首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It is postulated that the burst of oxygen consumption and H2O2 formation following phagocytosis by polymorphonuclear leukocytes is due to the action of an oxidase located in the plasma membrane. The cyanide-resistant oxygen consumption of resting polymorphonuclear leukocytes was also found to be stimulated by 2,4-dichlorophenol with H2O2 being the sole product formed. NADH and NADPH added to the leukocytes greatly enhanced the oxygen consumption and were oxidized in the process without penetrating the leukocytes. Mn2+ stimulated this oxidase activity. The apparent Km values for added NADH and NADPH were 50 and 40 μm, respectively, with a V of 300 nmol/mg protein/min. A stoichiometry of 1 mol H2O2 formed per mol of NAD(P)H was found. Whilst the oxidase is similar to the oxidase properties of a peroxidase, myeloperoxidase is not responsible for the activity.  相似文献   

2.
Superoxide dismutase was found to partially inhibit both chemiluminescence and nitroblue tetrazolium (NBT) reduction from intact human polymorphonuclear leukocytes. This capacity to reduce NBT was lost when the polymorphonuclear leukocytes were sonicated, but could be regained if exogenous NADPH (or NADH) was added to the system. Superoxide dismutase was found to inhibit this NADPH- and NADH-dependent NBT reduction. A mechanism is proposed that relates superoxide anion generation to the univalent reduction of O2 by the activated NADPH (and NADH) oxidase. The relationship of superoxide anion production to NBT reduction, singlet molecular oxygen generation, and chemiluminescence is discussed.  相似文献   

3.
Cell-free extracts of a streptomycin-bleached strain of Euglena gracilis var. bacillaris have been examined for enzyme systems primarily responsible for the oxidation of reduced pyridine nucelotides. NADH lipoyl dehydrogenase, NADH and NADPH oxidase, NADH and NADPH diaphorase, and NADH and NADPH cytochrome c reductase have been demonstrated. The NADPH-linked enzymes had lower activity rates and were less sensitive to N-ethyl maleimide and p-hydroxymercuribenzoate than their NADH-linked counterparts. NADH cytochrome c reductase was the most sensitive to antimycin A. Michaelis-Menten constants (Km) determined were as follows: NADH diaphorase, 350 muM; NADPH oxidase 150 muM ; NADH lipoyl dehydrogenase, 0.35 muM. Enzyme activities after storage at -5 C indicate that the diaphorases are less labile than the other tested enzymes, and the differential activities of the NADH and NADPH linked enzymes suggest that functionally they may have different roles.  相似文献   

4.
It is postulated that the increase in H2O2 formation following phagocytosis in guinea pig polymorphonuclear leukocytes is due to the activation of a plasma-membrane-located NAD(P)H oxidase. The cyanide-resistant oxidase activity of intact leukocytes was markedly stimulated when the leukocytes were suspended in a hypotonic medium. Hydrogen peroxide was the principal product of the oxidase reaction. Evidence that the oxidase activity was located on the outside surface of the plasma membrane was the finding that added NAD(P)H was rapidly oxidized and the plasma membrane was impermeable to NADH or NADPH. Further evidence was the marked inhibition of the oxidase by p-CMB which also did not penetrate the plasma membrane. The oxidase was also inhibited on disruption of the plasma membrane. In addition, the enhanced oxidase activity under hypotonic conditions decreased to normal values when the medium was made isotonic and suggested that a reversible conformational change in the plasma membrane was responsible for the activation of oxidase activities.  相似文献   

5.
The cyanide-insensitive NAD(P)H oxidase activities have been measured in particulate fractions isolated from resting or zymosan-stimulated polymorphonuclear leukocytes. The particulate fraction was primarily composed of granules. The activities were measured both in the presence and absence of Mn++. It was found, in all experiments, that hydroxyl radical scavengers such as Tris, benzoate or mannitol, were powerful inhibitors of the NAD(P)H oxidase activities. This was taken as evidence for the involvement of hydroxyl radical as an intermediate in the aerobic oxidation of both NADH and NADPH. Possibles sources of hydroxyl radical are suggested, but none of them is demonstrated.  相似文献   

