首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
 During the isolation of mutations in the heat-inducible hsp70-1 gene of Neurospora crassa by RIP (repeat-induced point mutations), several transformants were generated by electroporation of conidia with a plasmid harboring an incomplete copy of this gene. One isolate, designated E-45, containing ectopically integrated hsp70-1 DNA, exhibited a slow growth rate, low-temperature sensitivity, constitutive thermotolerance (without prior heat shock), and high constitutive peroxidase activity. The constitutive form of peroxidase (CP) was distinguishable from the heat-inducible form (HIP) by immunoinactivation employing polyclonal antiserum against the latter enzyme and by electrophoretic resolution in nondenaturing polyacrylamide gels. This enzyme was purified to near homogeneity and some of its properties examined. The relative molecular mass of native CP was in the range of 118–136 kDa, as estimated by gel filtration analysis on size exclusion matrices, whereas SDS-PAGE analysis yielded a size of ∼37 kDa for the polypeptide. Substrate saturation kinetics studies were conducted using ABTS [2,2′-azino-bis (3-ethylbenzthiazole-6-sulfonic acid)] and H2O2 as substrates: K m, V max, and K cat values for H2O2 were ∼22 μM, ∼447 nmol mg−1, and 0.33 s−1, respectively, and those for ABTS were ∼55 μM, ∼453 nmol mg−1, and 0.3 s−1, respectively. Guaiacol was not used as a substrate by this enzyme. CP peroxidase was shown to be a heme-containing enzyme, stable at temperatures up to 58°C. Received: August 5, 2002 / Accepted: January 22, 2003 Acknowledgments This work was supported by an operating grant from the Natural Sciences and Engineering Research Council (NSERC) of Canada (to M.K.). The financial support provided to A. M. in the form of a graduate studentship award by the AHFMR (Alberta Heritage Foundation for Medical Research) and of a graduate teaching assistantship to A. S. by the Department of Biological Sciences, University of Calgary, is gratefully acknowledged. Correspondence to:M. Kapoor  相似文献   

2.
Extracellular secretion of lignin peroxidase from Pycnoporus sanguineus MTCC-137 in the liquid culture growth medium amended with lignin containing natural sources has been shown. The maximum secretion of lignin peroxidase has been found in the presence of saw dust. The enzyme has been purified to homogeneity from the culture filtrate of the fungus using ultrafiltration and anion exchange chromatography on DEAE-cellulose. The purified lignin peroxidase gave a single protein band in sodium dodecylsulphate polyacrylamide gel electrophoresis corresponding to the molecular mass 40 kDa. The K m, k cat and k cat/K m values of the enzyme using veratryl alcohol and H2O2 as the substrate were 61 M, 2.13 s−1, 3.5 × 104 M−1s−1 and 71 M, 2.13 s−1, 3.0 × 104 M−1 s−1 respectively at the optimum pH of 2.5. The temperature optimum of the enzyme was 25°C.  相似文献   

3.
A new laccase gene (cotA) was cloned from Bacillus licheniformis and expressed in Escherichia coli. The recombinant protein CotA was purified and showed spectroscopic properties, typical for blue multi-copper oxidases. The enzyme has a molecular weight of ~65 kDa and demonstrates activity towards canonical laccase substrates 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine (SGZ) and 2,6-dimethoxyphenol (2,6-DMP). Kinetic constants K M and k cat for ABTS were of 6.5 ± 0.2 μM and 83 s−1, for SGZ of 4.3 ± 0.2 μM and 100 s−1, and for 2,6-DMP of 56.7 ± 1.0 μM and 28 s−1. Highest oxidizing activity towards ABTS was obtained at 85°C. However, after 1 h incubation of CotA at 70°C and 80°C, a residual activity of 43% and 8%, respectively, was measured. Furthermore, oxidation of several phenolic acids and one non-phenolic acid by CotA was investigated. CotA failed to oxidize coumaric acid, cinnamic acid, and vanillic acid, while syringic acid was oxidized to 2,6-dimethoxy-1,4-benzoquinone. Additionally, dimerization of sinapic acid, caffeic acid, and ferulic acid by CotA was observed, and highest activity of CotA was found towards sinapic acid.  相似文献   

