首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 353 毫秒
1.
Biased population sex ratios can alter optimal male mating strategies, and allocation to reproductive traits depends on nutrient availability. However, there is little information on how nutrition interacts with sex ratio to influence the evolution of pre-copulatory and post-copulatory traits separately. To address this omission, we test how male mating success and reproductive investment evolve under varying sex ratios and adult diet in Drosophila melanogaster, using experimental evolution. We found that sex ratio and nutrient availability interacted to determine male pre-copulatory performance. Males from female-biased populations were slow to mate when they evolved under protein restriction. By contrast, we found direct and non-interacting effects of sex ratio and nutrient availability on post-copulatory success. Males that evolved under protein restriction were relatively poor at suppressing female remating. Males that evolved under equal sex ratios fathered more offspring and were better at supressing female remating, relative to males from male-biased or female-biased populations. These results support the idea that sex ratios and nutrition interact to determine the evolution of pre-copulatory mating traits, but independently influence the evolution of post-copulatory traits.  相似文献   

2.
Local mate competition (LMC) occurs when male relatives compete for mating opportunities, and this may favour the evolution of female-biased sex allocation. LMC theory is among the most well developed and empirically supported topics in behavioural ecology, clarifies links between kin selection, group selection and game theory, and provides among the best quantitative evidence for Darwinian adaptation in the natural world. Two striking invariants arise from this body of work: the number of sons produced by each female is independent of both female fecundity and also the rate of female dispersal. Both of these invariants have stimulated a great deal of theoretical and empirical research. Here, we show that both of these invariants break down when variation in female fecundity and limited female dispersal are considered in conjunction. Specifically, limited dispersal of females following mating leads to local resource competition (LRC) between female relatives for breeding opportunities, and the daughters of high-fecundity mothers experience such LRC more strongly than do those of low-fecundity mothers. Accordingly, high-fecundity mothers are favoured to invest relatively more in sons, while low-fecundity mothers are favoured to invest relatively more in daughters, and the overall sex ratio of the population sex ratio becomes more female biased as a result.  相似文献   

3.
A field survey of plant and flower sex ratio and secondary sex characteristics was made in Silene alba. Female-biased plant sex ratios were found, as seems typical for the species. Sex ratio distribution correlated with a gradient of soil moisture (with the more moist area having a more female-biased ratio) and with changes in the density of Silene (intermediate and higher density areas having greater female bias). The floral sex ratio was significantly female-biased only at the site that was most female-biased in terms of plant sex ratio. Otherwise the population of flowers was significantly male-biased. Male and female plants harvested from the field differed in secondary sexual characteristics. Males had more flowers and invested proportionately more biomass in leaf, but less in root, stem and reproductive tissue than did females. Although both males and females were larger in terms of total dry weight at the moist site, males produced more flowers at the driest (high density) site. Here the female bias in plant sex ratio was intermediate, but the floral sex ratio was significantly male-biased. A glasshouse experiment was performed in which plants were grown at four densities. Density significantly influenced plant survivorship and the probability of flowering, and increased female bias in the pots, but it did not affect patterns of biomass allocation in flowering plants. Patterns of male and female biomass allocation did not differ in the experiment, except in terms of reproductive allocation (greater in females) and allocation to leaf, greater in males, but only at the lowest density. This work urges caution in interpreting differences between males and females in the field as secondary sex characteristics, since we find such properties to be overlapping under experimental conditions. It supports the idea that males and females of a species may sustain different reproductive output under differing conditions.  相似文献   