6.
Treatment of submitochondrial particles (ETP) with trypsin at 0 degrees destroyed NADPH leads to NAD (or 3-acetylpyridine adenine dinucleotide, AcPyAD) transhydrogenase activity. NADH oxidase activity was unaffected; NADPH oxidase and NADH leads to AcPyAD transhydrogenase activities were diminished by less than 10%. When ETP was incubated with trypsin at 30 degrees, NADPH leads to NAD transhydrogenase activity was rapidly lost, NADPH oxidase activity was slowly destroyed, but NADH oxidase activity remained intact. The reduction pattern by NADPH, NADPH + NAD, and NADH of chromophores absorbing at 475 minus 510 nm (flavin and iron-sulfur centers) in complex I (NADH-ubiquinone reductase) or ETP treated with trypsin at 0 degrees also indicated specific destruction of transhydrogenase activity. The sensitivity of the NADPH leads to NAD transhydrogenase reaction to trypsin suggested the involvement of susceptible arginyl residues in the enzyme. Arginyl residues are considered to be positively charged binding sites for anionic substrates and ligands in many enzymes. Treatment of ETP with the specific arginine-binding reagent, butanedione, inhibited transhydrogenation from NADPH leads to NAD (or AcPyAD). It had no effect on NADH oxidation, and inhibited NADPH oxidation and NADH leads to AcPyAD transhydrogenation by only 10 to 15% even after 30 to 60 min incubation of ETP with butanedione. The inhibition of NADPH leads to NAD transhydrogenation was diminished considerably when butanedione was added to ETP in the presence of NAD or NADP. When both NAD and NADP were present, the butanedione effect was completely abolished, thus suggesting the possible presence of arginyl residues at the nucleotide binding site of the NADPH leads to NAD transhydrogenase enzyme. Under conditions that transhydrogenation from NADPH to NAD was completely inhibited by trypsin or butanedione, NADPH oxidation rate was larger than or equal to 220 nmol min-1 mg-1 ETP protein at pH 6.0 and 30 degrees. The above results establish that in the respiratory chain of beef-heart mitochondria NADH oxidation, NADPH oxidation, and NADPH leads to NAD transhydrogenation are independent reactions.  相似文献   

7.
NADPH oxidase activity, in addition to NADH oxidase activity, has been shown to be present in the respiratory chain of Corynebacterium glutamicum. In this study, we tried to purify NADPH oxidase and NADH dehydrogenase activities from the membranes of C. glutamicum. Both the enzyme activities were simultaneously purified in the same fraction, and the purified enzyme was shown to be a single polypeptide of 55 kDa. The N-terminal sequence of the enzyme was consistent with the sequence deduced from the NADH dehydrogenase gene of C. glutamicum, which has been sequenced and shown to be a homolog of NADH dehydrogenase II. In addition to high NADH-ubiquinone-1 oxidoreductase activity at neutral pH, the purified enzyme showed relatively high NADPH oxidase and NADPH-ubiquinone-1 oxidoreductase activities at acidic pH. Thus, NADH dehydrogenase of C. glutamicum was shown to be rather unique in having a relatively high reactivity toward NADPH.  相似文献   

8.
SYNOPSIS. Cell-free extracts of a streptomycin-bleached strain of Euglena gracilis var. bacillaris have been examined for enzyme systems primarily responsible for the oxidation of reduced pyridine nucelotides. NADH lipoyl dehydrogenase, NADH and NADPH oxidase, NADH and NADPH diaphorase, and NADH and NADPH cytochrome c reductase have been demonstrated. The NADPH-linked enzymes had lower activity rates and were less sensitive to N-ethyl maleimide and p-hydroxymercuribenzoate than their NADH-linked counterparts. NADH cytochrome c reductase was the most sensitive to antimycin A. Michaelis-Menten constants (Km) determined were as follows: NADH diaphorase, 350 μM; NADPH diaphorase, 200 μM; NADH cytochrome c reductase, 13 μM; NADPH cytochrome c reductase, 9 μM; NADH oxidase, 100 μM; NADPH oxidase 150 μM; NADH lipoyl dehydrogenase, 0.35 μM. Enzyme activities after storage at –5 C indicate that the diaphorases are less labile than the other tested enzymes, and the differential activities of the NADH and NADPH linked enzymes suggest that functionally they may have different roles.  相似文献   

