 《Neuron》2007,55(2):277-287
Glutamate produces both fast excitation through activation of ionotropic receptors and slower actions through metabotropic receptors (mGluRs). To date, ionotropic but not metabotropic neurotransmission has been shown to undergo long-term synaptic potentiation and depression. Burst stimulation of parallel fibers releases glutamate, which activates perisynaptic mGluR1 in the dendritic spines of cerebellar Purkinje cells. Here, we show that the mGluR1-dependent slow EPSC and its coincident Ca transient were selectively and persistently depressed by repeated climbing fiber-evoked depolarization of Purkinje cells in brain slices. LTD(mGluR1) was also observed when slow synaptic current was evoked by exogenous application of a group I mGluR agonist, implying a postsynaptic expression mechanism. Ca imaging further revealed that LTD(mGluR1) was expressed as coincident attenuation of both limbs of mGluR1 signaling: the slow EPSC and PLC/IP3-mediated dendritic Ca mobilization. Thus, different patterns of neural activity can evoke LTD of either fast ionotropic or slow mGluR1-mediated synaptic signaling.  相似文献   

3.
Long-term depression of kainate receptor-mediated synaptic transmission   总被引:3,自引:0,他引:3  
Park Y  Jo J  Isaac JT  Cho K 《Neuron》2006,49(1):95-106
Kainate receptors (KARs) have been shown to be involved in hippocampal mossy fiber long-term potentiation (LTP); however, it is not known if KARs are involved in the induction or expression of long-term depression (LTD), the other major form of long-term synaptic plasticity. Here we describe LTD of KAR-mediated synaptic transmission (EPSC(KA) LTD) in perirhinal cortex layer II/III neurons that is distinct from LTD of AMPAR-mediated transmission, which also coexists at the same synapses. Induction of EPSC(KA) LTD requires a rise in postsynaptic Ca(2+) but is independent of NMDARs or T-type voltage-gated Ca(2+) channels; however, it requires synaptic activation of inwardly rectifying KARs and release of Ca(2+) from stores. The synaptic KARs are regulated by tonically activated mGluR5, and expression of EPSC(KA) LTD occurs via a mechanism involving mGluR5, PKC, and PICK1 PDZ domain interactions. Thus, we describe the induction and expression mechanism of a form of synaptic plasticity, EPSC(KA) LTD.  相似文献   

4.
mGluR long‐term depression (mGluR‐LTD) is a form of synaptic plasticity induced at excitatory synapses by metabotropic glutamate receptors (mGluRs). mGluR‐LTD reduces synaptic strength and is relevant to learning and memory, autism, and sensitization to cocaine; however, the mechanism is not known. Here we show that activation of Group I mGluRs in medium spiny neurons induces trafficking of GluA2 from the endoplasmic reticulum (ER) to the synapse by enhancing GluA2 binding to essential COPII vesicle proteins, Sec23 and Sec13. GluA2 exit from the ER further depends on IP3 and Ryanodine receptor‐controlled Ca2+ release as well as active translation. Synaptic insertion of GluA2 is coupled to removal of high‐conducting Ca2+‐permeable AMPA receptors from synapses, resulting in synaptic depression. This work demonstrates a novel mechanism in which mGluR signals release AMPA receptors rapidly from the ER and couple ER release to GluA2 synaptic insertion and GluA1 removal.  相似文献   

5.
Hippocampal synaptic plasticity and learning are strongly regulated by metabotropic glutamate receptors (mGluRs) and particularly by mGluR5. Here, we investigated the mechanisms underlying mGluR5-modulation of these phenomena. Prolonged pharmacological blockade of mGluR5 with MPEP produced a profound impairment of spatial memory. Effects were associated with 1) a reduction of mGluR1a-expression in the dentate gyrus; 2) impaired dentate gyrus LTP; 3) enhanced CA1-LTP and 4) suppressed theta (5-10 Hz) and gamma (30-100 Hz) oscillations in the dentate gyrus. Allosteric potentiation of mGluR1 after mGluR5 blockade significantly ameliorated dentate gyrus LTP, as well as suppression of gamma oscillatory activity. CA3-lesioning prevented MPEP effects on CA1-LTP, suggesting that plasticity levels in CA1 are driven by mGluR5-dependent synaptic and network activity in the dentate gyrus. These data support the hypothesis that prolonged mGluR5-inactivation causes altered hippocampal LTP levels and network activity, which is mediated in part by impaired mGluR1-expression in the dentate gyrus. The consequence is impairment of long-term learning.  相似文献   

