首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The work deals with the effect of carbon sources, presence of protein synthesis inhibitors (cycloheximide and chloramphenicol) and dehydration regime on the enzyme activity of the dried yeast Saccharomyces cerevisiae. The yeast grown on molasses and dried by aeration demonstrated a notable increase of the NADH-dehydrogenase and succinate dehydrogenase activities as compared with the analogously treated yeast grown on ethanol. The latter showed a notable rise only in the activity of NADH-dehydrogenase during slow drying. Addition of protein synthesis inhibitors into the cultivation medium caused no decrease of activities of the above mentioned enzymes of the dried yeasts in any variant under study.  相似文献   

2.
Summary Fermentation of starch based industrial media was tested with yeast fusion products previously described, from a Baker's yeastSaccharomyces cerevisiae and Saccharomyces diastaticus and from a highly flocculentSaccharomyces cerevisiae andSaccharomyces diastaticus. The (somatic) fusion products were capable to produce more ethanol than parental strains after 96 h of batch fermentation. The aim of this work was to reduce the amount of enzyme used in saccharification by using good fermenting amylolytic yeast strains.  相似文献   

3.
The effect of dehydration on proteolysis and activity of proteases A, B and C in the cells of baker's yeast Saccharomyces cerevisiae was investigated. It can be concluded, that under investigated conditions of yeast Saccharomyces cerevisiae drying a decrease of proteases activity takes place. In cells a limited proteolysis takes place which is indicated by an increase in amino nitrogen content and a decrease of tryptophane synthase activity. Adding the protease inhibitor to yeast suspension prevents decrease of tryptophane synthase activity upon dehydration.  相似文献   

4.
Food yeast.Saccharomyces cerevisiae, is a safe organism with a long history of use for the production of biomass rich in high quality proteins and vitamins. AmA1, a seed storage albumin fromAmaranthus hypochondriacus, has a well-balanced amino acid composition and high levels of essential amino acids and offers the possibility of further improving food and animal feed additives. In order to find an effective means of expressingAmA1 in yeast, the gene was cloned into an episomal shuttle vector. Four different promoters were tested: the glyceraldehyde-3-phosphate dehydrogenase promoter, galactose dehydrogenase 10 promoter, alcohol dehydrogenase II promoter, and a hybrid ADH2-GPD promoter. The recombinantAmA1 genes were then introduced into the yeastSaccharomyces cerevisiae 2805. Northern and Western blot analyses of the yeast under appropriate conditions revealed thatAmA1 was expressed by all four promoters at varying levels. An enzyme-linked immunosorbent assay demonstrated that the amount of AmA1 protein in the recombinant yeast was 1.3–4.3% of the total soluble proteins. The highest expression level was obtained from the hybrid ADH2-GPD promoter.  相似文献   

5.
In the yeastSaccharomyces cerevisiae thePEP4 gene product, protease A, is responsible for activating all soluble vacuolar (lysosomal) enzymes. These vacuolar enzymes remain inactive inpep4 mutants. Vacuolar trehalase activity was diminished in such mutants as well. This suggests that the vacuolar (lysosomal) trehalase is processed in a manner similar to other vacuolar enzymes inS. cerevisiae.  相似文献   

6.
Calcium is an essential second messenger in yeast metabolism and physiology. So far, only four genes coding for calcium translocating ATPases had been discovered in yeast. The recent completion of the yeastSaccharomyces cerevisiae genome allowed us to identify six new putative Ca++-ATPases encoding genes. Protein sequence homology analysis and phylogenetic classification of all putative Ca++-ATPase gene products from the yeastsSaccharomyces cerevisiae andSchizosacchraomyces pombe reveal three clusters of homologous proteins. Two of them comprises seven proteins which might belong to a new class of P-type ATPases of unknown subcellular location and of unknown physiological function.  相似文献   

7.
Summary Baker's yeast (Saccharomyces cerevisiae) was cultivated under different intensities of aeration on glucose and on ethanol. Seventeen enzymes of the Embden-Meyerhof pathway and the TCA cycle or related reactions were then assayed by starch gel electrophoresis. There were both qualitative and quantitative differences in many enzymes, most notably in glyceraldehyde-3-phosphate dehydrogenase, alcohol dehydrogenase, isocitrate dehydrogenase, malate dehydrogenase, and fumarase. Enzyme electrophoresis seems to offer a promising method for rapidly obtaining information about many yeast enzymes from a large number of samples.  相似文献   