4.
Dihydroorotase was purified to homogeneity fromPseudomonas putida. The relative molecular mass of the native enzyme was 82 kDa and the enzyme consisted of two identical subunits with a relative molecular mass of 41 kDa. The enzyme only hydrolyzed dihydro-l-orotate and its methyl ester, and the reactions were reversible. The apparentK m andV max values for dihydro-l-orotate hydrolysis (at pH 7.4) were 0.081 mM and 18 μmol min−1 mg−1, respectively; and those forN-carbamoyl-dl-aspartate (at pH 6.0) were 2.2 mM and 68 μmol min−1 mg−1, respectively. The enzyme was inhibited by metal ion chelators and activated by Zn2+. However, excessive Zn2+ was inhibitory. The enzyme was inhibited by sulfhydryl reagents, and competitively inhibited byN-carbamoylamino acids such asN-carbamoylglycine, with aK i value of 2.7 mM. The enzyme was also inhibited noncompetitively by pyrimidine-metabolism intermediates such as dihydrouracil and orotate, with aK i value of 3.4 and 0.75 mM, respectively, suggesting that the enzyme activity is regulated by pyrimidine-metabolism intermediates and that dihydroorotase plays a role in the control of pyrimidine biosynthesis.  相似文献   

5.
A recombinant putative glycoside hydrolase from Caldicellulosiruptor saccharolyticus was purified with a specific activity of 12 U mg−1 by heat treatment and His-Trap affinity chromatography, and identified as a single 56 kDa band upon SDS-PAGE. The native enzyme is a dimer with a molecular mass of 112 kDa as determined by gel filtration. The enzyme exhibited its highest activity when debranched arabinan (1,5-α-l-arabinan) was used as the substrate, demonstrating that the enzyme was an endo-1,5-α-l-arabinanase. The K m, k cat, and k cat/K m values were 18 mg ml−1, 50 s−1, and a 2.8 mg ml−1 s−1, respectively. Maximum enzyme activity was at pH 6.5 and 75°C. The half-lives of the enzyme at 65, 70 and 75°C were 2440, 254 and 93 h, respectively, indicating that it is the most thermostable of the known endo-1,5-α-l-arabinanases.  相似文献   

6.
Acinetobacter strain IVS-B aerobically grows on isovalerate as sole carbon and energy source. Isovalerate is metabolised via isovaleryl-CoA, an intermediate of the oxidative (S)-leucine degradation pathway. A 3-methylglutaconyl-CoA hydratase (EC 4.2.1.18) was purified 65-fold to apparent homogeneity from cell-free extracts of isovalerate-grown cells of Acinetobacter strain IVS-B. The enzyme was found to be a homotetramer (115.2 kDa) composed of four identical subunits of 28.8 kDa not containing any cofactors. The enzyme was shown to catalyse the hydration of (E)-glutaconyl-CoA (k cat=18 s−1, K m=40 μM) and the dehydration of (S)-3-hydroxyglutaryl-CoA (k cat=13 s−1, K m=52 μM), albeit with somewhat lower catalytic efficiencies as compared to the 3-methyl derivatives, 3-methylglutaconyl-CoA (k cat=138 s−1, K m=14 μM) and (S)-3-hydroxy-3-methylglutaryl-CoA (k cat=60 s−1, K m=36 μM). Thus, the mechanistically simple syn-addition of water to the (E)-isomer of 3-methylglutaconyl-CoA of the leucine degradative pathway leading to the common intermediate (S)-3-hydroxy-3-methylglutaryl-CoA was assigned as the major physiological role to this enzyme. The amino acid sequence of 3-methylglutaconyl-CoA hydratase from Acinetobacter sp. was found to be related to over 100 prokaryotic enoyl-CoA hydratases (up to 50% identity), possibly all being 3-methylglutaconyl-CoA hydratases.An erratum to this article can be found at  相似文献   