6.
The role of calmodulin as a signal integrator for synaptic plasticity   总被引:12,自引:0,他引:12  
Excitatory synapses in the brain show several forms of synaptic plasticity, including long-term potentiation (LTP) and long-term depression (LTD), which are initiated by increases in intracellular Ca(2+) that are generated through NMDA (N-methyl-D-aspartate) receptors or voltage-sensitive Ca(2+) channels. LTP depends on the coordinated regulation of an ensemble of enzymes, including Ca(2+)/calmodulin-dependent protein kinase II, adenylyl cyclase 1 and 8, and calcineurin, all of which are stimulated by calmodulin, a Ca(2+)-binding protein. In this review, we discuss the hypothesis that calmodulin is a central integrator of synaptic plasticity and that its unique regulatory properties allow the integration of several forms of signal transduction that are required for LTP and LTD.  相似文献   

7.
Silkis I 《Bio Systems》2000,57(3):187-196
It is pointed out that Ca(2+)-dependent modification rules for NMDA-dependent (NMDA-independent) synaptic plasticity in the striatum are similar to those in the neocortex and hippocampus (cerebellum). A unitary postsynaptic mechanism of synaptic modification is proposed. It is based on the assumption that, in diverse central nervous system structures, long-term potentiation/depression (LTP/LTD) of excitatory transmission (depression/potentiation of inhibitory transmission, LTDi/LTPi) is the result of an increasing/decreasing the number of phosphorylated AMPA and NMDA (GABA(A)) receptors. According to the suggested mechanism, Ca(2+)/calmodulin-dependent protein kinase II and protein kinase C, whose activity is positively correlated with Ca(2+) enlargement, together with cAMP-dependent protein kinase A (cGMP-dependent protein kinase G, whose activity is negatively correlated with Ca(2+) rise) mainly phosphorylate ionotropic striatal receptors, if NMDA channels are opened (closed). Therefore, the positive/negative post-tetanic Ca(2+) shift in relation to a previous Ca(2+) rise must cause NMDA-dependent LTP+LTDi/LTD+LTPi or NMDA-independent LTD+LTPi/LTP+LTDi. Dopamine D(1)/D(2) or adenosine A(2A)/A(1) receptor activation must facilitate LTP+LTDi/LTD+LTPi due to an augmenting/lowering PKA activity. Activation of muscarinic M(1)/M(4) receptors must enhance LTP+LTDi/LTD+LTPi as a consequence of an increase/decrease in the activity of protein kinase C/A. The proposed mechanism is in agreement with known experimental data.  相似文献   

8.
Pain modulatory circuitry in the brainstem exhibits considerable synaptic plasticity. The increased peripheral neuronal barrage after injury activates spinal projection neurons that then activate multiple chemical mediators including glutamatergic neurons at the brainstem level, leading to an increased synaptic strength and facilitatory output. It is not surprising that a well-established regulator of synaptic plasticity, brain-derived neurotrophic factor (BDNF), contributes to the mechanisms of descending pain facilitation. After tissue injury, BDNF and TrkB signaling in the brainstem circuitry is rapidly activated. Through the intracellular signaling cascade that involves phospholipase C, inositol trisphosphate, protein kinase C, and nonreceptor protein tyrosine kinases; N-methyl-D-aspartate (NMDA) receptors are phosphorylated, descending facilitatory drive is initiated, and behavioral hyperalgesia follows. The synaptic plasticity observed in the pain pathways shares much similarity with more extensively studied forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD), which typically express NMDA receptor dependency and regulation by trophic factors. However, LTP and LTD are experimental phenomena whose relationship to functional states of learning and memory has been difficult to prove. Although mechanisms of synaptic plasticity in pain pathways have typically not been related to LTP and LTD, pain pathways have an advantage as a model system for synaptic modifications as there are many well-established models of persistent pain with clear measures of the behavioral phenotype. Further studies will elucidate cellular and molecular mechanisms of pain sensitization and further our understanding of principles of central nervous system plasticity and responsiveness to environmental challenge.  相似文献   

