首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Analysis of the proliferative response of WI-38 cells to nine mitogens, which in various specific combinations stimulate DNA synthesis in these cultures, delineated three classes of mitogens. Class I includes epidermal growth factor (EGF), fibroblasts growth factor (FGF), platelet-derived growth factor (PDGF), and thrombin (THR); Class II includes insulin-like growth factor I (IGF-I), multiplication stimulating activity (MSA) (the rat homolog of human IGF-II), and insulin; and Class III includes hydrocortisone (HC) or the synthetic analog dexamethasone (DEX). In cultures arrested at low density, members of each of the three classes act synergistically in stimulating DNA synthesis. Any Class I mitogen in combination with any Class II and either Class III mitogen stimulated DNA synthesis of levels observed in 10% serum-supplemented medium. At least some (EGF, FGF, PDGF) and possibly all (THR) of the Class I mitogens are known to act through separate receptor systems. Our experiments using blocking antibodies to the IGF-I receptor confirm that the Class II mitogens all act by binding to IGF-I receptors. Use of the inhibitory synthetic glucocorticoid analog RU 486 confirmed that the Class III mitogens act via the glucocorticoid receptor. Thus, growth factor-induced DNA synthesis in WI-38 cells is apparently mediated by the glucocorticoid receptor (Class III), the IGF-I receptor (Class II), and most interestingly any one of several Class I growth factor receptors.  相似文献   

2.
Insulin-like growth factor-I (IGF-I) (13 nM) can replace insulin (0.8 microM) in a serum-free medium containing epidermal growth factor (EGF) (16 nM) and dexamethasone (DEX) (140 nM) and stimulate DNA synthesis in young cultures of WI-38 cells, similar to the stimulation of serum-supplemented medium. By contrast, senescent cells become unresponsive to all of these hormones. The effect of IGF-I, EGF, and DEX is synergistic in stimulating multiple rounds of low density cell division. Total specific binding of [125]IGF-I per cell in monolayer culture does not change with age, which indicates, in light of increased cell size with age, an actual decrease in specific binding per micron2 of cell surface area. Binding can be traced to two separate cell proteins. Binding to the alpha subunit of the IGF-I transmembrane receptor may increase slightly with age while the 50% displacement remains unchanged. The remainder of the IGF-I specific binding (five- to thirty-fold more) is to a low molecular weight, cell-associated binding protein whose 50% displacement is 10 times higher, but also remains unchanged with age. Specific binding to the lower affinity sites decreases slightly with age at equal cell densities. IGF-I binding to the alpha subunit of the transmembrane receptor is independent of cell density, while binding to the low molecular weight binding protein is inversely proportional to cell density and may vary by as much as tenfold.  相似文献   

3.
Lithium interferes with the responses of neural and secretory cells to calcium-mobilizing agonists by blocking the generation of phospholipase C-dependent second messengers. However, the mechanism by which lithium stimulates the proliferation of other cells in response to agonists that do not activate phospholipase C remains obscure. We investigated the pathways that mediate the mitogenic action of lithium on WI-38 cells in a defined, serum-free medium. Lithium, like dexamethasone (Dex), potentiated DNA synthesis in response to the combination of insulin+epidermal growth factor (EGF) (+50%), but not in response to either growth factor alone or with Dex. As in the case of Dex, lithium could be added as late as 8 h following stimulation of quiescent cells by insulin+EGF without loss of potentiating activity. While DNA synthesis in control cultures was essentially complete by 24 h, lithium and Dex stimulated "late" DNA synthesis (24-30 h) 10-fold and 5-fold, respectively. The potentiating activity of Dex, but not that of lithium, was blocked by the specific glucocorticoid receptor antagonist, RU486. Both lithium and Dex stimulated log-phase growth, but only Dex increased saturation density. These data indicate that both lithium and Dex recruit into the cell cycle a subpopulation of cells with a longer mean prereplicative phase (G1). The effect of lithium on DNA synthesis in WI-38 cells may be mediated by the glucocorticoid response pathway at some point distal to activation of the glucocorticoid receptor, or by an independent mechanism that can be switched on late in G1.  相似文献   

