首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Site-specific photo crosslinking has been used to investigate the RNA neighborhood of 16S rRNA positions U788/ U789 in Escherichia coli 30S subunits. For these studies, site-specific psoralen (SSP) which contains a sulfhydryl group on a 17 A side chain was first added to nucleotides U788/U789 using a complementary guide DNA by annealing and phototransfer. Modified RNA was purified from the DNA and unmodified RNA. For some experiments, the SSP, which normally crosslinks at an 8 A distance, was derivitized with azidophenacylbromide (APAB) resulting in the photoreactive azido moiety at a maximum of 25 A from the 4' position on psoralen (SSP25APA). 16S rRNA containing SSP, SSP25APA or control 16S rRNA were reconstituted and 30S particles were isolated. The reconstituted subunits containing SSP or SSP25APA had normal protein composition, were active in tRNA binding and had the usual pattern of chemical reactivity except for increased kethoxal reactivity at G791 and modest changes in four other regions. Irradiation of the derivatized 30S subunits in activation buffer produced several intramolecular RNA crosslinks that were visualized and separated by gel electrophoresis and characterized by primer extension. Four major crosslink sites made by the SSP reagent were identified at positions U561/U562, U920/U921, C866 and U723; a fifth major crosslink at G693 was identified when the SSP25APA reagent was used. A number of additional crosslinks of lower frequency were seen, particularly with the APA reagent. These data indicate a central location close to the decoding region and central pseudoknot for nucleotides U788/U789 in the activated 30S subunit.  相似文献   

2.
J H Kim  A G Marshall 《Biochemistry》1990,29(3):632-640
Three different fragments of Bacillus megaterium ribosomal 5S RNA have been produced by enzymatic cleavage with ribonuclease T1. Fragment A consists of helices II and III, fragment B contains helix IV, and fragment C contains helix I of the universal 5S rRNA secondary structure. All (eight) imino proton resonances in the downfield region (9-15 ppm) of the 500-MHz proton FT NMR spectrum of fragment B have been identified and assigned as G80.C92-G81.C91-G82.C90-A83.++ +U89-C84.G88 and three unpaired U's (U85, U86, and U87) in helix IV by proton homonuclear Overhauser enhancement connectivities. The secondary structure in helix IV of the prokaryotic loop is completely demonstrated spectroscopically for the first time in any native or enzyme-cleaved 5S rRNA. In addition, G21.C58-A20.U59-G19.C60-A18.U61 in helix II, U32.A46-G31.C47-C30.G48-C29.G49 in helix III, and G4.C112-G5.C111-U6.G110 in the terminal stem (helix I) have been assigned by means of NOE experiments on intact 5S rRNA and its fragments A and C. Base pairs in helices I-IV of the universal secondary structure of B. megaterium 5S RNA are described.  相似文献   

3.
The synthesis of a new RNA specific bifunctional crosslinking reagent, 1.4-phenyl-diglyoxal, is described which reacts exclusively with guanosines. The properties of the crosslinked products enabled us to develop a straightforward method for identifying the reacted nucleotides. Results obtained with ribosomal 5S RNA of Escherichia coli demonstrate the formation of an intramolecular crosslink between guanosine-2 and guanosine-112 in the stem region.  相似文献   

4.
ABSTRACT

Hammerhead ribozymes are a model system for studying molecular mechanism of RNA catalysis. Physicochemical data-driven mechanistic studies are an indispensable step towards understanding the catalysis of hammerhead ribozymes. Here we characterized a model RNA duplex with catalytically important sheared-type G12-A9 base pair and A9-G10.1 metal ion-binding motif in hammerhead ribozymes. By using high magnetic field NMR, all base proton signals, including catalytic residues, were unambiguously assigned. We further characterized structural features of this RNA molecule and found that it reflects the structural features of the A9-G10.1 motif of hammerhead ribozymes. Therefore, this RNA molecule is suitable for extracting an intrinsic physicochemical properties of catalytically important residues.  相似文献   

