首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We model the dynamics of energy transfer and primary charge separation in isolated photosystem II (PSII) reaction centers. Different exciton models with specific site energies of the six core pigments and two peripheral chlorophylls (Chls) in combination with different charge transfer schemes have been compared using a simultaneous fit of the absorption, linear dichroism, circular dichroism, steady-state fluorescence, transient absorption upon different excitation wavelengths, and time-resolved fluorescence. To obtain a quantitative fit of the data we use the modified Redfield theory, with the experimental spectral density including coupling to low-frequency phonons and 48 high-frequency vibrations. The best fit has been obtained with a model implying that the final charge separation occurs via an intermediate state with charge separation within the special pair (RP(1)). This state is weakly dipole-allowed, due to mixing with the exciton states, and can be populated directly or via 100-fs energy transfer from the core-pigments. The RP(1) and next two radical pairs with the electron transfer to the accessory Chl (RP(2)) and to the pheophytin (RP(3)) are characterized by increased electron-phonon coupling and energetic disorder. In the RP(3) state, the hole is delocalized within the special pair, with a predominant localization at the inactive-branch Chl. The intrinsic time constants of electron transfer between the three radical pairs vary from subpicoseconds to several picoseconds (depending on the realization of the disorder). The equilibration between RP(1) and RP(2) is reached within 5 ps at room temperature. During the 5-100-ps period the equilibrated core pigments and radical pairs RP(1) and RP(2) are slowly populated from peripheral chlorophylls and depopulated due to the formation of the third radical pair, RP(3). The effective time constant of the RP(3) formation is 7.5 ps. The calculated dynamics of the pheophytin absorption at 545 nm displays an instantaneous bleach (30% of the total amplitude) followed by a slow increase of the bleaching amplitude with time constants of 15 and 12 ps for blue (662 nm) and red (695 nm) excitation, respectively.  相似文献   

2.
We explore the possibility of virtual transfer in the primary charge separation of photosynthetic bacteria within the context of several types of experimental data. We show that the peak that might be expected in the virtual rate as electric fields vary the intermediate state energy is severely broadened by coupling to high-frequency modes. The Stark absorption kinetics data are thus consistent with virtual transfer in the primary charge separation. High-frequency coupling also makes the temperature dependence weak over a wide range of parameters. We demonstrate that Stark fluorescence anisotropy data, usually taken as evidence of virtual transfer, can in fact be consistent with two-step transfer. We suggest a two-pulse excitation experiment to quantify the contributions from two-step and virtual transfer. We show that virtual absorption into a charge transfer state can make a substantial contribution to the Stark absorption spectrum in a way that is not related to any derivative of the absorption spectrum.  相似文献   

3.
We present an electric field modulated absorption spectroscopy (Stark effect) study of isolated photosystem II reaction center complexes, including a preparation in which the inactive pheophytin H(B) was exchanged for 13(1)-deoxo-13(1)-hydroxy-pheophytin. The results reveal that the Stark spectrum of the Q(x) and Q(y) transitions of the pheophytins has a second-derivative line shape, indicating that the Stark effect is dominated by differences in the dipole moment between the ground and the electronically excited states of these transitions (Delta mu). The Delta mu values for the Q(x) and Q(y) transitions of H(B) are small (Delta mu = 0.6-1.0 D f(-1)), whereas that of the Q(x) transition of the active pheophytin H(A) is remarkably large (Delta mu = 3 D f(-1)). The Stark spectrum of the red-most absorbing pigments also shows a second-derivative line shape, but this spectrum is considerably red-shifted as compared to the second derivative of the absorption spectrum. This situation is unusual but has been observed before in heterodimer special pair mutants of purple bacterial reaction centers [Moore, L. J., Zhou, H., and Boxer, S. G. (1999) Biochemistry 38, 11949-11960]. The red-shifted Stark spectra can be explained by a mixing of exciton states with a charge-transfer state of about equal energy. We conclude that the charge transfer state involves H(A) and its immediate chlorophyll neighbor (B(A)), and we suggest that this (B(A)(delta+)H(A)(delta-)) charge transfer state plays a crucial role in the primary charge separation reaction in photosystem II. In contrast to most other carotenes, the two beta-carotene molecules of the photosystem II reaction center display a very small Delta mu, which can most easily be explained by excitonic coupling of both molecules. These results favor a model that locates both beta-carotene molecules at the same side of the complex.  相似文献   