9.
1. Oxidation of NADPH by various acceptors catalyzed by submitochondrial particles and a partially purified NADH dehydrogenase from beef heart was investigated. Submitochondrial particles devoid of nicotinamide nucleotide transhydrogenase activity catalyze an oxidation of NADPH by oxygen. The partially purified NADH dehydrogenase prepared from these particles catalyzes an oxidation of NADPH by acetylpyridine-NAD. In both cases the rates of oxidation are about two orders of magnitude lower than those obtained with NADH as electron donor. 2. The kinetic characteristics of the NADPH oxidase reaction and reduction of acetylpyridine-NAD by NADPH are similar with regard to pH dependences and affinities for NADPH, indicating that both reactions involve the same binding site for NADPH. The binding of NADPH to this site appears to be rate limiting for the overall reactions. 3. At redox equilibrium NADPH and NADH reduce FMN and iron-sulphur center 1 of NADH dehydrogenase to the same extents. The rate of reduction of FMN by NADPH is at least two orders of magnitude lower than with NADH. 4. It is concluded that NADPH is a substrate of NADH dehydrogenase and that the nicotinamide nucleotide is oxidized by submitochondrial particles via the NADH--binding site of the enzyme.  相似文献   

10.
The reaction process of adrenodoxin reductase with NADPH and NADH were investigated. The appearance of new intermediate with a broad absorption band at around 520 nm has been detected by rapid-scan stopped-flow spectrophotometry. Although the formation of this intermediate is more rapid with NADPH than with NADH, the rates of the subsequent decay to the fully reduced state are almost identical (Kobs values were 20.5 and 16.0s-1). These results indicate that the new intermediate is the complex formed between the oxidized enzyme and reduced pyridine nucleotide (enzyme-substrate complex), and that subsequent decay of the intermidiate is caused by a two-electron transfer process from the reduced pyridine nucleotide to the enzyme flavin. On the other hand, spectral and kinetic properties in the steady state of the reoxidation reaction of the enzyme reduced with NADPH and NADH were somewhat different. The rate of reoxidation of the enzyme under aerobic conditions from the reduced state to the oxidized state was 6.5 times faster when a 10-fold molar excess of NADH was used than when NADPH of the same concentration was used. This result is consistent with the fact that the NADH-dependent oxidase activity was 6.4 times greater than that dependent on NADPH. During reoxidation of the reduced enzyme under aerobic conditions in the presence of an excess of NADPH or NADH, the EPR spectra indicated the formation of the flavin semiquinone radical species. Similarly, the formation of semiquinone was observed in the absorption spectrum with either NADPH or NADH under the same conditions as in the EPR measurement. The intensity of the semiquinone signal on EPR was considerably smaller with NADH than with NADPH. These results suggest that NADP+ complex with the enzyme semiquinone protects the radical from oxidation by oxygen to a greater extent than NAD+, and consequently the semiquinone is easier to detect with NADPH than with NADH.  相似文献   

11.
delta1-Pyrroline-5-carboxylate (PCA) reductase [L-proline:NAD(P)+5-oxidoreductase, EC 1.5.1.2] has been purified over 200-fold from Escherichia coli K-12. It has a molecular weight of approximately 320,000. PCA reductase mediates the pyridine nucleotide-linked reduction of PCA to proline but not the reverse reaction (even at high substrate concentrations). The partially purified preparation is free of competing pyridine nucleotide oxidase, PCA dehydrogenase, and proline oxidase activities. The Michaelis constant (Km) values for the substrate, PCA, with reduced nicotinamide adenine dinucleotide phosphate (NADPH) or NADH as cofactor are 0.15 and 0.14 mM, respectively. The Km values determined for NADPH and NADH are 0.03 and 0.23 mM, respectively. Although either NADPH or NADH can function as cofactor, the activity observed with NADPH is severalfold greater. PCA reductase is not repressed by growth in the presence of proline, but it is inhibited by the reaction end products, proline and NADP.  相似文献   