4.
1.?Habitat selection can affect individual fitness, and therefore, individuals are expected to assess habitat quality of potential breeding sites before settlement. 2.?We investigated the role of social environment on juvenile dispersal behaviour in the great tit (Parus major). Two main contradictory hypotheses can be formulated regarding social effects on juvenile dispersal as follows: (i) High fledgling density and sex ratio may enhance the intensity of local (kin) competition and, therefore, reduce individual survival chance, enhance emigration and reduce settlement ('repulsion' hypothesis) (ii) Alternatively, high fledgling density and sex ratio may signal high-quality habitat or lead to aggregation and thus increase individual survival chance, reduce emigration and enhance settlement ('attraction' hypothesis). 3.?To disentangle positive from negative effects of high density and male-biased sex ratio on dispersal, we manipulated the social composition of the fledgling population in 12 semi-isolated nest-box areas (plots) via a change of fledgling density (low/high) as well as fledgling sex ratio (female-biased/balanced/male-biased) across 3?years. We then tested whether experimental variation in male and female fledgling densities affected variation in local survival, emigration and settlement of juveniles, and whether social effects on survival and dispersal support the 'repulsion' or 'attraction' hypothesis. 4.?We found no experimental effects on local survival and emigration probabilities. However, consistent with the 'attraction' hypothesis, settlement was significantly and positively affected by local experimental sex ratio in each of the study years: both male and female juveniles avoided female-biased plots and settled more in plots that were balanced and male-biased the previous year. 5.?Our study provides unprecedented experimental evidence that local sex ratio plays a causal role in habitat selection. We suggest that settlers avoid female-biased plots because a high proportion of females may reflect the absence or the low quality of local resources in the habitat. Alternatively, male territory acquisition may be facilitated by a high local density of 'candidate' males, and therefore, juveniles were less successful in settling in female-biased plots.  相似文献   

5.
The theory of constrained sex allocation posits that when a fraction of females in a haplodiploid population go unmated and thus produce only male offspring, mated females will evolve to lay a female-biased sex ratio. I examined evidence for constrained sex ratio evolution in the parasitic hymenopteran Uscana semifumipennis. Mated females in the laboratory produced more female-biased sex ratios than the sex ratio of adults hatching from field-collected eggs, consistent with constrained sex allocation theory. However, the male with whom a female mated affected her offspring sex ratio, even when sperm was successfully transferred, suggesting that constrained sex ratios can occur even in populations where all females succeed in mating. A positive relationship between sex ratio and fecundity indicates that females may become sperm-limited. Variation among males occurred even at low fecundity, however, suggesting that other factors may also be involved. Further, a quantitative genetic experiment found significant additive genetic variance in the population for the sex ratio of offspring produced by females. This has only rarely been demonstrated in a natural population of parasitoids, but is a necessary condition for sex ratio evolution. Finally, matings with larger males produced more female-biased offspring sex-ratios, suggesting positive selection on male size. Because the great majority of parasitic hymenoptera are monandrous, the finding of natural variation among males in their capacity to fertilize offspring, even after mating successfully, suggests that females may often be constrained in the sex allocation by inadequate number or quality of sperm transferred.  相似文献   

6.
Studies on sex ratios in social insects provide among the most compelling evidence for the importance of kin selection in social evolution. The elegant synthesis of Fisher's sex ratio principle and Hamilton's inclusive fitness theory predicts that colony-level sex ratios vary with the colonies' social and genetic structures. Numerous empirical studies in ants, bees, and wasps have corroborated these predictions. However, the evolutionary optimization of sex ratios requires genetic variation, but one fundamental determinant of sex ratios - the propensity of female larvae to develop into young queens or workers ("queen bias") - is thought to be largely controlled by the environment. Evidence for a genetic influence on sex ratio and queen bias is as yet restricted to a few taxa, in particular hybrids. Because of the very short lifetime of their queens, ants of the genus Cardiocondyla are ideal model systems for the study of complete lifetime reproductive success, queen bias, and sex ratios. We found that lifetime sex ratios of the ant Cardiocondyla kagutsuchi have a heritable component. In experimental single-queen colonies, 22 queens from a genetic lineage with a highly female-biased sex ratio produced significantly more female-biased offspring sex ratios than 16 queens from a lineage with a more male-biased sex ratio (median 91.5% vs. 58.5% female sexuals). Sex ratio variation resulted from different likelihood of female larvae developing into sexuals (median 50% vs. 22.6% female sexuals) even when uniformly nursed by workers from another colony. Consistent differences in lifetime sex ratios and queen bias among queens of C. kagutsuchi suggest that heritable, genetic or maternal effects strongly affect caste determination. Such variation might provide the basis for adaptive evolution of queen and worker strategies, though it momentarily constrains the power of workers and queens to optimize caste ratios.  相似文献   