4.
When cultures of WI-38 human diploid fibroblasts reach high cell densities, they cease to proliferate and enter a viable state of quiescence. WI-38 cells can remain in this quiescent state for long periods of time; however, the longer the cells remain growth arrested, the more time they require to leave G0, progress through G1, and enter S after stimulation with fresh serum. The experiments presented here compare the response of long-term quiescent WI-38 cells (stimulated 26 days after plating) and short-term quiescent WI-38 cells (stimulated 12 days after plating) to treatment with a variety of individual purified growth factors instead of whole serum. Our results show that the qualitative and quantitative growth factor requirements necessary to stimulate G1 progression and entry into S were the same for both short- and long-term quiescent WI-38 cells, in that the same defined medium (supplemented with epidermal growth factor [EGF], recombinant human insulin-like growth factor 1 [IGF-1], and dexamethasone [DEX]) stimulated both populations of cells to proliferate with the same kinetics and to the same extent as serum. However, the long-term quiescent WI-38 cells were found to exhibit a difference in the time during which either serum or these individual growth factors were required to be present during the prereplicative period. We believe that this difference may be the cause of the prolongation of the prereplicative phase after stimulation of long-term density-arrested WI-38 cells.  相似文献   

5.
Confluent quiescent monolayers of aneuploid and euploid cells in culture can be stimulated to proliferate by appropriate nutritional changes. In confluent monolayers of WI-38 human diploid fibroblasts the uptake of cycloleucine is increased three hours after these cells are stimulated to proliferate by a change of medium plus 10% serum. No changes in the uptake of cycloleucine are observed in logarithmically-growing WI-38 cells exposed to fresh medium plus 10% serum, or in WI-38 confluent monolayers in which the conditioned medium has been replaced by fresh medium with 0.3% serum (a change that does not cause stimulation of cellular proliferation in WI-38 cells). In 3T6 cells in the stationary phase stimulated to proliferate by nutritional changes, there is a prompt increase in the uptake of cycloleucine, within one hour after stimulation of cell proliferation. Similar results were obtained with stationary 2RA cells which are SV-40 transformed WI-38 fibroblasts. In addition, chromatin template activity which is known to increase in the early stages after stimulation of confluent WI-38 cells, was unchanged in confluent 3T6 or 2RA cells stimulated to proliferate. These results show that at least two of the very early biochemical events occurring in response to stimulation of cell proliferation are different in WI-38 diploid cells and in aneuploid 2RA or 3T6 cells. It is proposed that WI-38 cells in the stationary phase are arrested in the G0 phase of the cell cycle, while 2RA and 3T6 cells are arrested in the G1 phase.  相似文献   

6.
The regulation of nucleotide excision repair and base excision repair by normal and repair deficient human cells was determined. Synchronous cultures of WI-38 normal diploid fibroblasts and Xeroderma pigmentosum fibroblasts (complementation group D) (XP-D) were used to investigate whether DNA repair pathways were modulated during the cell cycle. Two criteria were used: (1) unscheduled DNA synthesis (UDS) in the presence of hydroxyurea (HU) after exposure to UV light or after exposure to N-acetoxy-acetylaminofluorene (N-AcO-AAF) to quantitate nucleotide excision repair or UDS after exposure to methylmethane sulfonate (MMS) to measure base excision repair; (2) repair replication into parental DNA in the absence of HU after exposure to UV light. Nucleotide excision repair after UV irradiation was induced in WI-38 fibroblasts during the cell cycle reaching a maximum in cultures exposed 14–15 h after cell stimulation. Similar results were observed after exposure to N-AcO-AAF. DNA repair was increased 2–4-fold after UV exposure and was increased 3-fold after N-AcO-AAF exposure. In either instance nucleotide excision repair was sequentially stimulated prior to the enhancement of base excision repair which was stimulated prior to the induction of DNA replication. In contrast XP-D failed to induce nucleotide excision repair after UV irradiation at any interval in the cell cycle. However, base excision repair and DNA replication were stimulated comparable to that enhancement observed in WI-38 cells. The distinctive induction of nucleotide excision repair and base excision repair prior to the onset of DNA replication suggests that separate DNA repair complexes may be formed during the eucaryotic cell cycle.  相似文献   