9.
Rebola N  Lujan R  Cunha RA  Mulle C 《Neuron》2008,57(1):121-134
The physiological conditions under which adenosine A2A receptors modulate synaptic transmission are presently unclear. We show that A2A receptors are localized postsynaptically at synapses between mossy fibers and CA3 pyramidal cells and are essential for a form of long-term potentiation (LTP) of NMDA-EPSCs induced by short bursts of mossy fiber stimulation. This LTP spares AMPA-EPSCs and is likely induced and expressed postsynaptically. It depends on a postsynaptic Ca2+ rise, on G protein activation, and on Src kinase. In addition to A2A receptors, LTP of NMDA-EPSCs requires the activation of NMDA and mGluR5 receptors as potential sources of Ca2+ increase. LTP of NMDA-EPSCs displays a lower threshold for induction as compared with the conventional presynaptic mossy fiber LTP; however, the two forms of LTP can combine with stronger induction protocols. Thus, postsynaptic A2A receptors may potentially affect information processing in CA3 neuronal networks and memory performance.  相似文献   

10.
Intracellular Ca2+ store release contributes to activity-dependent synaptic plasticity in the central nervous system by modulating the amplitude, propagation, and temporal dynamics of cytoplasmic Ca2+ changes. However, neuronal Ca2+ stores can be relatively insensitive to increases in the store-mobilizing messenger inositol 1,4,5-trisphosphate (IP3). Using a fluorescent biosensor we have visualized M1 muscarinic acetylcholine (mACh) receptor signaling in individual hippocampal neurons and observed increased IP3 production in the absence of concurrent Ca2+ store release. However, coincident glutamate-mediated synaptic activity elicited enhanced and oscillatory IP3 production that was dependent upon ongoing mACh receptor stimulation and S-alpha-amino-3-hydroxy-5-methyl-4-isoazolepropionic acid receptor activation of Ca2+ entry. Moreover, the enhanced levels of IP3 now mobilized Ca2+ from intracellular stores that were refractory to the activation of mACh receptors alone. We conclude that convergent ionotropic and metabotropic receptor inputs can facilitate Ca2+ signaling by enhancing IP3 production as well as augmenting release by Ca2+-induced Ca2+ release.  相似文献   

11.
To evaluate the role in synaptic plasticity of ryanodine receptor type 3 (RyR3), which is normally enriched in hippocampal area CA1, we generated RyR3-deficient mice. Mutant mice exhibited facilitated CA1 long-term potentiation (LTP) induced by short tetanus (100 Hz, 100 ms) stimulation. Unlike LTP in wild-type mice, this LTP was not blocked bythe NMDA receptor antagonist D-AP5 but was partially dependent on L-type voltage-dependent Ca2+ channels (VDCCs) and metabotropic glutamate receptors (mGluRs). Long-term depression (LTD) was not induced in RyR3-deficient mice. RyR3-deficient mice also exhibited improved spatial learning on a Morris water maze task. These results suggest that in wild-type mice, in contrast to the excitatory role of Ca2+ influx, RyR3-mediated intracellular Ca2+ ([Ca2+]i) release from endoplasmic reticulum (ER) may inhibit hippocampal LTP and spatial learning.  相似文献   