7.
In species with polygynous mating systems, females are regarded as food-limited, while males are limited by access to mates. When local density increases, forage availability declines, while mate access for males may increase due to an increasingly female-biased sex ratio. Density dependence in emigration rates may consequently differ between sexes. Here, we investigate emigration using mark-recovery data from 468 young red deer Cervus elaphus marked in Snillfjord, Norway over a 20-year period when the population size has increased sixfold. We demonstrate a strong negative density-dependent emigration rate in males, while female emigration rates were lower and independent of density. Emigrating males leaving the natal range settled in areas with lower density than expected by chance. Dispersing males moved 42 per cent longer at high density in 1997 (37 km) than at low density in 1977 (26 km), possibly caused by increasing saturation of deer in areas surrounding the marking sites. Our study highlights that pattern of density dependence in dispersal rates may differ markedly between sexes in highly polygynous species. Contrasting patterns reported in small-scale studies are suggestive that spatial scale of density variation may affect the pattern of temporal density dependence in emigration rates and distances.  相似文献   

8.
We consider a haploid, hermaphrodite population subdivided into an infinite number of demes of finite size N. Assuming recurrent mutation, random union of gametes, partial dispersal, genetic drift, and incorporating group competition, a diffusion approximation is used to describe the evolution of sex ratio, corresponding to sex allocation to male versus female functions. The stationary distribution is deduced. In presence of group selection, a female-biased sex ratio in the whole population is found to be optimal in the sense that an allele coding for this sex ratio is always more frequent at equilibrium when segregating with another allele coding for a different sex ratio than for the same sex ratio. Numerical studies are presented to check the validity and accuracy of this prediction.Research supported in part by grants from NSERC of Canada and FCAR of Quebec. This work is part of the first authors Ph.D. thesis at the Université de Montréal under the supervision of the second author.Send offprint requests to: Sabin Lessard  相似文献   

9.
Natal dispersal enables population connectivity, gene flow and metapopulation dynamics. In polygynous mammals, dispersal is typically male-biased. Classically, the ‘mate competition’, ‘resource competition’ and ‘resident fitness’ hypotheses predict density-dependent dispersal patterns, while the ‘inbreeding avoidance’ hypothesis posits density-independent dispersal. In a leopard (Panthera pardus) population recovering from over-harvest, we investigated the effect of sex, population density and prey biomass, on age of natal dispersal, distance dispersed, probability of emigration and dispersal success. Over an 11-year period, we tracked 35 subadult leopards using VHF and GPS telemetry. Subadult leopards initiated dispersal at 13.6 ± 0.4 months. Age at commencement of dispersal was positively density-dependent. Although males (11.0 ± 2.5 km) generally dispersed further than females (2.7 ± 0.4 km), some males exhibited opportunistic philopatry when the population was below capacity. All 13 females were philopatric, while 12 of 22 males emigrated. Male dispersal distance and emigration probability followed a quadratic relationship with population density, whereas female dispersal distance was inversely density-dependent. Eight of 12 known-fate females and 5 of 12 known-fate male leopards were successful in settling. Dispersal success did not vary with population density, prey biomass, and for males, neither between dispersal strategies (philopatry vs. emigration). Females formed matrilineal kin clusters, supporting the resident fitness hypothesis. Conversely, mate competition appeared the main driver for male leopard dispersal. We demonstrate that dispersal patterns changed over time, i.e. as the leopard population density increased. We conclude that conservation interventions that facilitated local demographic recovery in the study area also restored dispersal patterns disrupted by unsustainable harvesting, and that this indirectly improved connectivity among leopard populations over a larger landscape.  相似文献   

10.
Floral sex allocation (weight of male flower buds over weight of female flower buds) was examined at the levels of current-year shoot, individual tree and population, and the tree individual level and population level floral sex ratio was explained as a consequence of the behavior of current-year shoots in the shoot-level monoecious (flowering current-year shoots have both male and female flowers) species, Siberian alder (Alnus hirsuta var. sibirica). The current-year shoot level floral sex allocation was not size-dependent and not different over years. However, in the year when the reproductive intensity was high, individual tree level floral sex allocation was size-dependent and the population level floral sex allocation was relatively female-biased. The female-biased floral sex allocation at the population level resulted from many gynoecious shoots (current-year shoots which have only female flowers). These results suggest that the floral sex allocation of Siberian alder was controlled not by changing the floral sex allocation of each current-year shoot, but by shifting the sex expression of current-year shoots from shoot-level monoecy to shoot-level gynomonoecy.  相似文献   