7.
Using a serum-free medium supplemented with hormones and growth factors, which included epidermal growth factor (EGF), we investigated the binding and processing-degradation of [125I]EGF in WI-38 cells of various in vitro ages. The binding and processing-degradation systems of these cells remained essentially unchanged throughout their lifespan. The number of specific [125I]EGF binding sites per cell increased as the cultures senesced, though the number of specific binding sites per micron 2 (surface area) remained constant. The kinetics of ligand degradation as well as the qualitative and quantitative nature of the degradation products also remained essentially unchanged throughout the life-span. The only consistent alteration in any of the binding parameters measured was the slight decrease in the apparent Kd of the ligand-receptor complex, independent of temperature. Quantitation of EGF-stimulated DNA synthesis revealed a decrease in the percentage of cells incorporating [3H]thymidine ([3H]TdR) during a 30-h exposure from 45% in young cells to 0.25% in senescent cells, although [125I]EGF binding or processing-degradation did not differ significantly in young and old cells. Thus, EGF binding does not decrease in senescence.  相似文献   

8.
J J Cholon  R G Knopf  R M Pine 《In vitro》1979,15(9):736-742
Human embryonic lung fibroblasts (IMR-90 and WI-38) were arrested in the G1 phase of the cell cycle by serum deprivation and high population density. Within 1 hr after the addition of medium containing fresh serum, these cells showed an increase in rRNA synthesis. The inclusion of 100 micrograms per ml aminonucleoside of puromycin (AMS) in the fresh medium eliminated the serum stimulation of rRNA synthesis and prevented the cells from making the G1-resting phase to G1-prereplicative phase transition. AMS also prevented the synthesis of HnRNA normally found within 10 hr after serum stimulation. Serum-stimulated RNA synthesis in starved, SV-40 transformed fibroblasts (WI-38-VA-13 cells) was inhibited, but not completely prevented, by AMS indicating that transformed cells may produce specific RNA's that are not AMS-sensitive and that may be responsible for the failure of transformed cells to be arrested in G1.  相似文献   

9.
10.
Flow microfluorometry has been used to characterize the effects of serum concentration and cell density on the initiation of cell cycle transit of stationary phase (G0) human diploid fibroblasts (strain WI-38). The concentration of serum used to stimulate these cultures had no effect on the time cells began appearing in S (the DNA synthetic period), nor on the synchrony with which they moved around the cell cycle. However, as the serum concentration increased, the fraction of the stationary phase population released from G0 increased. Cell density modulated the ability of serum to stimulate cell cycle traverse. For example, at a cell density of 1.81 × 104 cells/cm2, 78% of the population was sensitive to serum stimulation; whereas, when the density was increased to 7.25 × 104 cells/cm2, only 27% of the population could be stimulated. This effect of cell density on the serum response is not simply the result of changing the ratio of serum concentration to cell density, but appears to reflect a true modulation of the population's sensitivity to serum stimulation. These results are consistent with the interpretation that the primary action of serum is to determine the transition of cells from a non-cycling G0 state to a cycling state and that cell density determines the proportion of the population capable of undergoing this transition.  相似文献   

11.
Effect of vitamin A on epithelial morphogenesis in vitro   总被引:1,自引:0,他引:1  
Quiescent confluent monolayers of WI-38 human diploid fibroblasts and of 3T6 mouse fibroblasts were stimulated to proliferate by nutritional changes. WI-38 cells had a stringent requirement for serum factor(s) but 3T6 did not require serum in order to proliferate again. In both cell lines there was an early increase in the synthesis of non-histone chromosomal proteins shortly after stimulation of cellular proliferation and this increase was linearly correlated to the number of cells entering the S phase several hours later. Only WI-38 diploid fibroblasts, however, showed an early increase in chromatin template activity 1 h after stimulation of cellular proliferation, while chromatin template activity in 3T6 cells remained unchanged. It is suggested that the activation of gene function represents a critical step for the passage of WI-38 cells in the G0 resting phase to the G1 phase of the cell cycle. It is also suggested that 3T6 cells are unable to enter or stay in a G0 phase but can be arrested predominantly in the G1 phase by nutritional deficit, probably amino acid starvation.  相似文献   