12.
钙依赖性突触的可塑性   总被引:3,自引:0,他引:3  
Dou Y  Yan J  Wu YY  Cui RY  Lu CL 《生理科学进展》2001,32(1):35-38
突触前和突触后细胞内钙离子([Ca^2 ]i)在短时程和长时程突触的可塑性中,发挥着重要的住处传递作用。兴奋后残留[Ca^2 ]i,可以激发短时程突触增强。突触前[Ca^2 ]i可以影响被抑制的突触前膜囊泡的更新,并准确编码突前和突触后信息,产生截然相反的长时程突触修(LTP或LTD)。  相似文献   

13.
In cerebral cortex there is a developmental switch from NR2B- to NR2A-containing NMDA receptors (NMDARs) driven by activity and sensory experience. This subunit switch alters NMDAR function, influences synaptic plasticity, and its dysregulation is associated with neurological disorders. However, the mechanisms driving the subunit switch are not known. Here, we show in hippocampal CA1 pyramidal neurons that the NR2B to NR2A switch driven acutely by activity requires activation of NMDARs and mGluR5, involves PLC, Ca(2+) release from IP(3)R-dependent stores, and PKC activity. In mGluR5 knockout mice the developmental NR2B-NR2A switch in CA1 is deficient. Moreover, in visual cortex of mGluR5 knockout mice, the NR2B-NR2A switch evoked in?vivo by visual experience is absent. Thus, we establish that mGluR5 and NMDARs are required for the activity-dependent NR2B-NR2A switch and play a critical role in experience-dependent regulation of NMDAR subunit composition in?vivo.  相似文献   

14.
15.
Cocaine-cue associations induce synaptic plasticity with long lasting molecular and cellular changes in the amygdala, a site crucial for cue-associated memory mechanisms. The underlying neuroadaptations can include marked alterations in signaling via dopamine (DA) receptors (DRs) and metabotropic glutamate (Glu) receptors (mGluRs). Previously, we reported that DR antagonists blocked forms of synaptic plasticity in amygdala slices of Sprague-Dawley rats withdrawn from repeated cocaine administration. In the present study, we investigated synaptic plasticity induced by exogenous DA and its dependence on mGluR signaling and a potential role for phospholipase D (PLD) as a downstream element linked to mGluR and DR signaling. Utilizing a modified conditioned place preference (CPP) paradigm as a functional behavioral measure, we studied the neurophysiological effects after two-weeks to the last cocaine conditioning. We recorded, electrophysiologically, a DR-induced synaptic potentiation in the basolateral to lateral capsula central amygdala (BLA-lcCeA) synaptic pathway that was blocked by antagonists of group I mGluRs, particularly, the PLD-linked mGluR. In addition, we observed 2-2.5 fold increase in PLD expression and 3.7-fold increase in basal PLD enzyme activity. The enhanced PLD activity could be further stimulated (9.3 fold) by a DA D1-like (D1/5R) receptor agonist, and decreased to control levels by mGluR1 and PLD-linked mGluR antagonists. Diminished CPP was observed by infusion of a PLD-linked mGluR antagonist, PCCG-13, in the amygdala 15 minutes prior to testing, two weeks after the last cocaine injection. These results imply a functional interaction between D1/5Rs, group I mGluRs via PLD in the amygdala synaptic plasticity associated with cocaine-cues.  相似文献   

16.
Compared with NMDA receptor-dependent LTP, much less is known about the mechanism of induction of NMDA receptor-independent LTP; the most extensively studied form of which is mossy fiber LTP in the hippocampus. In the present study we show that Ca2+-induced Ca2+ release from intracellular stores is involved in the induction of mossy fiber LTP. This release also contributes to the kainate receptor-dependent component of the pronounced synaptic facilitation that occurs during high-frequency stimulation. We also present evidence that the trigger for this Ca2+ release is Ca2+ permeation through kainate receptors. However, these novel synaptic mechanisms can be bypassed when the Ca2+ concentration is raised (from 2 to 4 mM), via a compensatory involvement of L-type Ca2+ channels. These findings suggest that presynaptic kainate receptors at mossy fiber synapses can initiate a cascade involving Ca2+ release from intracellular stores that is important in both short-term and long-term plasticity.  相似文献   