11.
Sex allocation theories provide excellent opportunities to investigate not only the extent to which individuals' behaviour is adaptive, but also how they use relevant information for their decision-making. Here, we investigated whether female parasitoid wasps recognize the sex ratios of other females and adjust their laying sex ratios accordingly. Specifically, we tested the prediction of reciprocal cooperation over sex allocation. Theory predicts more female-biased (cooperative) sex ratios than in the interest of individual benefit, when a restricted number of ovipositing females interact for a long period and their offspring mate within the natal patch. This is because the female-biased sex ratio reduces competition for mates among the male offspring of the females and increases the overall reproductive productivity of the patch. In this case, females would be expected to respond to more even (noncooperative) sex ratios by others and to retaliate by also producing a less female-biased sex ratio to avoid exploitation by defectors. However, contrary to this prediction, our experiment using a sterile male technique showed that female Melittobia australica did not change their offspring sex ratios in response to the sex ratios produced by other females. This suggests that their extremely female-biased sex ratios cannot be explained by reciprocity. A meta-analysis of studies examining sex recognition ability in parasitoid wasps also did not support the predicted pattern of relevant sex ratio adjustment, suggesting that parasitoid females do not possess this ability. Here, we discuss the conditions necessary for the evolution of reciprocity linked to recognition ability.  相似文献   

12.
In polygynous mammals, it is commonly observed that both sex ratios at birth and dispersal are male biased. This has been interpreted as resulting from low female dispersal causing high female local resource competition, which would select for male-biased sex ratios. However, a female-biased sex ratio can be selected despite lower female than male-biased dispersal. This will occur if the low female dispersal is close to the optimal dispersal rate, while the male dispersal is not close to the optimal dispersal rate. The actual outcome depends on the joint evolution of sex-biased dispersal and sex ratio. Earlier analyses of joint evolution imply that there will be no sex-ratio nor dispersal biases at the joint evolutionarily stable strategy, thus they do not explain the data. However, these earlier analyses assume no intersexual competition for resources. Here, we show that when males and females compete with each other for access to resources, male-biased dispersal will be associated with male-biased birth sex ratio, as is commonly observed. A trend toward male-biased birth sex ratios is also expected if there is intersexual local resource competition and if birth sex ratio is constrained so that it cannot depart from balanced sex ratio.  相似文献   

13.
Sex-biased dispersal is a common phenomenon in birds and mammals. Competition for mates has been argued to be an important selective pressure favouring dispersal. Sexual differences in the level of intrasexual competition may produce asymmetries in the costs-benefits balance of dispersal and philopatry for males and females, which may favour male-biased dispersal in polygynous species such as most mammals. This being the case, condition-dependent dispersal predicts that male-bias should decrease if mating competition relaxes. We test this expectation for red deer, where male-biased dispersal is the norm. In southwestern Spain, red deer populations located in nonfenced hunting estates presented altered structures with sex ratio strongly biased to females and high proportion of young males. As a consequence, mate competition in these populations was lower than in other, most typical red deer populations. We found that, under such conditions of altered population structure, dispersal was female-biased rather than male-biased. Additionally, mate competition positively related to male dispersal but negatively to female dispersal. Other factors such as resource competition, age of individuals and sex ratio were not related to male or female dispersal. Males may not disperse if intrasexual competition is low and then females may disperse as a response to male philopatry. We propose hypotheses related to female mate choice to explain female dispersal under male philopatry. The shift of the sex-biased dispersal pattern along the gradient of mate competition highlights its condition-dependence as well as the interaction between male and female dispersal in the evolution of sex-biased dispersal.  相似文献   