5.
The hairpin ribozyme-substrate complex contains two independently folding domains that interact with one another to form a catalytic complex. However, little is known about the key structural elements involved in these tertiary interactions. Here, we report the use of a photochemical crosslinking method to investigate the relative proximity and orientation of the two domains of the hairpin ribozyme. This method allows the incorporation of a photochemical azidophenacyl group at specified positions within synthetic oligoribonucleotides. Photocrosslinking was performed following the assembly of four RNA oligonucleotides into active ribozyme-substrate complexes. Two photoagent attachment sites in the substrate binding strand within domain A (between positions A7-G8 and A10-G11) and three in the 5' strand of domain B (A20-G21, A22-A23 and A24-C25) were studied. Several crosslinks between the substrate binding strand and the 5' segment of domain B were detected. All of the photo agent-specific crosslinked species were dependent upon proper assembly and folding of the ribozyme-substrate complex. In addition, a substrate base mutation (G+1 to A+1) that prevents the docking of the two domains, blocks the crosslink formation. Four interdomain crosslinks (A7-G8/C25-A26 (two species); A10-G11/A22 and A24-C25/C12-G13) have been shown to retain catalytic activity. Taken together, these results indicate that the characterized crosslinks provide important information concerning the alignment of the two domains and accurately reflect the active docked conformation of the molecule.  相似文献   

6.
K M Lee  A G Marshall 《Biochemistry》1986,25(25):8245-8252
In this paper we report the first 1H NMR study of the base-paired secondary structure of yeast 5.8S RNA. On the basis of a combination of homonuclear Overhauser enhancements and temperature dependence of the proton 500-MHz NMR spectrum, we are able to identify and assign eight of the nine base pairs in the most thermally stable helical arm: G116.C137-C117.G136-C118.G135- C119.G134-C120.G133-U121.G132- U122.A131-G123.C130. This arm contains an unusually temperature-stable (to 71 degrees C) segment of four consecutive G.C base pairs. This work constitutes the most direct evidence to date for the existence and base-pair sequence of the GC-rich helix, which is common to most currently popular secondary structural models for eukaryotic 5.8S ribosomal RNA.  相似文献   

7.
We have detected by nucleotide analog interference mapping (NAIM) purine N7 functional groups in Escherichia coli RNase P RNA that are important for tRNA binding under moderate salt conditions (0.1 M Mg2+, 0.1 M NH4+). The majority of identified positions represent highly or universally conserved nucleotides. Our assay system allowed us, for the first time, to identify c7-deaza interference effects at two G residues (G292, G306). Several c7-deazaadenine interference effects (A62, A65, A136, A249, A334, A351) have also been identified in other studies performed at very different salt concentrations, either selecting for substrate binding in the presence of 0.025 M Ca2+ and 1 M NH4+ or self-cleavage of a ptRNA-RNase P RNA conjugate in the presence of 3 M NH4+ or Na+. This indicates that these N7 functional groups play a key role in the structural organization of ribozyme-substrate and -product complexes. We further observed that a c7-deaza modification at A76 of tRNA interferes with tRNA binding to and ptRNA processing by E. coli RNase P RNA. This finding combined with the strong c7-deaza interference at G292 of RNase P RNA supports a model in which substrate and product binding to E. coli RNase P RNA involves the formation of intermolecular base triples (A258-G292-C75 and G291-G259-A76).  相似文献   