7.
A phytase with high activity at neutral pH and typical water temperatures (∼25°C) could effectively hydrolyze phytate in aquaculture. In this study, a phytase-producing strain, Pedobacter nyackensis MJ11 CGMCC 2503, was isolated from glacier soil, and the relevant gene, PhyP, was cloned using degenerate PCR and thermal asymmetric interlaced PCR. To our knowledge, this is the first report of detection of phytase activity and cloning of phytase gene from Pedobacter. PhyP belongs to beta-propeller phytase family and shares very low identity (∼28.5%) with Bacillus subtilis phytase. The purified recombinant enzyme (r-PhyP) from Escherichia coli displayed high specific activity for sodium phytate of 24.4 U mg−1. The optimum pH was 7.0, and the optimum temperature was 45°C. The K m, V max, and k cat values were 1.28 mM, 71.9 μmol min−1 mg−1, and 45.1 s−1, respectively. Compared with Bacillus phytases, r-PhyP had higher relative activity at 25°C (r-PhyP (>50%), B. subtilis phytase (<8%)) and hydrolyzed phytate from soybean with greater efficacy at neutral pH. These characteristics suggest that r-PhyP might be a good candidate for an aquatic feed additive in the aquaculture industry.  相似文献   

8.
Laccases are strong oxidizing enzymes that oxidize chlorinated phenols, synthetic dyes, pesticides, polycyclic aromatic hydrocarbons as well as a very wide range of other compounds with high redox potential. Based on the bias of genetic codons between fungus and yeast, we synthesized a laccase gene GlLCCI, originated from Ganoderma lucidum using optimized codons and a PCR-based two-step DNA synthesis method. The recombinant laccase, GlLCCI was successfully over-expressed in yeast, Pichia pastoris, with an alcohol oxidase1 promoter. The recombinant GlLCCI has a molecular mass of approximately 58 kDa. The K m values of GlLCCI for 2-2′-azino-bis-(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and guaiacol were 0.9665, and 1.1122 mM, respectively. The V max of GlLCCI for both substrates was 3,024 and 82.13 μM mg−1 min−1. When ABTS was used as a substrate, the enzyme had an optimal temperature of approximately 55°C. The enzyme was detected over pH values from 2 to 8. The enzyme was strongly activated by K+, Na+, Cu2+ and mannitol. Six amino acids (alanine, histidine, glycine, arginine, aspartate and phenylalanine) increased the catalytic ability of the enzyme. The activity of laccase was obviously inhibited by Fe2+, Fe3+, sodium hydrosulphite, and sodium azide. Additionally, under optimal conditions, GlLCCI decolorized 37.62 mg l−1 of azo dye methyl orange (MO) in cultural medium. With a high MO degradation ability, GlLCCI may have potential in the treatment of industrial effluent containing azo dye MO.  相似文献   

9.
Laccases (benzenediol oxygen oxidoreductase; EC 1.10.3.2) have many biotechnological applications because of their oxidation ability towards a wide range of phenolic compounds. Within recent years, researchers have been highly interested in the identification and characterization of laccases from bacterial sources. In this study, we have isolated and cloned a gene encoding laccase (CotA) from Bacillus sp. HR03 and then expressed it under microaerobic conditions and decreased temperature in order to obtain high amounts of soluble protein. The laccase was purified and its biochemical properties were investigated using three common laccase substrates, 2,2′-azino-bis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS), syringaldazine (SGZ) and 2,6-dimethoxyphenol (2,6-DMP). K M and k cat were calculated 535 μM and 127 s−1 for ABTS, 53 μM and 3 s−1 for 2, 6-DMP and 5 μM and 20 s−1 for SGZ when the whole reactions were carried out at room temperature. Laccase activity was also studied when the enzyme was preincubated at 70 and 80°C. With SGZ as the substrate, the activity was increased three-fold after 50 min preincubation at 70°C and 2.4-fold after 10 min preincubation at 80°C. Preincubation of the enzyme in 70°C for 30 min raised the activity four-fold with ABTS as the substrate. Also, l-dopa was used as a substrate. The enzyme was able to oxidize l-dopa with the K M and k cat of 1,493 μM and 194 s−1, respectively.  相似文献   