4.
The structure of photosystem I from the thermophilic cyanobacterium Synechococcus elongatus has been recently resolved by x-ray crystallography to 2.5-A resolution. Besides the reaction center, photosystem I consists also of a core antenna containing 90 chlorophyll and 22 carotenoid molecules. It is their function to harvest solar energy and to transfer this energy to the reaction center (RC) where the excitation energy is converted into a charge separated state. Methods of steady-state optical spectroscopy such as absorption, linear, and circular dichroism have been applied to obtain information on the spectral properties of the complex, whereas transient absorption and fluorescence studies reported in the literature provide information on the dynamics of the excitation energy transfer. On the basis of the structure, the spectral properties and the energy transfer kinetics are simultaneously modeled by application of excitonic coupling theory to reveal relationships between structure and function. A spectral assignment of the 96 chlorophylls is suggested that allows us to reproduce both optical spectra and transfer and emission spectra and lifetimes of the photosystem I complex from S. elongatus. The model calculation allowed to study the influence of the following parameters on the excited state dynamics: the orientation factor, the heterogeneous site energies, the modifications arising from excitonic coupling (redistribution of oscillator strength, energetic splitting, reorientation of transition dipoles), and presence or absence of the linker cluster chlorophylls between antenna and reaction center. For the F?rster radius and the intrinsic primary charge separation rate, the following values have been obtained: R(0) = 7.8 nm and k(CS) = 0.9 ps(-1). Variations of these parameters indicate that the excited state dynamics is neither pure trap limited, nor pure transfer (to-the-trap) limited but seems to be rather balanced.  相似文献   

5.
Structural arrangement of pigment molecules of Photosystem I of photosynthetic cyanobacterium Synechococcus elongatus is used for theoretical modeling of the excitation energy spectrum. It is demonstrated that a straightforward application of the exciton theory with the assumption of the same molecular transition energy does not describe the red side of the absorption spectrum. Since the inhomogeneity in the molecular transition energies caused by a dispersive interaction with the molecular surrounding cannot be identified directly from the structural model, the evolutionary search procedure is used for fitting the low temperature absorption and circular dichroism spectra. As a result, one dimer, three trimers and one tetramer of chlorophyll molecules responsible for the red side of the absorption spectrum with their assignment to the spectroscopically established three bands at 708, 714 and 719 nm are determined. All of them are found to be situated not in the very close vicinity of the reaction center but are encircling it almost at the same distance. In order to explain the unusual broadening on the red side of the spectrum the exciton state mixing with the charge transfer (CT) states is considered. It is shown that two effects can be distinguished as caused by mixing of those states: (i) the oscillator strength borrowing by the CT state from the exciton transition and (ii) the borrowing of the high density of the CT state by the exciton state. The intermolecular vibrations between two counter-charged molecules determine the high density in the CT state. From the broad red absorption wing it is concluded that the CT state should be the lowest state in the complexes under consideration. Such mixing effect enables resolving the diversity in the molecular transition energies as determined by different theoretical approaches.  相似文献   

6.
The core of photosystem II (PSII) of green plants contains the reaction center (RC) proteins D1D2-cytb559 and two core antennas CP43 and CP47. We have used time-resolved visible pump/midinfrared probe spectroscopy in the region between 1600 and 1800 cm(-1) to study the energy transfer and charge separation events within PSII cores. The absorption difference spectra in the region of the keto and ester chlorophyll modes show spectral evolution with time constants of 3 ps, 27 ps, 200 ps, and 2 ns. Comparison of infrared (IR) difference spectra obtained for the isolated antennas CP43 and CP47 and the D1D2-RC with those measured for the PSII core allowed us to identify the features specific for each of the PSII core components. From the presence of the CP43 and CP47 specific features in the spectra up to time delays of 20-30 ps, we conclude that the main part of the energy transfer from the antennas to the RC occurs on this timescale. Direct excitation of the pigments in the RC evolution associated difference spectra to radical pair formation of PD1+PheoD1- on the same timescale as multi-excitation annihilation and excited state equilibration within the antennas CP43 and CP47, which occur within approximately 1-3 ps. The formation of the earlier radical pair ChlD1+PheoD1-, as identified in isolated D1D2 complexes with time-resolved mid-IR spectroscopy is not observed in the current data, probably because of its relatively low concentration. Relaxation of the state PD1+PheoD1-, caused by a drop in free energy, occurs in 200 ps in closed cores. We conclude that the kinetic model proposed earlier for the energy and electron transfer dynamics within the D1D2-RC, plus two slowly energy-transferring antennas C43 and CP47 explain the complex excited state and charge separation dynamics in the PSII core very well. We further show that the time-resolved IR-difference spectrum of PD1+PheoD1- as observed in PSII cores is virtually identical to that observed in the isolated D1D2-RC complex of PSII, demonstrating that the local structure of the primary reactants has remained intact in the isolated D1D2 complex.  相似文献   