12.
1. The activities of pyruvate:methyl viologen oxidoreductase (EC 1.2.7.1), hydrogenase (EC 1.18.99.1), NADH:methyl viologen oxidoreductase (EC 1.6.99.3), NADPH:methyl viologen oxidoreductase (EC 1.6.99.1), NADH oxidase (EC 1.6.99.3) and NADPH oxidase (EC 1.6.99.1) were determined for Trichomonas vaginalis, Tritrichomonas foetus and Trichomitus batrachorum. 2. The three trichomonad species were found to differ significantly, especially with respect to NADH oxidase and NADH:methyl viologen oxidoreductase activities. 3. The species differences in ferredoxin-linked and oxygen-metabolising enzymes may be related to the ways in which the trichomonads are adapted for growth in their respective hosts.  相似文献   

13.
Reactive oxygen species have been implicated as possible second messengers in mitogenic signal transduction. We demonstrate that in normal fibroblasts the treatment with the two inhibitors of phagocytic NADH/NADPH oxidase prevents tyrosine phosphorylation of platelet-derived growth factor receptor upon the exposure of serum-deprived cells to growth factors. Furthermore, the inhibition of NADH/NADPH oxidase abolishes ERKs activation and p21(waf1) accumulation that occurs when cells are exposed to growth factors. Finally, NADH/NADPH inhibitors prevent the p66(Shc) Ser-phosphorylation induced by serum and by phorbol 12-myristate-13-acetate, which suggests that the direct target(s) of reactive oxygen species is(are) located upstream from the machinery connecting growth factor receptors to Ras.  相似文献   

14.
Summary The effects of several known inhibitors and activators of peroxidase-catalyzed reactions have been studied on the NADPH oxidase activity of granules isolated from polymorphonuclear leukocytes at rest or during phagocytosis. Redogenic substances, such as ascorbate or hydroquinone, and superoxide dismutase, which are known to inhibit peroxidase-catalyzed reactions, also inhibited the NADPH oxidase activity of granules. Oxidogenic substances, such as guaiacol or resorcinol, and manganese, which are known to stimulate peroxidase-catalyzed reactions, also activated the NADPH oxidase activity of granules. Cyanide, an inhibitor of peroxidase-catalyzed reactions, inhibited the NADPH oxidase activity of granules isolated from resting leukocytes but only slightly affected that of granules isolated from phagocytosing cells, as previously reported. A list of the properties of the NADPH oxidase activity of granules and of peroxidase oxidase activity is given. The arguments in favor of and those against a possible identity of the two activities are discussed.This paper is publication 9 of a series entitled: Enzymatic basis of the metabolic stimulation in phagocytosing leukocytes. The other publications of the series are those quoted in the Bibliography section as numbers 6, 8, 9, 11, 14, 16, 17, 36.  相似文献   

15.
Ancylostoma ceylanicum, the hookworm parasite of cat, dog and man, was found to contain NADH and/or NADPH oxidase as well as fumarate reductase activities. Both the enzyme systems were predominantly located in the membranes of mitochondrial-rich preparations. The membranes also exhibited the presence of a reduced pyridine nucleotide transhydrogenase activity which transferred hydrogen from NADPH to NAD. Amongst respiratory inhibitors, rotenone (Site I inhibitor) markedly depressed both NADH oxidase and fumarate reductase while others, namely antimycin-A, KCN and azide, had a lesser effect.  相似文献   

16.
Potato tuber mitochondria oxidized exogenous NADH and exogenous NADPH at similar rates; the electron transfer inhibitor rotenone did not inhibit the oxidation of either substrate. Submitochondrial particles, prepared from potato tuber mitochondria, exhibited a greater capacity to oxidize NADH than NADPH; rotenone inhibited the oxidation of NADH by 29% and the oxidation of NADPH by 16%. The oxidation of both NADH and NADPH by potato mitochondria exhibited pH optima of 6.8, and although substantial NADH oxidase activity was observed at pH 8.0, little NADPH oxidase activity was detected at that pH. The oxidation of NADPH by the mitochondria was more sensitive to inhibition by EDTA than was the oxidation of NADH.  相似文献   