8.
9.
Expression of the structural proteins of human immunodeficiency virus type 1 (HIV-1) requires the direct interaction of multiple copies of the viral protein Rev with its target RNA, the Rev response element (RRE). RRE is a complex 351-nt RNA that is highly structured and located within the viral env gene. During initial Rev-RRE recognition, Rev binds with high affinity to a bubble structure located within the RRE RNA stem-loop II. We have used a site-specific photocrosslinking method based on 6-thioguanosine (6-thioG) photochemistry to probe the conformation of the high-affinity binding site of RRE RNA and its interactions with Rev protein under physiological conditions. A minimal duplex RNA containing the bubble region of RRE and 12 flanking base pairs was synthesized chemically. Two different RRE constructs with a single photoactive nucleoside (6-thio-dG or 6-thioG) at position 47 or 48 were synthesized. Upon UV irradiation, 6-thioG at both positions formed interstrand covalent crosslinks in RRE RNA. Mapping of crosslink sites by RNA sequencing revealed that 6-thioG at position 47 or 48 crosslinked to A73. In the presence of Rev, both RNA-RNA and RNA-protein crosslinks were observed, however, the RNA-RNA crosslink site was unchanged. Our results provide direct evidence that, during RNA-protein recognition, Rev is in close proximity to O6 of G47 and G48 in the major groove of RRE RNA. Our results also show that the bubble region of RRE RNA has a biologically relevant structure where G47 and G48 are in close proximity to A73 and this RNA structure is not changed significantly upon Rev binding. We propose that Rev protein recognizes and binds to specific structural elements of RRE RNA containing non-Watson-Crick base pairs and such structures could be a determinant for recognition by other RNA-binding proteins. Our site-specific crosslinking methods provide a general approach to capture dynamic states of biologically relevant RNA structures that are otherwise missed by NMR and X-ray crystallographic studies.  相似文献   

10.
The nucleotide sequence of a particular T1 oligonucleotide found in 41S and 28S RNAs of several cellular cell lines (human, mouse, rat and chicken fibroblast) but absent in 45S ribosomal RNA has been deduced. Its primary structure : A-U-U*-G*-psi-U-C-A-C-C-C-A-C-U-A-A-U-A-Gp shows the presence of a modified G residue which explains the existence of this oligonucleotide in the T1 fingerprint of 41S RNA and 28S. Its absence on the 45S RNA T1 fingerprint is accounted for by a late modification.  相似文献   

11.
葡萄糖-6-磷酸脱氢酶(G6PD)在人皮肤黑色素瘤A375细胞中处于高表达与高活性状态, 但G6PD在黑色素瘤发生发展过程中的作用及其具体机制尚不明确.本文在前期运用 siRNA方法构建G6PD敲减的黑色素瘤A375稳转细胞(A375-G6PDΔ)基础上,构建表达载体pBabe-puro-G6PDWT在A375-G6PDΔ细胞中过表达野生型的G6PD基因,从而构建G6PD表达恢复的稳转细胞(A375-G6PDΔ-G6PDWT).3株细胞A375-WT、A375-G6PDΔ和 A375-G6PDΔ-G6PDWT经G6PD酶活性测定、MTT测定、克隆形成实验、流式细胞仪分析细胞周期和Western 印迹检测.结果显示,A375-G6PDΔ-G6PDWT细胞的G6PD蛋白表达量 (0.847 ± 0.080)及其活性(0.394 ± 0.029)分别是A375-G6PDΔ的3.28倍(P<0.01) 和7.34倍(P<0.01),分别是A375-WT细胞的91-57%和2.12倍(P<0.05).与A375-WT细 胞相比,A375-G6PDΔ细胞G0/G1期细胞数增加,S期细胞数减少,增殖指数PI降低了25-70%(P<0.05),细胞周期蛋白D1/D2、细胞周期蛋白E表达分别下降37.4%、54.3% (P<0.01)和17.3%;而A375-G6PDΔ-G6PDWT细胞呈现G1/S期阻滞解除,细胞周期蛋白D1/D2蛋白分别恢复到A375-WT细胞的89.5%和87.6%,细胞周期蛋白E表达未见 恢复,呈现生长增殖和克隆形成率的恢复并接近于A375-WT细胞. 结果提示,G6PD通 过细胞周期蛋白D1/D2调控人皮肤黑色素瘤A375细胞G1期向S期转换的进程,这为黑色 素瘤发病机制的研究提供了新的思路.  相似文献   

