首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
In order to address the dynamics of DNA topology in hyperthermophilic archaea, we analysed the topological state of several plasmids recently discovered in Thermococcales and Sulfolobales. All of these plasmids were from relaxed to highly positively super-coiled in vitro, i.e. they exhibited a significant linking excess compared to the negatively supercoiled plasmids from mesophilic organisms (both Archaea and Bacteria). In the two archaeai orders, plasmid linking number (Lk) decreased as growth temperature was lowered from its optimal value, i.e. positively super-coiled plasmids were relaxed whereas relaxed plasmids became negatively supercoiled. Growth temperatures above the optimum correlated with higher positive supercoiling in Sulfolobales (Lk increase) but with relaxation of positive supercoils in Thermococcus sp. GE31. The topological variation of plasmid DNA isolated from cells at different growth phases were found to be species specific in both archaeai orders. In contrast, the direction of topological variation under temperature stress was the same, i.e. a heat shock correlated with an increase in plasmid positive supercoiling, whilst a cold shock induced negative supercoiling. The kinetics of these effects were analysed in Sulfolobales. In both temperature upshift (from 80 to 85C) and downshift (from 80 to 65C), a transient sharp variation of Lk occurred first, and then DNA supercoiling progressively reached levels typical of steady-state growth at the final temperature. These results indicate that DNA topology can change with physiological states and environmental modifications in hyperthermophilic archaea.  相似文献   

2.
The effect of environmental temperature changes in the physiological range on DNA supercoiling in the sperm of Misgurnus fossilis L. was studied. Living fishes from the Oka and the Danube and isolated gonads were exposed to temperature changes. In the living fishes, both temperature increase from 4 to 14 degrees C and decrease from 19-21 to 14 degrees resulted in a reversible relaxation of DNA superhelices. Upon decreasing the environmental temperature from 19-21 to 4 degrees C the reversibility of changes in DNA supercoiling was not observed during the next 15 days. In isolated gonads the temperature increase from 4 to 14 degrees C had no effect on the sperm DNA supercoiling. The temperature-dependent changes in the sperm DNA supercoiling were not dependent on the loach population. It is assumed that the effect of changes in environmental temperature on the supercoiling of sperm DNA in vivo plays an important role in the activation of the genome after fertilization.  相似文献   

3.
Plasmid pUB110, isolated from vegetative cells of Bacillus subtilis, has an average of 34 negative supertwists (tau av = -34). This value falls to -30 early in sporulation, and the plasmid in the mother cell compartment maintains a tau av of -30. However, the plasmid within the developing forespore becomes much more negatively supercoiled, reaching a tau av of -47 in the dormant spore. This increased negative supercoiling in the forespore plasmid takes place in parallel with the synthesis of small, acid-soluble spore proteins, alpha and beta; and the plasmid from spores lacking small, acid-soluble proteins alpha and beta has a tau av of -40. The large increase in negative supercoiling of spore plasmid was also observed with Bacillus megaterium and in B. subtilis containing a plasmid with an origin different from that of pUB110. During spore germination plasmid pUB110 rapidly relaxed back to the tau av value characteristic of vegetative cells. It is possible that the observed changes in forespore plasmid topology are involved in modulating gene expression, DNA photochemistry, or both of these parameters in this compartment.  相似文献   

4.
Temperature has a pleiotropic effect on Yersinia enterocolitica gene expression. Temperature-dependent phenotypes include the switching between two type III protein secretion systems, flagellum biosynthesis (相似文献   

5.
Reverse gyrase is a unique type IA topoisomerase that can introduce positive supercoils into DNA. We have investigated some of the biochemical properties of Archaeoglobus fulgidus reverse gyrase. It can mediate three distinct supercoiling reactions depending on the adenine nucleotide cofactor that is present in the reaction. Besides the ATP-driven positive supercoiling reaction, the enzyme can introduce negative supercoils with a nonhydrolyzable analog, adenylyl imidodiphosphate. In the presence of ADP the plasmid DNA is relaxed almost completely, leaving a very low level of positive supercoiling. Surprisingly, the final supercoiling extent for all three distinct reactions depends on the stoichiometry of enzyme to DNA. This dependence is not due to the difference of reaction rate, suggesting that the amount of enzyme bound to DNA is an important determinant for the final supercoiling state of the reaction product. Reverse gyrase also displays exquisite sensitivity toward temperature. Raising the reaction temperatures from 80 to 85 degrees C, both of which are within the optimal growth temperature of A. fulgidus, greatly increases enzyme activity for all the supercoiling reactions. For the reaction with AMPPNP, the product is a hypernegatively supercoiled DNA. This dramatic enhancement of the reverse gyrase activity is also correlated with the appearance of DNA in a pre-melting state at 85 degrees C, likely due to the presence of extensively unwound regions in the plasmid. The possible mechanistic insights from these findings will be presented here.  相似文献   