17.
(1) The distributions of four oxidative enzymes were studied in crude brain fractions. (2) Freeze-thaw cycle treatment and frozen storage of homogenate fractions gave apparent enhancement of cytochrome oxidase and NADH cytochrome c reductase activities. (3) Deoxycholate released cytochrome oxidase and NADH cytochrome c reductase activities from low-speed precipitates. The NADH diaphorase was enhanced to a small degree while NADPH cytochrome c reductase was not affected by deoxycholate. (4) Distilled water coupled with a single homogenization released trapped soluble enzymes and mitochondria and gave nearly maximal cytochrome oxidase activity as judged by deoxycholate treatment. The total distilled water activity of NADH cytochrome c reductase was much less than that of deoxycholate-stimulated fractions. The activities of other enzymes were not markedly affected by distilled water although their distribution was changed.  相似文献   

18.
Catechol and catecholamines have been assayed upon the microsomal NADPH and NADH oxidase activities. Epinephrine shows a catalytic effect on the NADPH oxidation characterized by a small lag. The two to threefold increase in rate can be suppressed by Superoxide dismutase if the enzyme is added before the reaction begins. The catalytic effect is ascribed to a quinone formed by two electron oxidation of epinephrine by the Superoxide ion. The quinone, which is not catalytically active in the NADH chain, appears to mediate electrons between the NADPH-cytochrome c reductase and oxygen. The four electron oxidation product adrenochrome is also active upon the NADPH chain but inactive upon the NADH chain.Epinephrine did not change the menadione-stimulated NADPH oxidase activity. Presumably, during this and the NADH oxidase activities, two electrons are simultaneously transferred to the oxygen molecule.Catechol and catecholamines doubled the rate of autoxidation of NADH in the presence of catalytic amounts of NADH-cytochrome b5 reductase and cytochrome b5, a result which suggests Superoxide ion formation in the autoxidation of the cytochrome.Epinephrine does not act upon the desaturation of endogenous substrate or upon endogenous lipid peroxidation.  相似文献   

19.
The nicotinamide adenine dinucleotide (NADH)/nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and the xanthine oxidase (XOD) systems generate reactive oxygen species (ROS). In the present study, to characterize the difference between the two systems, the kinetics of ROS generated by both the NADH oxidase and XOD systems were analysed by an electron spin resonance (ESR) spin trapping method using 5,5-dimethyl-1-pyrroline-N-oxide (DMPO), 5-(diethoxyphosphoryl)-5-methyl-pyrroline N-oxide (DEPMPO) and 5-(2,2-dimethyl-1,3-propoxy cyclophosphoryl)-5-methyl-1-pyrroline N-oxide (CYPMPO). As a result, two major differences in ROS kinetics were found between the two systems: (i) the kinetics of (?)OH and (ii) the kinetics of hydrogen peroxide. In the NADH oxidase system, the interaction of hydrogen peroxide with each component of the enzyme system (NADPH, NADH oxidase and FAD) was found to generate (?)OH. In contrast, (?)OH generation was found to be independent of hydrogen peroxide in the XOD system. In addition, the hydrogen peroxide level in the NADPH-NADH oxidase system was much lower than measured in the XOD system. This lower level of free hydrogen peroxide is most likely due to the interaction between hydrogen peroxide and NADPH, because the hydrogen peroxide level was reduced by ~90% in the presence of NADPH.  相似文献   

20.
1. Paraquat and diquat produce only a slight increase in the oxygen uptake of rat liver mitochondria, and it is likely that they do not penetrate the mitochondrial membrane. 2. In mitochondrial fragments inhibited by antimycin A or by Amytal, both substances stimulate oxygen uptake with NADH or beta-hydroxybutyrate as substrate but not with succinate. The NADH dehydrogenase of the respiratory chain appears to be involved, at a site only partially inhibited by Amytal. 3. An NADPH oxidase activity is stimulated in rat liver microsomes by diquat, and to a smaller extent by paraquat; diquat also causes an NADH oxidase activity to develop. The effect is not inhibited by carbon monoxide or p-chloromercuribenzoate, and it is probable that a flavoprotein is involved by a mechanism not requiring thiol groups. 4. One molecule of oxygen can oxidize two molecules of NADPH in the stimulated microsomal system, the hydrogen peroxide produced being broken down by a catalase activity in the microsomes. 5. Diquat can stimulate NADH oxidase and NADPH oxidase activity in the postmicrosomal soluble fraction; the enzyme involved may be DT-diaphorase. 6. The mechanism of these reactions and their significance in relation to the toxicity of the dipyridilium compounds are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号