8.
Some enzymatic activities of the glycolytic and hexose monophosphate pathways of Candida parapsilosis, a yeast lacking alcohol dehydrogenase but able to grow on high glucose concentrations, were compared to those of Saccharomyces cerevisiae. Cells were grown either on 8% glucose or on 2% glycerol and activities measured under optimal conditions. Results were as follows: glycolytic enzymes of C. parapsilosis, except glyceraldehyde 3-phosphate dehydrogenase, exhibited an activity weaker than that of S. cerevisiae, especially when yeasts were grown on glycerol. Fructose-1,6 bisphosphatase, an enzyme implicated in gluconeogenesis and in the hexose monophosphate pathway, and known to be very sensitive to catabolite repression in S. cerevisiae, was always active in C. parapsilosis even when cells were grown on 8% glucose. However, the allosteric properties towards AMP and fructose-2,6-bisphosphate were the same in both strains. Glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, two other enzymes of the hexose monophosphate pathway, exhibited a higher activity in C. parapsilosis than in S. cerevisiae. Regulation of two important control points of the glycolytic flux, phosphofructokinase and pyruvate kinase, was investigated. In C. parapsilosis phosphofructokinase was poorly sensitive to ATP but fructose-2,60bisphosphate completely relieved the light ATP inhibition. Pyruvate kinase did not require fructose-1,6-bisphosphate for its activity, and by this way, did not regulate the glycolytic flux. The high glyceraldehyde-3-P-dehydrogenase activity, together with the relative insensitivity of fructose-1,6-bisphosphatase to catabolite repression and the high glucose-6-phosphate dehydrogenase and 6-phosphogluconate dehydrogenase activities suggested that in C. parapsilosis, as in other Candida species and opposite to S. cerevisiae, the glucose degradation mainly occurred through the hexose monophosphate pathway, under both growth conditions used.Abbreviations C. parapsilosis Candida parapsilosis - S. cerevisiae Saccharomyces cerevisiae - C. utilis Candida utilis  相似文献   

9.
The influence of peptidyl-tRNA on the dissociation of yeast 80 S ribosomes into subunits was studied. For this purpose temperature-sensitive (ts) suppressor strain of yeastSaccharomyces cerevisiae carrying a defect in peptide chain termination was used. It was found that peptidyl-tRNA did not influence the dissociation of ribosomes either at high salt concentration or in the presence of dissociation factor (DF) from yeast. After dissociation of yeast ribosomes in 0.5 M KCl, peptidyl-tRNA remains bound to the 60 S subunit. Some characteristics of the termination process and release of nascent polypeptides from yeast ribosomes are discussed.  相似文献   

10.
11.
The yeast vacuolar proton-translocating ATPase is a member of the third class of H+-pumping ATPase. A family of this type of H+-ATPase is now known to be ubiquitously distributed in eukaryotic vacuo-lysosomal organelles and archaebacteria. NineVMA genes that are indispensable for expression of the enzyme activity have been cloned and characterized in the yeastSaccharomyces cerevisiae. This review summarizes currently available information on theVMA genes and cell biological functions of theVMA gene products.  相似文献   

12.

Background  

The use of a multistarter fermentation process with Saccharomyces cerevisiae and non-Saccharomyces wine yeasts has been proposed to simulate natural must fermentation and to confer greater complexity and specificity to wine. In this context, the combined use of S. cerevisiae and immobilized Starmerella bombicola cells (formerly Candida stellata) was assayed to enhance glycerol concentration, reduce ethanol content and to improve the analytical composition of wine. In order to investigate yeast metabolic interaction during controlled mixed fermentation and to evaluate the influence of S. bombicola on S. cerevisiae, the gene expression and enzymatic activity of two key enzymes of the alcoholic fermentation pathway such as pyruvate decarboxylase (Pdc1) and alcohol dehydrogenase (Adh1) were studied.  相似文献   

13.
Data on the structure and function of the yeastSaccharomyces cerevisiae genome are summarized. Hypotheses of the evolution of the yeast genome are considered. The methods used to establish the function of earlier uncharacterized genes, to study the expression of the entire genome, and to analyze the yeast proteome are described along with the first results of this work. The prospects of further development of yeast genetics in the postgenomic era are discussed.  相似文献   

14.
Adaptive mutations occur in nongrowing populations of cells to overcome strong, nonlethal selection conditions. Several models have been proposed for the molecular mechanism(s) for this phenomenon inEscherichia coli, but the mechanisms involved in adaptive mutagenesis in the yeastSaccharomyces cerevisiae are largely unknown. We present here a comparison of the mutational spectra of spontaneous and adaptive frameshift reversion events in yeast. In contrast to results fromE. coli, we find that the mutational spectrum of adaptive mutations inS. cerevisiae is not similar to that seen in mismatch repair defective cells, but rather resembles the spontaneous mutational events that occur during normal growth.  相似文献   

15.
The ethanol productivity of superoxide dismutase (SOD)-deficient mutants ofSaccharomyces cerevisiae was examined under the oxidative stress by Paraquat. It was observed that MnSOD-deficient mutant ofS. cerevisiae had higher ethanol productivity than wild type or CuZnSOD-deficient yeast both in aerobic and in anaerobic culture condition. Pyruvate dehydrogenase activity decreased by 35% and alcohol dehydrogenase activity increased by 32% were observed in MnSOD-deficient yeast grown aerobically. When generating oxygen radicals by Paraquat, the ethanol productivity was increased by 40% in CuZnSOD-deficient or wild strain, resulting from increased activity of alcohol dehydrogenase and decreased activity of pyruvate dehydrogenase. However, the addition of ascorbic acid with Paraquat returned the enzyme activities at the level of control. These results imply that SOD-deficiency in yeast strains may cause the metabolic flux to shift into anaerobic ethanol fermentation in order to avoid their oxidative damages by Paraquat.  相似文献   