7.
A detailed model for the kinetics and energetics of the exciton trapping, charge separation, charge recombination, and charge stabilization processes in photosystem (PS) II is presented. The rate constants describing these processes in open and closed reaction centers (RC) are calculated on the basis of picosecond data (Schatz, G. H., H. Brock, and A. R. Holzwarth. 1987. Proc. Natl. Acad. Sci. USA. 84:8414-8418) obtained for oxygen-evolving PS II particles from Synechococcus sp. with ~80 chlorophylls/P680. The analysis gives the following results. (a) The PS II reaction center donor chlorophyll P680 constitutes a shallow trap, and charge separation is overall trap limited. (b) The rate constant of charge separation drops by a factor of ~6 when going from open (Q-oxidized) to closed (Q-reduced) reaction centers. Thus the redox state of Q controls the yield of radical pair formation and the exciton lifetime in the Chl antenna. (c) The intrinsic rate constant of charge separation in open PS II reaction centers is calculated to be ~2.7 ps-1. (d) In particles with open RC the charge separation step is exergonic with a decrease in standard free energy of ~38 meV. (e) In particles with closed RC the radical pair formation is endergonic by ~12 meV. We conclude on the basis of these results that the long-lived (nanoseconds) fluorescence generally observed with closed PS II reaction centers is prompt fluorescence and that the amount of primary radical pair formation is decreased significantly upon closing of the RC.  相似文献   

8.
Optically detected magnetic resonance of chlorosome-containing membranes from the green filamentous bacterium Chloroflexus aurantiacus has been performed both by fluorescence and absorption detection. Triplet states localized in the chlorosomes and in the B808–866 complex have been characterized. After chemical reduction with ascorbate followed by illumination at 200 K, recombination triplet state localized in the primary donor becomes largely populated under illumination at low temperature while all the antenna triplet states, which are localized in carotenoids and BChl a molecules, are strongly quenched. We were able to obtain the T-S spectrum of the primary donor P870 surrounded by all the antenna complexes connected to the RC via energy transfer and then in its intact environment. We found clear spectroscopic evidence for exciton interaction between the RC and the B808–866 antenna complex. This evidence was provided by the comparison of the T–S spectrum of P870 in the membranes with that of isolated RC. The analogy of some features of the difference spectra with those previously found in the same kind of experiments for Rb. sphaeroides, allows to predict a similar coupling among the primary donor and the nearby antenna BChl a molecules, assembled as circular aggregate.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

9.
Assignments are proposed for the long wavelength absorption bands observed in the reaction center of Rhodopseudomonas viridis. The assignments are based on a theoretical treatment in which quantum mechanical calculations are first carried out on the individual chromophores of the reaction center. The energies and wave functions that are obtained are then introduced into an exciton-type perturbation treatment in which extensive configuration interaction is carried out between the excited states of the four bacteriochlorophylls and two bacteriopheophytins of the reaction center. Calculated values for absorption maxima, transition moments, linear dichroism, and rotational strength are compared with experiments in an attempt to distinguish among different assignments. The calculations alone do not lead to unambiguous assignments; indeed it is difficult to account for the reaction center spectra without introducing assumptions as to the effects of the protein on the energy levels of the individual molecules. Even if these effects are treated as free parameters, the experimental spectra still provide useful constraints that restrict the models that are possible. The major result of this work is that the weak 850-nm absorption band is due, primarily, to the higher energy exciton state of the bacteriochlorophyll special pair. Accounting for the 960-nm absorption band of the low energy exciton state of the special pair requires either that a large spectroscopic effect of the protein be introduced, or possibly, that charge transfer states play a major spectroscopic role. The difference in spectra seen in the formation of oxidized or triplet state reaction centers can be understood in terms of a combination of electrochromic effects and modified exciton interactions.  相似文献   