6.
7.
On the basis of the runaway-replication vector, an expression plasmid was developed to achieve tight regulation as well as high-level expression of cloned genes by thermal control of the promoter together with the plasmid copy number. To demonstrate the feasibility of this approach, the lacZ gene was fused with the heat-inducible promoter on the vector, and the result showed that protein production levels in the Escherichia coli strain harboring the recombinant plasmid could be varied in response to various degrees of heat shock. The maximal soluble LacZ ranging between 45 000 and 50 000 Miller units was obtained as the recombinant strain received a 30 --> 40 degrees C stepwise upshift, and it accounted for a 450-fold amplification over an uninduced level. Further analyses by SDS-PAGE indicated the maximal protein production (including soluble and insoluble forms) in the bacteria reaching approximately 30% total cell protein. In addition, two approaches were demonstrated to be very useful in enhancing the total soluble LacZ production on a fermenter scale. One was to shuttle the culture between two fermenters connected in series and set at different temperatures. The other resorted to the use of two-step temperature alteration in a batch fermenter, namely, raising the temperature to 40 degrees C for a certain period of time followed by reducing the temperature to 37 degrees C. Overall, it illustrates the remarkable features of the expression system with stringent regulation, high-level production capacity, facile induction, and high stability, and the usefulness of this system for recombinant protein productions is promising.  相似文献   

8.
A plasmid of 3.45 kb (pGT5) was recently discovered in a strain of hyperthermophilic archaebacterium which was isolated from samples collected in a deep-sea hydrothermal vent. This strain (GE5) grows within a temperature range of 68 to 101.5 degrees C, and we show here that it contains a strong ATP-dependent reverse gyrase activity (positive DNA supercoiling). By comparison with eubacterial plasmids of known superhelical densities, we estimated the superhelical density of the archaebacterial plasmid pGT5 to be -0.026 at 25 degrees C. The equation which relates the change of the rotation angle of the DNA double helix with temperature was validated at 95 degrees C, the optimal growth temperature of the GE5 strain. Considering these new data, the superhelical density of plasmid pGT5 was calculated to be -0.006 at the physiological temperature of 95 degrees C, which is close to the relaxed state. This finding shows that the DNA topology of a plasmid isolated from a hyperthermophilic archaebacterium containing reverse gyrase activity is strikingly different from that of typical eubacterial plasmids.  相似文献   

9.
Escherichia coli mutants lacking exonuclease III (xthA) are defective in the induction of heat-shock proteins upon severe heat-shock treatment (upshift from 30 to 50 degrees C) but not mild heat-shock treatment (upshift from 30 to 42 degrees C). We show that this defect is due to the xthA mutation by complementation. Furthermore, increasing the gene dosage of xthA+ prolongs the synthesis of heat shock proteins seen after a shift to 42 degrees C. Increasing the gene dosage of htpR+ partially suppresses the defect of xthA mutants in the synthesis of heat-shock proteins at 50 degrees C. When an xthA strain was incubated at 42 degrees C before a shift to 50 degrees C, it was then able to carry out the synthesis of heat-shock proteins at 50 degrees C.  相似文献   

10.
11.
The possible changes in the fatty acid profile of Escharichia coli during heat-shock have been investigated. Bacteria growing in steady-state at 30 degrees C were subjected to an abrupt temperature upshift to 45 degrees C and held at the high temperature for various periods of time in order to elicit the heat-shock response. Fatty acid compositions of lipids extracted from samples taken at different times after the temperature upshift, as well as from cultures in steady-state at 30 and 45 degrees C, were determined by gas-chromatography. It has been found that the total unsaturates to total saturates ratio decreases gradually during heat-shock and that 30 min after the temperature jump, the reduction is equivalent to 57% of the difference between ratios corresponding to steady-state cultures at 30 and 45 degrees C. Consistent with this remodeling of lipid acyl chains, there is a decrease in the excimerization rate of the fluidity probe dipyrenylpropane incorporated into sonicated E. coli lipid extracts. Such modifications occur within the time-span of the heat-shock response, as judged from our previous measurements of the kinetics of change in heat-shock proteins induction ratio. Together, these results indicate that the control of membrane fluidity during the heat-shock response can be accounted for, at least in part, by an important change in the fatty acid composition of Escherichia coli lipids.  相似文献   