12.
Synthesis of DNA-binding proteins during the cell cycle of WI-38 cells   总被引:1,自引:0,他引:1  
Synthesis of DNA-binding proteins was investigated in WI-38 human diploid fibroblast cultures after stimulation with serum containing medium. Density-inhibited confluent monolayers of young (phase II) and aging (phase III) WI-38 cells can be stimulated to synthesize DNA by replacing the medium with fresh medium containing 10% fetal calf serum. Of the phase II cells, 35–50% showed a partially synchronized burst of DNA-synthesizing activity between 15 and 24 h whereas only 4–6% of phase III cells showed DNA-synthesizing activity at 20 h, and that cell fraction was increasing even at 38 h. This suggests either an extremely prolonged G 1 in stimulated phase III cells, or a heterogeneity of the population (e.g., a mixed population of pre- and postmitotic cells) for phase III cells. At various times after the change of medium, DNA-binding protein synthesis was examined in these stimulated cultures. Protein of mol. wt 20 000–25 000 D accumulated rapidly during early G 1 and declined thereafter, whereas larger protein (40 000 and 68 000 D) accumulated during the late G 1 or G 1-S transition period indicating that accumulation of these proteins is associated with the onset of DNA synthesis in the serum-stimulated cells. In cultures where the DNA synthesis has been reduced or inhibited by an excess of thymidine, hydroxyurea or dibutyryl cAMP, the accumulation of the larger proteins (40 000 and 68 000 D) was neglible as compared with non-stimulated cultures. Hydrocortisone did not exert any effect on the DNA-binding protein synthesis in phase II cells. However, it seems to increase the cell fraction which can respond to the serum factor in phase III cells as evidenced from the pattern of DNA-binding proteins synthesis.  相似文献   

13.
14.
We analyzed glucocorticoid receptor binding in peripheral blood mononuclear leukocytes from normal adult males and from females at the follicular and luteal phases. Healthy controls were analyzed before and after 17 days of treatment with two synthetic glucocorticoids: prednisone and an oxazoline derivative of prednisolone (deflazacort). We also studied for comparison 4 patients with adrenocortical insufficiency, two of them on long-term corticoid replacement, and 7 patients with Cushing's syndrome. Using a whole-cell competitive binding assay and 3H-dexamethasone as tracer, normal human mononuclear leukocytes (19 males, 6 females) were found to have 4,529 +/- 1,532 (mean +/- SD) binding sites per cell and a dissociation constant (Kd) of 9.5 +/- 2.3 nM. In Cushing's syndrome the receptor parameters were within the normal range. Cells from patients with untreated Addison's disease had low levels of sites per cell. The number of binding sites increased to normal after long-term glucocorticoid replacement. All the adrenal insufficiency cases had a normal Kd. Finally, following treatment with the synthetic glucocorticoid, deflazacort, the sites per cell were reduced but the Kd remained unchanged. Prednisone had no effects.  相似文献   

15.
16.
17.
Broken cell preparations of WI-38 and SV40-transformed WI-38 (VA13) fibroblasts were used to compare the cyclic nucleotide phosphodiesterase activities of the two cell strains. The bulk of the cAMP or cGMP phosphodiesterase activity of WI-38 and VA13 homogenates was found in the 100,000 x g fibroblast supernatant fractions. WI-38 and VA13 soluble phosphodiesterase activities showed anomalous kinetic behavior with either cAMP or cGMP as the substrate. At low substrate concentrations, e.g., 0.1 muM, WI-38 supernatant fractions hydrolyzed cGMP much more rapidly than cAMP. At high substrate concentrations, e.g., 100muM, the same enzyme preparations degraded cAMP more than twice as fast as cGMP. In contrast, VA13 soluble phosphodiesterase activity catalyzed the hydrolysis of a wide range of cAMP and cGMP concentrations at similar rates. Phosphodiesterase activity in WI-38 supernatant fractions was generally more sensitive than that of the comparable VA13 enzyme activity to inhibition by MIX and papaverine. The cAMP phosphodiesterase activity of both WI-38 and VA13 supernatant preparations was decreased by cGMP in a concentration-dependent manner. cAMP was an effective inhibitor of cGMP hydrolysis by VA13 soluble phosphodiesterase activity. Yet, the cGMP phosphodiesterase activity of WI-38 supernatant fractions was only slightly reduced in the presence of cAMP. DEAE-cellulose chromatography of WI-38 and VA13 supernatant preparations revealed two major peaks of phosphodiesterase activity for each cell type. WI-38 peak I showed much greater activity with 1muM cGMP than with 1muM cAMP and appeared to be composed of two different phosphodiesterase activities. WI-38 peak Ia included phosphodiesterase activity which could be stimulated by boiled, dialyzed fibroblast homogenates while WI-38 peak Ib coincided with column fractions which contained most of the cyclic GMP hydrolytic activity. VA13 peak I phosphodiesterase activity was eluted from DEAE cellulose columns at the same ionic strength as WI-38 peak Ia and hydrolyzed these two substrates at nearly identical rates. This enzyme activity was also increased in the presence of boiled, dialyzed fibroblast preparations. Peak II phosphodiesterase activities from both WI-38 and VA13 fibroblasts were relatively specific for cAMP as the substrate. Phosphodiesterase activity with the properties of WI-38 peak Ib was not isolated from VA13 supernatant fractions. These results suggested that the dissimilar patterns of cAMP accumulation in WI-38 and VA13 cultures may be at least partially related to different phosphodiesterase activities in the normal and the transformed fibroblasts.  相似文献   