10.
The excited state kinetics of three different allophycocyanin (AP) complexes has been studied by picosecond fluorescence spectroscopy. Both the fluorescence kinetics and the decay-associated fluorescence spectra of the different complexes can be understood on the basis of a structural model for AP which uses (a) an analogy to the known x-ray determined structure of C-phycocyanin, (b) the biochemical analogies of AP and C-phycocyanin, and (c) the biochemical composition of AP-B (AP-681). A model is developed that describes the excited state kinetics as a mixture of internal conversion processes within a coupled exciton pair and energy transfer processes between exciton pairs. We found excited state relaxation times in the range of 13 ps (AP with linker peptide) up to 66 ps (AP-B). The trimeric aggregates AP 660 and AP 665 show one fast relaxation component each, as was expected on the basis of their symmetry properties. The lower symmetry of AP-B (AP-681) gives rise to two fast lifetime components (τ1 = 23 ps and τ2 = 66 ps) which are attributed to internal conversion and/or energy transfer between excitonic states formed by the coupling of symmetrically and spectrally nonequivalent chromophores. It is proposed that the internal conversion between exciton states of strongly coupled chromophores fulfills the requirements of the small energy gap limit. Thus, internal conversion rates in the order of tens of picoseconds are feasible. The influence of the interaction of the linker peptide on the properties of the AP trimer are manifested in the fluorescence kinetics. Lack of the linker peptide in AP 660 gives rise to a heterogeneity in the chromophore conformations and chromophore-chromophore interactions.  相似文献   

11.
This paper proposes a model which correlates the exciton decay kinetics observed in picosecond fluorescence studies with the primary processes of charge separation in the reaction center of photosystem II. We conclude that the experimental results from green algae and chloroplasts from higher plants are inconsistent with the concept that delayed luminescence after charge recombination should account for the long-lived (approx. 2 ns) fluorescence decay component of closed photosystem II centers. Instead, we show that the experimental data are in agreement with a model in which the long-lived fluorescence is also prompt fluorescence. The model suggests furthermore that the rate constant of primary charge separation is regulated by the oxidation state of the quinone acceptor QA.  相似文献   

12.
The electron–hole recombination kinetics of organic photovoltaics (OPVs) are known to be sensitive to the relative energies of triplet and charge‐transfer (CT) states. Yet, the role of exciton spin in systems having CT states above 1.7 eV—like those in near‐ultraviolet‐harvesting OPVs—has largely not been investigated. Here, aggregation‐induced room‐temperature intersystem crossing (ISC) to facilitate exciton harvesting in OPVs having CT states as high as 2.3 eV and open‐circuit voltages exceeding 1.6 V is reported. Triplet excimers from energy‐band splitting result in ultrafast CT and charge separation with nonradiative energy losses of <250 meV, suggesting that a 0.1 eV driving force is sufficient for charge separation, with entropic gain via CT state delocalization being the main driver for exciton dissociation and generation of free charges. This finding can inform engineering of next‐generation active materials and films for near‐ultraviolet OPVs with open‐circuit voltages exceeding 2 V. Contrary to general belief, this work reveals that exclusive and efficient ISC need not require heavy‐atom‐containing active materials. Molecular aggregation through thin‐film processing provides an alternative route to accessing 100% triplet states on photoexcitation.  相似文献   

13.
Steady state and dynamic fluorescence measurements have been used to investigate interaction between Bovine Serum Albumin (BSA) and fluorescence probe para-N,N-dimethylamino orthohydroxy benzaldehyde (PDOHBA), a structurally important molecule exhibiting excited state coupled proton transfer (PT) and charge transfer (CT) reaction. Fluorescence anisotropy, acrylamide quenching, and time resolved fluorescence measurements corroborate the binding nature of the probe with protein. The binding constant between BSA and PDOHBA has been determined by using Benesi-Hildebrand and Stern-Volmer equations. The negative value of ΔG indicates the spontaneity of this probe-protein complexation process. Observations from synchronous, three dimensional fluorescence spectra and circular dichroism spectra point toward the fact that the hydrophobicity as well as α-helix content of BSA are altered in presence of probe PDOHBA. The PT band of PDOHBA is found to be an excellent reporter for the mapping of destructive and protective behavior of SDS with variation of chaotrope concentration.  相似文献   