12.
L A Brewer  S Goelz  H F Noller 《Biochemistry》1983,22(18):4303-4309
We have used the reversible, bifunctional reagent ethylene glycol bis[3-(2-ketobutyraldehyde) ether] to cross-link RNA to protein within intact ribosomal subunits from Escherichia coli. Here we describe the synthesis of this compound (termed bikethoxal) and demonstrate its ability to form covalent attachments between RNA and protein in the 5S RNA-L18 complex and within 30S and 50S ribosomal subunits. The reagent is a symmetrical dicarbonyl compound and reacts with guanine in single-stranded RNA and with arginine in protein. RNA-protein cross-links generated with this reagent are stable, as demonstrated by the comigration of 35S-labeled ribosomal proteins with ribosomal RNA on neutrally buffered sodium dodecyl sulfate (SDS)-agarose gels. However, the cross-linked product is unstable in mildly basic conditions, allowing the identification of the linked macromolecules by conventional techniques. The reagent is potentially capable of cross-linking any combination of single-stranded RNA, single-stranded DNA, or protein; it should prove a useful probe of the RNA-protein proximities within the E. coli ribosome, since the SDS-agarose gel system we describe provides a rapid method of optimizing this RNA--protein cross-linking reaction.  相似文献   

13.
L H Chang  A G Marshall 《Biochemistry》1986,25(10):3056-3063
Three distinct G.U base pairs in Bacillus subtilis 5S RNA have been identified via homonuclear Overhauser enhancements (NOE) of their low-field (9-15 ppm) proton Fourier transform nuclear magnetic resonances at 11.75 T. With these G.U resonances as starting points, short segments of NOE connectivity can be established. One G.U-G.C-G.C segment (most probably G4.C112-G5.C111-U6.G110) can definitely be assigned to the terminal helix. The existence of at least part of the terminal helical stem of the secondary structure of a Gram-positive bacterial 5S RNA has thus been established for the first time by direct experimental observation. Addition of Mg2+ produces almost no conformational changes in the terminal stem but results in major conformational changes elsewhere in the structure, as reflected by changes in the 1H 500-MHz low-field NMR spectrum. Assignment of the two remaining G.U base pairs will require further experiments (e.g., enzymatic-cleavage fragments). Finally, the implications of these results for analysis of RNA secondary structure are discussed.  相似文献   

14.
From previous work it was known that U3 RNA is hydrogen bonded to nucleolar 28 S to 35 S RNA and can be covalently crosslinked to RNA of greater than 28 S by irradiation in vivo with long-wave ultraviolet light in the presence of 4'-aminomethyl-4,5',8-trimethylpsoralen (AMT psoralen). Here we use a novel sandwich blot technique to identify these large nucleolar RNA species as rRNA precursors and to map the site(s) of crosslinking in vivo. The crosslink occurs between one or more residues near the 5' end of U3 RNA and a 380 nucleotide region of the rat rRNA external transcribed spacer (ETS1). We have sequenced this region of the rat ETS and we show that it includes an RNA-processing site analogous to those previously mapped to approximately 3.5 kb upstream from the 5' end of mouse and human 18 S rRNAs.  相似文献   

15.
We have employed new methodology to obtain 23S RNA fragments which includes a) the digestion of the RNA within 50S subunits and b) the limited hydrolysis of the 13S and 18S fragments. By comparing all 23S RNA fragments, obtained heretofore, we have characterised and aligned 24 sections of this RNA spanning nearly the entire molecule. These results allow the localisation of any new 23S RNA fragment by comparison of the fingerprint of its T1 ribonuclease digest to the characteristic ones of the different sections. In this way we obtained a more definite localisation of the binding sites of the 50S proteins L1, L5, L9, L18, L20, L23 and L25. We also specified a ribonuclease sensitive region of 23S RNA in native 50S subunits, extending from the 1100th nucleotide from the 5' end to the 1000th nucleotide from the 3' end; this region contains a cluster of 5 modified nucleotides and may be at the subunit interface.  相似文献   