18.
Summary Human embryonic lung fibroblasts (IMR-90 and WI-38) were arrested in the G1 phase of the cell cycle by serum deprivation and high population density. Within 1 hr after the addition of medium containing fresh serum, these cells showed an increase in rRNA synthesis. The inclusion of 100 μg per ml aminonucleoside of puromycin (AMS) in the fresh medium eliminated the serum stimulation of rRNA synthesis and prevented the cells from making the G1-resting phase to G1-prereplicative phase transition. AMS also prevented the synthesis of HnRNA normally found within 10 hr after serum stimulation. Serum-stimulated RNA synthesis in starved, SV-40 transformed fibroblasts (WI-38-VA-13 cells) was inhibited, but not completely prevented, by AMS indicating that transformed cells may produce specific RNA's that are not AMS-sensitive and that may be responsible for the failure of transformed cells to be arrested in G1. This work was supported by PHS Research Grant CA19750-02 from the National Cancer Institute. These results were reported previously in a preliminary form (7).  相似文献   

19.
We have used the WI-38 cell long-term quiescent model system to study the regulation of cell cycle progression at the molecular level. By modulating the length of time that WI-38 cells are density arrested, it is possible to proportionately alter the length of the prereplicative or G-1 phase which the cell traverses after growth factor stimulation in preparation for entry into DNA synthesis. Stimulation of long-and short-term density arrested WI-38 cells with different growth factors or higher concentrations of individual growth factors does not alter the time required by long-term cells to enter S after stimulation. However, the time during the prereplicative period for which these growth factors are needed is different. Long-term quiescent WI-38 cells require EGF to traverse the G-0/G-1 border but do not need and apparently cannot respond to IGF-1 during the first 10 h after EGF stimulation, the length of the prolongation of the prereplicative phase. This suggests that EGF stimulation of long-term quiescent WI-38 cells initiates a series of molecular events which make these cells “competent” to respond to the “progression” growth factor, IGF-1. In light of the well-established role of protein tyrosine kinases in signal transduction, we set out to identify, clone, and analyze the expression of receptor and non-receptor tyrosine kinases which potentially could play a role during the prolongation of the prereplicative phase in making the long-term quiescent WI-38 cells competent to respond to IGF-1. We obtained 49 clones representing 11 different receptor and non-receptor type protein tyrosine kinases. Analysis of expression of these clones revealed a variety of different patterns of expression. However, the most striking pattern was exhibited by IGF-1 receptor. Our results suggest that induction of IGF-1 receptor mRNA by EGF may be an important event in the establishment of competence by EGF in long-term density arrested WI-38 cells. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Short term incubation of WI-38 cultures with 5.7 micron prostaglandin E1 (PGE1) caused cyclic AMP phosphodiesterase activity in fibroblast homogenates to fall by 25 to 35% as compared to controls. The PGE1-induced decline in phosphodiesterase activity coincided with a rapid increase in intracellular cyclic AMP levels in response to the hormone and was rapidly reversed by washing the cultures free of the prostaglandin before homogenizing the cells. The effect of PGE1 on WI-38 phosphodiesterase activity was localized to the enzyme form(s) present in 27,000 times g supernatant fractions of cell homogenates. These data suggest that the pattern of cyclic AMP accumulation in WI-38 fibroblasts exposed to PGE1 may be related, at least in part, to decreased phosphodiesterase activity during hormone stimulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号