10.
A thermostable β-galactosidase was produced extracellularly by a thermophilic Rhizomucor sp, with maximum enzyme activity (0.21 U mg−1) after 4 days under submerged fermentation condition (SmF). Solid state fermentation (SSF) resulted in a nine-fold increase in enzyme activity (2.04 U mg−1). The temperature range for production of the enzyme was 38–55°C with maximum activity at 45°C. The optimum pH and temperature for the partially purified enzyme was 4.5 and 60°C, respectively. The enzyme retained its original activity on incubation at 60°C up to 1 h. Divalent cations like Co2+, Mn2+, Fe2+ and Zn2+ had strong inhibitory effects on the enzyme activity. The K m and V max for p-nitrophenyl-β- D-galactopyranoside and o-nitrophenyl-β - D-galactopyranoside were 0.39 mM, 0.785 mM and 232.1 mmol min−1 mg−1 respectively. The K m and V max for the natural substrate lactose were 66.66 μM and 0.20 μ mol min−1 mg−1. Received 10 March 1997/ Accepted in revised form 17 July 1997  相似文献   

11.
Glutathione-S-transferase (GST) was isolated from the northern hardshell clam Mercinaria mercinaria (quahog) using a two-step procedure involving ammonium sulfate precipitation and affinity chromatography. Kinetic analysis of the purified enzyme using 1-chloro-2,4-dinitrobenzene as substrate revealed a specific activity of 38.0 μmol min−1 mg−1, while V max and K m values were estimated as 48.0 μmol min−1 mg−1 and 0.24 mM, respectively. Electrophoretic analysis of GST indicated multiple forms of the dimeric enzyme in quahogs with subunit molecular masses of 22, 24, 25, and 27 kDa. Isoelectric focusing analysis resulted in pI values for three isoenzymes of 5.1, 4.9, and 4.6. The acidic pI values obtained indicated that quahog GST belongs to the π class. Inhibition of quahog GST by tetrapyrroles was similar to that of GST from oyster and rat liver. Quantitative comparison of tetrapyrrole inhibition patterns of quahog GST with those of oyster and rat liver GST indicated lower inhibition rates by three of the four tetrapyrroles tested (bilirubin, biliverdin, and chlorophillyin), suggesting that quahog GST could differ structurally or functionally from oyster and rat liver GSTs. Received March 17, 1998; accepted August 18, 1998.  相似文献   

12.
The effect of short-term exposure to elevated CO2 concentration and high irradiance on the activity of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidases (GPX) and catalase (CAT), and on the extent of the lipid peroxidation was studied in bean (Phaseolus vulgaris L.) plants. Plants were exposed for 4 d (8 h a day) to irradiance of 100 (LI) or 1000 (HI) μmol m−2 s−1 at ambient (CA, 350 μmol mol−1) or elevated (CE, 1300 μmol mol−1) CO2 concentration. Four-day exposure to CE increased the leaf dry mass in HI plants and RuBPC activity and chlorophyll content in LI plants. Total soluble protein content, leaf dry matter and RuBPC activity were higher in HI than in LI plants, although the HI and CE increased the contents of malonyldialdehyde and H2O2. Under CA, exposure to HI increased the activity of APX and decreased the total SOD activity. Under CE, HI treatment also activated APX and led to reduction of both, SOD and GPX, enzymes activities. CE considerably reduced the CAT activity at both irradiances, possibly due to suppressed rate of photorespiration under CE conditions.  相似文献   

13.
Kim HT  Ko HJ  Kim N  Kim D  Lee D  Choi IG  Woo HC  Kim MD  Kim KH 《Biotechnology letters》2012,34(6):1087-1092
A gene, alg7D, from Saccharophagus degradans, coding for a putative alginate lyase belonging to the family of polysaccharide lyase-7, was overexpressed in Escherichia coli. The properties of the recombinant Alg7D were characterized. The enzyme endolytically depolymerized alginate by β-elimination into oligo-alginates with degrees of polymerization of 2–5. Its activity was maximal at 50°C and pH 7 and was slightly increased in the presence of Na+. The K M , V max , k cat , and k cat /K M values were: 3 mg ml−1, 6.2 U mg−1, 1.9 × 10−2 s−1, and 6.3 × 10−3 mg−1 ml s−1, respectively.  相似文献   