14.
The median proportion of investment in females among 11 populations of seven bumble bee (Bombus) species was 0.32 (range 0.07 to 0.64). By contrast, two species of workerless social parasites in the related genus Psithyrus had female-biased sex allocation, the reasons for which remain unclear. Male-biased sex allocation in Bombus contradicts the predictions of Trivers and Hare''s sex ratio model for the social Hymenoptera, which are that the population sex investment ratio should be 0.5 (1:1) under queen control and 0.75 (3:1 females:males) under worker control (assuming single, once-mated, outbred queens and non-reproductive workers). Male bias in Bombus does not appear to be either an artefact, or purely the result of symbiotic sex ratio distorters. According to modifications of the Trivers–Hare model, the level of worker male-production in Bombus is insufficient to account for observed levels of male bias. There is also no evidence that male bias arises from either local resource competition (related females compete for resources) or local mate enhancement (related males cooperate in securing mates). Bulmer presented models predicting sexual selection for protandry (males are produced before females) in annual social Hymenoptera and, as a consequence (given some parameter values), male-biased sex allocation. Bumble bees fit the assumptions of Bulmer''s models and are protandrous. These models therefore represent the best current explanation for the bees'' male-biased sex investment ratios. This conclusion suggests that the relative timing of the production of the sexes strongly influences sex allocation in the social Hymenoptera.  相似文献   

15.
Steifetten Ø  Dale S 《Oecologia》2012,168(1):53-60
Dispersal is expected to enhance individual fitness, and individuals should thus disperse from areas with poor conditions to areas with more favourable conditions. Few studies have compared conditions before and after dispersal of the same individuals, and in birds little is known about the effects of sex ratio and female density on male dispersal decisions. In this study we examined various fitness-related parameters that adult male ortolan buntings, Emberiza hortulana, might use as cues in their decisions to disperse and settle. The study population has a strongly male-biased sex ratio. Using pairwise comparisons of pre- and post-dispersal conditions, we found that males moved from areas with low female density and a severely male-biased sex ratio to areas with higher female density and a less male-biased sex ratio. Male density and male age structure did not affect male dispersal and settlement. The sex ratio of the pre-dispersal sites was below the population average, but post-dispersal sites were not significantly better than the population average. This suggests that dispersal was triggered by poor conditions, whereas settlement may have been unrelated to the conditions at the new site. In the year of dispersal, males that undertook dispersal were less successful at acquiring a female than males that remained faithful to the site, but in subsequent years there was no difference. We suggest that dispersal might be adaptive under more natural conditions with a more balanced sex ratio. These results show that male ortolan buntings abandon areas with low female density and a severely male-biased sex ratio, and thereby end up in better places, although probably not better than the population average.  相似文献   

16.
The gregarious parasitoid Cotesia glomerata (L.) is often presumed to possess the characteristic attributes of a species that manifests local mate competition (LMC), as it commonly produces female-biased broods. However, our field surveys of sex ratio and laboratory observations of adult behaviour showed that this species is subject to partial local mate competition caused by natal dispersal. On average, 30% of males left their natal patch before mating, with the proportion of dispersing males increasing with an increase in the patch's sex ratio (i.e. proportion of males). Over 50% of females left their natal patch before mating, and only 27.5% of females mated with males emerging from the same natal patch. Although females showed no preference between males that were and were not their siblings, broods from females that mated with siblings had a significantly higher mean brood sex ratio (0.56) than broods from females that mated with nonsiblings (0.39). Furthermore, brood sex ratios increased as inbreeding was intensified over four generations. A field population of this wasp had a mean brood sex ratio of 0.35 over 3 years, which conformed well to the evolutionarily stable strategy sex ratio (r=0.34) predicted by Taylor's partial sibmating model for haplodiploid species. These results suggest that the sex allocation strategy of C. glomerata is based on both partial local mate competition in males and inbreeding avoidance in females. In turn, this mating system plays a role in the evolution of natal dispersal behaviour in this species.Copyright 2003 Published by Elsevier Ltd on behalf of The Association for the Study of Animal Behaviour.   相似文献   