14.
15.
选择597 nm作为激发波长,探测范围为600~900 nm的荧光特性,分析了天然反应中心和两种去镁叶绿素置换的紫细菌反应中心的荧光发射光谱.借助细菌叶绿素、细菌去镁叶绿素和植物去镁叶绿素的荧光光谱,对相关组分进行了归类.实验结果表明选择性地置换细菌去镁叶绿素影响了荧光光谱的组成.在天然反应中心、BpheB置换的反应中心和BpheA,B置换的反应中心中可分别解析到4、3和2个荧光发射组分.研究肯定荧光发射组分与去镁叶绿素的结合存在对应关系.实验还分别在686.4、674.1和681.1 nm处测定了不同反应中心内的原初电子供体P的激发态通过荧光衰减的过程,观测到衰减动力学上的差异.说明去镁叶绿素置换影响了细菌反应中心内激发光能传递和原初光化学反应过程.  相似文献   

16.
Excited states and energy transfer among DNA bases in double helices.   总被引:1,自引:0,他引:1  
The study of excited states and energy transfer in DNA double helices has recently gained new interest connected to the development of computational techniques and that of femtosecond spectroscopy. The present article points out contentious questions regarding the nature of the excited states and the occurrence of energy transfer and shows how they are currently approached. Using as example the polymer poly(dA) . poly(dT), composed of about 2000 adenine-thymine pairs, a model is proposed on the basis of time-resolved measurements (fluorescence decays, fluorescence anisotropy decays and fluorescence spectra, obtained with femtosecond resolution), associated to steady-state spectra. According to this qualitative model, excitation at 267 nm populates excited states that are delocalized over a few bases (excitons). Ultrafast internal conversion directs the excited state population to the lower part of the exciton band giving rise to fluorescence. Questions needing further investigations, both theoretical and experimental, are underlined with particular emphasis on delicate points related to the complexity and the plasticity of these systems.  相似文献   

17.
18.
CP47 is a pigment-protein complex in the core of photosystem II that tranfers excitation energy to the reaction center. Here we report on a spectroscopic investigation of the isolated CP47 complex. By deconvoluting the 77 K absorption and linear dichroism, red-most states at 683 and 690 nm have been identified with oscillator strengths corresponding to approximately 3 and approximately 1 chlorophyll, respectively. Both states contribute to the 4 K emission, and the Stark spectrum shows that they have a large value for the difference polarizability between their ground and excited states. From site-selective polarized triplet-minus-singlet spectra, an excitonic origin for the 683 nm state was found. The red shift of the 690 nm state is most probably due to strong hydrogen bonding to a protein ligand, as follows from the position of the stretch frequency of the chlorophyll 13(1) keto group (1633 cm(-)(1)) in the fluorescence line narrowing spectrum at 4 K upon red-most excitation. We discuss how the 683 and 690 nm states may be linked to specific chlorophylls in the crystal structure [Zouni, A., Witt, H.-T., Kern, J., Fromme, P., Krauss, N., Saenger, W., and Orth, P. (2001) Nature 409, 739-743].  相似文献   

19.
We have quantitatively analyzed the confocal spectra of colloidal quantum dots (QDs) in rat endothelial progenitor cells (EPCs) by using Leica TCS SP5 Confocal Microscopy System. Comparison of the confocal spectra of QDs located inside and outside EPCs revealed that the interaction between the QDs and EPCs effectively reduces the radius of the exciton confinement inside the QDs so that the excitonic energy increases and the QD fluorescence peak blueshifts. Furthermore, the EPC environment surrounding the QDs shields the QDs so that the excitation of the QDs inside the cells is relatively weak, whereas the QDs outside the cells can be highly excited. At high excitations, the occupation of the ground excitonic state in the QD outside the cells becomes saturated and high-energy states excited, resulting in a large relaxation energy and a broad fluorescence peak. This permits, in concept, to use QD biomarkers to monitor EPCs by characterizing QD fluorescence spectra.  相似文献   

20.
Bothopstoxin-I (BthTX-I) is a homodimeric Lys49-PLA2 homologue from the venom of Bothrops jararacussu in which a single Trp77 residue is located at the dimer interface. Intrinsic tryptophan fluorescence emission (ITFE) quenching by iodide and acrylamide has confirmed that a dimer to monomer transition occurs on reducing the pH from 7.0 to 5.0. Both the monomer and the dimer showed an excitation wavelength-dependent increase in the fluorescence emission maximum, however the excitation curve of the dimer was blue-shifted with respect to the monomeric form. No differences in the absorption or circular dichroism spectra between pH 5.0 and 7.0 were observed, suggesting that this curve shift is due neither to altered electronic ground states nor to exciton coupling of the Trp residues. We suggest that fluorescence resonance energy homotransfer between Trp77 residues at the BthTX-I dimer interface results in excitation of an acceptor Trp population which demonstrates a red-shifted fluorescence emission.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号