12.
The single gene for phosphoglycerate kinase (PGK) in the haploid genome of Saccharomyces cerevisiae is expressed to a very high level in cultures fermenting glucose. Despite this it responds to heat-shock. When S. cerevisiae growing exponentially on glucose media was shifted from 25 degrees C to 38 degrees C transient increases of 6-7-fold in cellular PGK mRNA were observed. This elevation in PGK mRNA still occurred in the presence of the protein-synthesis inhibitor cycloheximide, but was not observed in cells bearing the rna1.1 mutation. From the kinetics of continuous labelling of PGK mRNA, relative to the labelling of other RNAs in the same cultures whose levels do not alter with heat-shock, it was shown that the elevation in PGK mRNA in response to temperature upshift reflects primarily an increased synthesis of this mRNA and not an alteration of its half-life. PGK mRNA synthesis is therefore one target of a response mechanism to thermal stress. Synthesis of PGK enzyme in glucose-grown cultures is efficient after mild (25 degrees C to 38 degrees C) or severe (25 degrees C to 42 degrees C) heat-shocks. Following the severe shock, the synthesis of most proteins is abruptly terminated, but synthesis of PGK and a few other glycolytic enzymes continues at levels comparable to the levels of synthesis of most of those proteins dramatically induced by heat (heat-shock proteins). Cells that overproduce PGK due to the presence of multiple copies of the PGK gene on a high-copy-number plasmid continue their overproduction of this enzyme during severe thermal stress. Therefore PGK mRNA is both elevated in level in response to heat-shock and translated efficiently at supra-optimal temperatures.  相似文献   

13.
To effectively achieve tight regulation and high-level expression of cloned genes, a novel expression plasmid has been developed to contain the promoter and allow the plasmid copy number to be controlled by heat. The feasibility of the plasmid was tested by overproducing the pck gene product (Pck), a protein responsible for cell growth on gluconeogenic carbons and with potential toxicity. By fusing the pck gene with the promoter on the plasmid, the Escherichia coli strain harboring the composite vector was shown to produce various amounts of Pck in response to different degrees of heat shock. With the use of a 30 degrees -->41 degrees C stepwise upshift, the shake-flask culture of recombinant cells enabled production of maximal Pck in soluble form accounting for 20% of total cell protein. In sharp contrast, Pck production was undetectable in the uninduced cell, and this was further confirmed by the failed growth of strain JCL1305, defective in the essential genes for gluconeogenesis, carrying the composite vector on succinate at 30 degrees C. By exploiting the fed-batch fermentation approach, the recombinant cell batch initially kept at 30 degrees C in a lab-scale fermentor was exposed to 41 degrees C for 2 h at the batch fermentation stage, followed by a reduction in temperature to 37 degrees C throughout the remainder of the culturing process. Consequently, this resulted in Pck production equivalent to 15% of total cell protein. The total Pck yield thus calculated was amplified 1880-fold over that obtained at the shake-flask scale. Overall, there is great promise for this expression system due to its tight control, high production, simple thermomodulation, and feasible scale-up of recombinant proteins.  相似文献   

14.
15.
The topological state of DNA in hyperthermophilic archaea appears to correspond to a linking excess in comparison with DNA in mesophilic organisms. Since DNA binding proteins often contribute to the control of DNA topology by affecting DNA geometry in the presence of DNA topoisomerases, we tested whether the histone-like protein Sso7d from the hyperthermophilic archaeon Sulfolobus solfataricus alters DNA conformation. In ligase-mediated supercoiling assays carried out at 37, 60, 70, 80 and 90 degrees C we found that DNA binding of increasing amounts of Sso7d led to a progressive decrease in plasmid linking number (Lk), producing negative supercoiling. Identical unwinding effects were observed when recombinant non-methylated Sso7d was used. For a given Sso7d concentration the DNA unwinding induced was augmented with increasing temperature. However, after correction for the overwinding effect of high temperature on DNA, plasmids ligated at 60-90 degrees C exhibited similar sigma values at the highest Sso7d concentrations assayed. These results suggest that Sso7d may play a compensatory role in vivo by counteracting the overwinding effect of high temperature on DNA. Additionally, Sso7d unwinding could be involved in the topological changes observed during thermal stress (heat and cold shock), playing an analogous role in crenarchaeal cells to that proposed for HU in bacteria.  相似文献   