17.
F Molnár  T Caraco  G Korniss 《PloS one》2012,7(8):e43364
We model sex-structured population dynamics to analyze pairwise competition between groups differing both genetically and culturally. A sex-ratio allele is expressed in the heterogametic sex only, so that assumptions of Fisher's analysis do not apply. Sex-ratio evolution drives cultural evolution of a group-associated trait governing mortality in the homogametic sex. The two-sex dynamics under resource limitation induces a strong Allee effect that depends on both sex ratio and cultural trait values. We describe the resulting threshold, separating extinction from positive growth, as a function of female and male densities. When initial conditions avoid extinction due to the Allee effect, different sex ratios cannot coexist; in our model, greater female allocation always invades and excludes a lesser allocation. But the culturally transmitted trait interacts with the sex ratio to determine the ecological consequences of successful invasion. The invading female allocation may permit population persistence at self-regulated equilibrium. For this case, the resident culture may be excluded, or may coexist with the invader culture. That is, a single sex-ratio allele in females and a cultural dimorphism in male mortality can persist; a low-mortality resident trait is maintained by father-to-son cultural transmission. Otherwise, the successfully invading female allocation excludes the resident allele and culture and then drives the population to extinction via a shortage of males. Finally, we show that the results obtained under homogeneous mixing hold, with caveats, in a spatially explicit model with local mating and diffusive dispersal in both sexes.  相似文献   

18.
There is much interest in understanding how population demography impacts upon social evolution. Here, we consider the impact of rate and pattern of dispersal upon a classic social evolutionary trait--the sex ratio. We recover existing analytical results for individual dispersal, and we extend these to allow for budding dispersal. In particular, while a cancelling of relatedness and kin competition effects means that the sex ratio is unaffected by the rate of individual dispersal, we find that a decoupling of relatedness and kin competition means that budding dispersal favours increasingly female-biased sex ratios. More generally, our analysis illustrates the relative ease with which biological problems involving class structure can be solved using a kin selection approach to social evolution theory.  相似文献   

19.
Sex allocation theory for simultaneous hermaphrodites has focused primarily on the effects of sperm competition, but the role of mate choice has so far been neglected. We present a model to study the coevolution of cryptic female choice and sex allocation in simultaneous hermaphrodites. We show that the mechanism of cryptic female choice has a strong effect on the evolutionary outcome: if individuals remove a fixed proportion of less-preferred sperm, the optimal sex allocation is more female biased (i.e. more biased towards egg production) than without cryptic female choice; conversely, if a fixed amount of sperm is removed, sex allocation is less female-biased than without cryptic female choice, and can easily become male biased (i.e. biased towards sperm production). Under male-biased sex allocation, hermaphroditism can become unstable and the population can split into pure males and hermaphrodites with a female-biased allocation. We discuss the idea that the evolution of sex allocation may depend on the outcome of sexual conflict over the fate of received sperm: the sperm donor may attempt to manipulate or by-pass cryptic female choice and the sperm recipient is expected to resist such manipulation. We conclude that cryptic female choice can have a strong influence on sex allocation in simultaneous hermaphrodites and strongly encourage empirical work on this question.  相似文献   

20.
In experimentally infected insects, the sex ratio of first generation nematodes of five species of Steinernema was female-biased (male proportion 0.35-0.47). There was a similar female bias when the worms developed in vitro (0.37-0.44), indicating that the bias in these species is not due to a lower rate of infection by male infective juveniles (IJs). Experimental conditions influenced the proportion of males establishing in insects, indicating that male and female IJs differ in their behaviour. However, there was no evidence that males are the colonising sex in any species, contrary to what has previously been proposed. Time of emergence from the host in which the nematodes had developed influenced sex ratios in experimental infections. In three species (Steinernema longicaudum, Steinernema glaseri and Steinernema kraussei), early emerged nematodes had a higher proportion of males than those that emerged later, with the reverse trend for Steinernema carpocapsae and Steinernema feltiae. In a more detailed in vitro study of S. longicaudum, the proportion of males was similar whether or not the nematodes passed through the developmentally arrested IJ stage, indicating that the female bias is not due to failure of males to exit this stage. The sex ratio in vitro was independent of survival rate from juvenile to adult, and was female-biased even when all juveniles developed, indicating that the bias is not explained by failure of males to develop to adults. The female-biased sex ratio characteristic of Steinernema populations appears to be present from at least the early juvenile stage. We hypothesise that the observed female bias is the population optimal sex ratio, a response to cycles of local mate competition experienced by nematodes reproducing within insect hosts interspersed with periods of outbreeding with less closely related worms following dispersal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号