16.
Insects are a largely unexploited resource in prospecting for novel cellulolytic enzymes to improve the production of ethanol fuel from lignocellulosic biomass. The cost of lignocellulosic ethanol production is expected to decrease by the combination of cellulose degradation (saccharification) and fermentation of the resulting glucose to ethanol in a single process, catalyzed by the yeast Saccharomyces cerevisiae transformed to express efficient cellulases. While S. cerevisiae is an established heterologous expression system, there are no available data on the functional expression of insect cellulolytic enzymes for this species. To address this knowledge gap, S. cerevisiae was transformed to express the full‐length cDNA encoding an endoglucanase from the red flour beetle, Tribolium castaneum (TcEG1), and evaluated the activity of the transgenic product (rTcEG1). Expression of the TcEG1 cDNA in S. cerevisiae was under control of the strong glyceraldehyde‐3 phosphate dehydrogenase promoter. Cultured transformed yeast secreted rTcEG1 protein as a functional β‐1,4‐endoglucanase, which allowed transformants to survive on selective media containing cellulose as the only available carbon source. Evaluation of substrate specificity for secreted rTcEG1 demonstrated endoglucanase activity, although some activity was also detected against complex cellulose substrates. Potentially relevant to uses in biofuel production rTcEG1 activity increased with pH conditions, with the highest activity detected at pH 12. Our results demonstrate the potential for functional production of an insect cellulase in S. cerevisiae and confirm the stability of rTcEG1 activity in strong alkaline environments.  相似文献   

17.
Effects ofBacillus intermedius ribonuclease on the physiological, biochemical, and consumer properties of baker’s yeastSaccharomyces cerevisiae were studied. This enzyme improved the yeast raising strength and increased the cell tolerance to various adverse factors. The antistress effect of RNase correlated ith an earlier start of the stationary growth phase and increased trehalose pool.  相似文献   

18.
Synopsis The localization of acid phosphatase in the yeastSaccharomyces cerevisiae at different growth phases has been studied. It was shown to be crucial for authentic location of acid phosphatase that the cytochemical reaction be performed on whole cells. Dimethylsulphoxide was used to alleviate the effects of fixation of the yeast cells with glutaraldehyde; the sulphoxide did not affect the distribution of acid phosphatase in the cells. It has been established that in exponentially-growing cells acid phosphatase is localized mostly in small vacuolar compartments. In mature cells, the bulk of acid phosphatase is found in the central vacuole, although a significant amount of the enzyme is detectable in the plasma membrane and the adjacent vesicles.  相似文献   

19.
The coenzyme-independent dihydroorotate dehydrogenase (EC 1.3.3.1) linking the pyrimidine biosynthetic pathway to the respiratory chain, was ultracytochemically localized by the tetrazolium method in derepressed exponential-phase cultures ofSaccharomyces cerevisiae. Biochemical analysis showed a considerable variation of this enzyme activity in inverse proportion to the aeration of the yeast cultures. The assay also showed that after prefixation of yeast cells with 1% glutaraldehyde at 0°C for 20 min, approximately one-half of the enzyme activity was preserved. The cytochemical reaction mixture contained dihydroorotate (2 mmol/L), thiocarbamyl nitroblue tetrazolium (0.44 mmol/L), phenazine methosulfate (0.16 mmol/L) and KCN (1.7 mmol/L) in Tris-HCl buffer (100 mmol/L) of pH 8.0. The osmicated formazan deposits featured envelopes of mitochondria and of nuclei and were prominent in the mitochondrial inclusions and in the vacuolar membranes. The latter sites of dihydroorotate dehydrogenase activity represent biosynthetic activity in yeast vacuoles, still generally assumed to function as yeast lysosomes and storage organelles. In the light of the generally observed invasions of juvenile yeast vacuoles into mitochondria, the enzymic sites observed in mitochondrial inclusion were considered as evidence of the interactions of yeast vacuoles and mitochondria. Transfer of vacuolar membranes with dihydroorotate dehydrogenase activity into mitochondrial matrix is suggested.  相似文献   

20.
Heterologous protein production in yeast   总被引:5,自引:0,他引:5  
The exploitation of recombinant DNA technology to engineer expression systems for heterologous proteins represented a major task within the field of biotechnology during the last decade. Yeasts attracted the attention of molecular biologists because of properties most favourable for their use as hosts in heterologous protein production. Yeasts follow the general eukaryotic posttranslational modification pattern of expressed polypeptides, exhibit the ability to secrete heterologous proteins and benefit from an established fermentation technology. Aside from the baker's yeastSaccharomyces cerevisiae, an increasing number of alternative non-Saccharomyces yeast species are used as expression systems in basic research and for an industrial application.In the following review a selection from the different yeast systems is described and compared.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号