14.
The ADP-dependent phosphofructokinase (PFK) from Thermococcus zilligii has been purified 950 fold; it had a specific activity of 190 U mg−1. The enzyme required Mg2+ ions for optimal activity and was specific for ADP. The forward reaction kinetics were hyperbolic for both cosubstrates (pH optimum of 6.4), and the apparent K m values for ADP and fructose-6-phosphate were 0.6 mM (apparent V max of 243 U mg−1) and 1.47 mM (apparent V max of 197 U mg−1), respectively. Significantly, the enzyme is indicated to be nonallosteric but was slightly activated by some monovalent cations including Na+ and K+. The protein had a subunit size of 42.2 kDa and an estimated native molecular weight of 66 kDa (gel filtration). Maximal reaction rates for the reverse reaction were attained at pH 7.5–8.0, and the apparent K m values for fructose-1,6-bisphosphate and AMP were 0.56 mM (apparent V max of 2.9 U mg−1) and 12.5 mM, respectively. The biochemical characteristics of this unique ADP-dependent enzymatic activity are compared to ATP and pyrophosphate-dependent phosphofructokinases. Received: August 14, 1998 / Accepted: December 2, 1998  相似文献   

15.
A novel third-generation biosensor for hydrogen peroxide (H2O2) has been constructed based on horseradish peroxidase (HRP) immobilized by the sol–gel (SG) technology on carbon nanotube (CNT)-modified electrode. CNT has good promotion effects on the direct electron transfer between HRP and the electrode surface and the SG network provides a biocompatible microenvironment for enzyme. The immobilized HRP retained its bioelectrocatalytic activity for the reduction of hydrogen peroxide and can respond to the change of concentration of H2O2 rapidly. The heterogeneous electron transfer rate constant was evaluated to be 2.8 ± 0.4 s−1. The amperometric response to H2O2 shows a linear relation in the range from 0.5 to 300 μmol l−1 and a detection limit of 0.1 μmol l−1 (S/N = 3). The K Mapp value of HRP immobilized on the electrode surface was found to be 1.35 mmol l−1. The biosensor exhibited high sensitivity, rapid response and excellent long-term stability.  相似文献   

16.
In this work, we characterized an ecto-ATPase activity in intact mycelial forms of Fonsecaea pedrosoi, the primary causative agent of chromoblastomycosis. In the presence of 1 mM EDTA, fungal cells hydrolyzed adenosine-5′-triphosphate (ATP) at a rate of 84.6 ± 11.3 nmol Pi h−1 mg−1 mycelial dry weight. The ecto-ATPase activity was increased at about five times (498.3 ± 27.6 nmol Pi h−1 mg−1) in the presence of 5 mM MgCl2, with values of V max and apparent K m for Mg-ATP2−corresponding to 541.9 ± 48.6 nmol Pi h−1 mg−1 cellular dry weight and 1.9 ± 0.2 mM, respectively. The Mg2+-stimulated ecto-ATPase activity was insensitive to inhibitors of intracellular ATPases such as vanadate (P-ATPases), bafilomycin A1 (V-ATPases), and oligomycin (F-ATPases). Inhibitors of acid phosphatases (molybdate, vanadate, and fluoride) or alkaline phosphatases (levamizole) had no effect on the ecto-ATPase activity. The surface of the Mg2+-stimulated ATPase in F. pedrosoi was confirmed by assays in which 4,4′-diisothiocyanostylbene-2,2′-disulfonic acid (DIDS), a membrane impermeant inhibitor, and suramin, an inhibitor of ecto-ATPase and antagonist of P2 purinoreceptors. Based on the differential expression of ecto-ATPases in the different morphological stages of F. pedrosoi, the putative role of this enzyme in fungal biology is discussed.  相似文献   

17.
A laccase (Lcc1) from the white-rot fungus Meripilus giganteus was purified with superior yields of 34% and 90% by conventional chromatography or by foam separation, respectively. Size exclusion chromatography (SEC) and sodium dodecylsulfate-polyacrylamide gel electrophoresis (SDS-PAGE) yielded a molecular mass of 55 kDa. The enzyme possessed an isoelectric point of 3.1 and was able to oxidize the common laccase substrate 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) at a pH of 2.0, whereas the enzyme was still able to oxidize ABTS and 2,6-dimethoxyphenol (DMP) at pH 6.0. Lcc1 exhibited low K m values of 8 μM (ABTS) and 80 μM (DMP) and remarkable catalytic efficiency towards the non-phenolic substrate ABTS of 37,437 k cat/k m (s−1 mM−1). The laccase showed a high stability towards high concentrations of various metal ions, EDTA and surfactants indicating a considerable biotechnological potential. Furthermore, Lcc1 exhibited an increased activity as well as a striking boost of stability in the presence of surfactants. Degenerated primers were deduced from peptide fragments. The complete coding sequence of lcc1 was determined to 1,551 bp and confirmed via amplification of the 2,214 bp genomic sequence which included 12 introns. The deduced 516 amino acid (aa) sequence of the lcc1 gene shared 82% identity and 90% similarity with a laccase from Rigidoporus microporus. The sequence data may aid theoretical studies and enzyme engineering efforts to create laccases with an improved stability towards metal ions and bipolar compounds.  相似文献   