16.
17.
ABC14.5 (Rpb8) is a eukaryotic subunit common to all three nuclear RNA polymerases. In Saccharomyces cerevisiae, ABC14.5 (Rpb8) is essential for cell viability, however its function remains unknown. We have cloned and characterised the Schizosaccharomyces pombe rpb8(+) cDNA. We found that S.pombe rpb8, unlike the similarly diverged human orthologue, cannot substitute for S.cerevisiae ABC14. 5 in vivo. To obtain information on the function of this RNA polymerase shared subunit we have used S.pombe rpb8 as a naturally altered molecule in heterologous expression assays in S.cerevisiae. Amino acid residue differences within the 67 N-terminal residues contribute to the functional distinction of the two yeast orthologues in S.cerevisiae. Overexpression of the S.cerevisiae largest subunit of RNA polymerase III C160 (Rpc1) allows S.pombe rpb8 to functionally replace ABC14.5 in S.cerevisiae, suggesting a specific genetic interaction between the S.cerevisiae ABC14.5 (Rpb8) and C160 subunits. We provide further molecular and biochemical evidence showing that the heterologously expressed S.pombe rpb8 molecule selectively affects RNApolymerase III but not RNA polymerase I complex assembly. We also report the identification of a S.cerevisiae ABC14.5-G120D mutant which affects RNA polymerase III.  相似文献   

18.
We have investigated the oligomerization and intracellular transport of the membrane glycoproteins of Punta Toro virus, a member of the Phlebovirus genus of the family Bunyaviridae, which is assembled by budding in the Golgi complex. By using one- or two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis, chemical cross-linking, and sucrose gradient centrifugation, we found that the majority of the G1 and G2 glycoproteins are assembled into noncovalently linked G1-G2 heterodimers. At the same time, a fraction of the G2 protein, possibly produced independently of the G1 protein, is assembled into G2 homodimers. Kinetic analysis indicates that heterodimerization occurs between newly synthesized G1 and G2 within 3 min after protein synthesis, and that the G1 and G2 glycoproteins are associated as dimeric forms both during transport and after accumulation in the Golgi complex. Analysis of a G1-truncated G2 mutant, which is also targeted to the Golgi complex, showed that these molecules also assemble into dimeric forms, which are linked by disulfide bonds. Both the G1-G2 heterodimer and the G2 homodimer were found to be able to exit from the endoplasmic reticulum. Differences in transport kinetics observed for the G1 and G2 proteins may be due to the differences in the transport efficiency between the G1-G2 heterodimer and the G2 homodimer from the endoplasmic reticulum to the Golgi complex. These and previous results (S.-Y. Chen, Y. Matsuoka, and R.W. Compans, Virology 183:351-365, 1991) suggest that Golgi retention of the G2 homodimer occurs by association with the G1-G2 heterodimer, whereas the Golgi targeting of the G1-G2 heterodimer occurs by a specific retention mechanism.  相似文献   

19.
HeLa cell polysomes were oxidized with sodium periodate and reduced with sodium borohydride to induce covalent crosslinks between ribosomal RNA and nearby proteins. We proved that RNA was tryly crosslinked to protein in oxidized, and not in control, samples using denaturing cesium trichloroacetate density gradients and phenol extraction. By both one- and two-dimensional gel analysis, we found that protein S3a can be crosslinked to 18S RNA, protein L3 to 28S RNA, and proteins L7′ and L23′ to 5.8S RNA. Because of the specificity of the periodate reaction, and since we were able to crosslink protein S1 to 16S RNA in Escherichia,coli 30S ribosomal subunits, it is likely that we have crosslinked proteins to the 3′OH ends of HeLa polysomal RNAs.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号