16.
Mutations of temperature sensitivity in R plasmid pSC101.   总被引:10,自引:5,他引:10       下载免费PDF全文
Temperature-sensitive (Ts) mutant plasmids isolated from tetracycline resistance R plasmid pSC101 were investigated for their segregation kinetics and deoxyribonucleic acid (DNA) replication. The results fit well with the hypothesis that multiple copies of a plasmid are distributed to daughter cells in a random fashion and are thus diluted out when a new round of plasmid DNA replication is blocked. When cells harboring type I mutant plasmids were grown at 43 degrees C in the absence of tetracycline, antibiotic-sensitive cells were segregated after a certain lag time. This lag most likely corresponds to a dilution of plasmids existing prior to the temperature shift. The synthesis of plasmid DNA in cells harboring type I mutant plasmids was almost completely blocked at 43 degrees C. It seems that these plasmids have mutations in the gene(s) necessary for plasmid DNA replication. Cells haboring a type II mutant plasmid exhibited neither segregation due to antibiotic sensitivity nor inhibition of plasmid DNA replication throughout cultivation at high temperature. It is likely that the type II mutant plasmid has a temperature-sensitive mutation in the tetracycline resistance gene. Antibiotic-sensitive cells haboring type III mutant plasmids appeared at high frequency after a certain lag time, and the plasmid DNA synthesis was partially suppressed at the nonpermissive temperature. They exhibited also a pleiotrophic phenotype, such as an increase of drug resistance level at 30 degrees C and a decrease in the number of plasmid genomes in a cell.  相似文献   

17.
We have found previously that, in contrast to the free O initiator protein of λ phage or plasmid rapidly degraded by the Escherichia coli ClpP/ClpX protease, the λO present in the replication complex (RC) is protected from proteolysis. However, in cells growing in a complete medium, a temperature shift from 30 to 43°C resulted in the decay of the λO fraction, which indicated disassembly of RC. This process occurred due to heat shock induction of the groE operon, coding for molecular chaperones of the Hsp60 system. Here we demonstrate that an increase in the cellular concentration of GroEL and GroES proteins is not in itself sufficient to cause RC disassembly. Another requirement is a DNA gyrase-mediated negative resupercoiling of λ plasmid DNA, which counteracts DNA relaxation and starts to dominate 10 min after the temperature upshift. We presume that RC dissociates from λ DNA during the negative resupercoiling, becoming susceptible to the subsequent action of GroEL/S and ClpP/ClpX proteins. In contrast to λcro+, in λcro plasmid-harboring cells, the RC reveals heat shock resistance. After temperature upshift of the λcrots plasmid-harboring cells, a Cro repressor-independent control of λ DNA replication and heat shock resistance of RC are established before the period of DNA gyrase-mediated negative supercoiling. We suggest that the tight binding of RC to λ DNA is due to interaction of RC with other DNA-bound proteins, and is related to the molecular basis of the λcro plasmid replication control.  相似文献   

18.
19.
One spontaneous and four N-methyl-N'-nitro-N-nitrosoguanidine-induced revertants of a mouse FM3A mutant, tsTF20, which has heat-labile DNA polymerase alpha activity and cannot grow at 39 degrees C, were isolated and characterized with respect to the thermolability of their DNA polymerase alpha activity, the intracellular level of enzyme activity, growth rate, cell cycle progression, and frequency of initiation of DNA replication at the origin of replicons. DNA polymerase alpha activity in the extracts from the revertant cells showed partial recovery of heat stability. The intracellular level of enzyme activity of the revertant cells was lower than that of wild-type cells even at 33 degrees C. The level of enzyme activity in the revertant cells decreased considerably after a temperature upshift to 39 degrees C, but the DNA synthesizing ability of these cells did not decrease as much as the level of enzyme activity. The growth rates of the wild-type and revertant lines were almost the same at 33 degrees C. At 39 degrees C, the rate for the wild-type increased considerably compared to that at 33 degrees C, while little difference in the growth rates of the revertant lines was observed at the two temperatures. Therefore, the doubling times of the revertant cells were relatively increased compared to those of wild-type cells cultured at the restrictive temperature. Flow microfluorometric analysis and cell cycle analysis to measure labeled mitosis revealed that the increase in the doubling time was due mainly to the increase in the duration of the S phase. Analysis of the center-to-center distance between replicons by DNA fiber autoradiography indicated that the frequency of replicon initiation per unit length DNA at a given time was reduced in the revertant cells growing at 39 degrees C.  相似文献   

20.
We have constructed a high-copy-number plasmid carrying an allele of the supD gene (supD43,74). The plasmid conferred temperature-sensitive suppression of amber mutations. Strains carrying the plasmid exhibited 50 to 60% suppression at 30 degrees C but little or no suppression at 42 degrees C. After a temperature shift from 30 to 42 degrees C the efficiency of suppression decreased gradually over a 60- to 90-min period before reaching the 42 degrees C steady-state level of suppression.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号