18.
Ribitol dehydrogenase (RDH) catalyzes the conversion of ribitol to d-ribulose. A novel RDH gene was cloned from Zymomonas mobilis subsp. mobilis ZM4 and overexpressed in Escherichia coli BL21(DE3). DNA sequence analysis revealed an open reading frame of 795 bp, capable of encoding a polypeptide of 266 amino acid residues with a calculated molecular mass of 28,426 Da. The gene was overexpressed in E. coli BL21(DE3) and the protein was purified as an active soluble form using glutathione S-transferase affinity chromatography. The molecular mass of the purified enzyme was estimated to be ∼28 kDa by sodium dodecyl sulfate-polyacrylamide gel and ∼58 KDa with gel filtration chromatography, suggesting that the enzyme is a homodimer. The enzyme had an optimal pH and temperature of 9.5 and 65°C, respectively. Unlike previously characterized RDHs, Z. mobilis RDH (ZmRDH) showed an unusual dual coenzyme specificity, with a k cat of 4.83 s−1 for NADH (k cat/K m = 27.3 s−1 mM−1) and k cat of 2.79 s−1 for NADPH (k cat/K m = 10.8 s−1 mM−1). Homology modeling and docking studies of NAD+ and NADP+ into the active site of ZmRDH shed light on the dual coenzyme specificity of ZmRDH.  相似文献   

19.
A Bacillus sp. RE was resistant to chromium and reduced Cr(VI) without accumulating chromium inside the cell. When Cr(VI) was 10 and 40 μg ml−1, >95% of the total Cr(VI) was reduced in 24 and 72 h of growth, respectively, whereas at 80 μg Cr(VI) ml−1 only 50% of Cr(VI) was reduced. However growth was not affected; the cell mass was 0.7–0.8 mg ml−1 in all cases. The cell-free extract showed Cr(VI) reducing enzyme activity which was enhanced (>5 fold) by NADH and NADPH. Like whole cells the enzyme also reduced Cr(VI) with decreasing efficiency on increasing Cr(VI) concentration. The enzyme activity was optimal at pH 6.0 and 30 °C. The enzyme was stable up to 30 °C and from pH 5.5 to 8, but from pH 4 to 5 the enzyme was severely destabilized. Its Km and Vmax were 14 μm and 3.8 nmol min−1 mg−1 respectively. The enzyme activity was enhanced by Cu2+ and Ni2+ and inhibited by Hg2+. Received 21 September 2005; Revisions requested 5 October 2005; Revisions received 16 November 2005; Accepted 16 November 2005  相似文献   

20.
Lipoxygenase (LOX) from opium poppy (Papaver somniferum L.) chloroplasts was isolated and 126.1-fold purified to electrophoretic homogeneity by combination of ion-exchange chromatography on HA-Ultragel column and affinity chromatography on a linoleyl-aminopropyl agarose column. The relative molecular mass of the LOX determined by SDS-PAGE was 92 kDa. Kinetic properties of purified LOX were determined in spectrophotometric assay by using of linoleic acid (KM = 1.78 mM and Vmax = 11.4 μmol mg−1 min−1) and linolenic acid (KM = 1.27 mM and Vmax = 10.2 μmol mg−1 min−1). The optimum pH was 6.0 for both linoleic and linolenic acid dioxygenation catalyzed by LOX. HPLC analysis of the products revealed a dual positional specificity of linoleic acid dioxygenation at pH 6.0 with ratio of 9- and 13-hydroperoxide products being about 1:1. The activity of purified LOX was stimulated by Mg2+ and Ca2+.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号