17.
In the central nervous system, excitatory synaptic transmission is mediated by the neurotransmitter glutamate and its receptors. Interestingly, stimulation of group I metabotropic glutamate receptors (mGluRs) can either enhance or depress synaptic transmission at CA1 hippocampal synapses. Here we report that co-activation of mGluR5, a member of the group I mGluR family, and N-methyl-d-aspartate receptors (NMDARs) potentiates NMDAR currents and induces a long lasting enhancement of excitatory synaptic transmission in primary cultured hippocampal neurons. Unexpectedly, activation of mGluR5 alone fails to enhance evoked NMDAR currents and synaptic alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate receptor (AMPAR) AMPAR currents. The observed potentiation requires an mGluR5-induced, inositol 1,4,5-trisphosphate receptor-mediated mobilization of intracellular Ca2+, which acts in concert with a protein kinase C, calcium-activated tyrosine kinase cascade to induce a long lasting enhancement of NMDAR and AMPAR currents.  相似文献   

18.
Nakamura T  Barbara JG  Nakamura K  Ross WN 《Neuron》1999,24(3):727-737
Increases in postsynaptic [Ca2+]i can result from Ca2+ entry through ligand-gated channels or voltage-gated Ca2+ channels, or through release from intracellular stores. Most attention has focused on entry through the N-methyl-D-aspartate (NMDA) receptor in causing [Ca2+]i increases since this pathway requires both presynaptic stimulation and postsynaptic depolarization, making it a central component in models of synaptic plasticity. Here, we report that repetitive synaptic activation of metabotropic glutamate receptors (mGluRs), paired with backpropagating action potentials, causes large, wave-like increases in [Ca2+]i predominantly in restricted regions of the proximal apical dendrites and soma of hippocampal CA1 pyramidal neurons. [Ca2+]i changes of several micromolars can be reached by regenerative release caused by the synergistic effect of mGluR-generated inositol 1,4,5-trisphosphate (IP3) and spike-evoked Ca2+ entry acting on the IP3 receptor.  相似文献   

19.
We have studied how N-type Ca2+ channels are modulated by the metabotropic glutamate receptor 5a (mGluR5a) in Xenopus oocytes. Stimulation of the receptor with glutamate initiated two parallel responses, a rapid inhibition followed by an upregulation of the Ca2+ current. Although a subsequent stimulation did not upregulate the Ca2+ current, it did still produce a reduction in the amplitude of the current. The upregulation of Ca2+ channels was prevented by the protein kinases inhibitor staurosporine and it was mimicked by the activation of PKC with phorbol esters. In contrast, the inhibition of the Ca2+ current was insensitive to staurosporine. These results show that mGluR5a exerts a bi-directional influence on Ca2+ channels, which may explain how group I mGluRs facilitate and inhibit glutamate release at central synapses.  相似文献   

20.
It is known from the experimental data that at different cerebellar neurons there are voltage-dependent Ca2+ channels, NMDA receptors, metabotropic glutamate and GABAB receptors. This receptor arrangement ensures that activation of excitatory and inhibitory input results in changes in activity of protein kinases and phosphatases and subsequent modification of synaptic efficacy. The mechanism of synaptic plasticity is advanced that in accordance with the known experimental data concerning the modification of excitatory and inhibitory inputs to Purkinje cells, granule cells, and deep cerebellar nuclei cells. The mechanism is based on a postulate that phosphorylation/dephosphorylation of AMPA (GABAA) receptors on cerebellar cells causes the LTP/LTD of excitatory (LTD/LTP of inhibitory) transmission. It is assumed that modification rules for Purkinje cells, granule cells, and deep cerebellar nuclei cells, wherein cGMP-dependent protein kinase G is involved in synaptic plasticity, are distinct from those of hippocampal/neocortical cells, wherein cAMP-dependent protein kinase A is involved in synaptic plasticity, since cGMP (cAMP) concentration decreases (increases) with Ca2+ rise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号