首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Despite extensive research, the mechanisms underlying rhabdomyolysis‐induced acute kidney injury (AKI) remain largely elusive. In this study, we established both cell and murine models of rhabdomyolysis‐induced AKI by using myoglobin and glycerin, respectively, and provided evidence that protein kinase Cδ (PKC‐δ) was activated in both models and subsequently promoted cell apoptosis. Moreover, we found that this detrimental effect of PKC‐δ activation can be reversed by its pharmaceutical inhibitor rottlerin. Furthermore, we detected and confirmed the existence of PKC‐δ‐mediated myoglobin‐induced cell apoptosis and the expression of TNF‐α and IL1‐β via regulation of the p38MAPK and ERK1/2 signalling pathways. In summary, our research revealed the role of PKC‐δ in renal cell apoptosis and suggests that PKC‐δ is a viable therapeutic target for rhabdomyolysis‐induced AKI.  相似文献   

3.
4.
5.
6.
METTL3 is an important regulatory molecule in the process of RNA biosynthesis. It mainly regulates mRNA translation, alternative splicing and microRNA maturation by mediating m6A‐dependent methylation. Interleukin 1β (IL‐1β) is an important inducer of cartilage degeneration that can induce an inflammatory cascade reaction in chondrocytes and inhibit the normal biological function of cells. However, it is unclear whether IL‐1β is related to METTL3 expression or plays a regulatory role in endplate cartilage degeneration. In this study, we found that the expression level of METTL3 and methylation level of m6A in human endplate cartilage with different degrees of degeneration were significantly different, indicating that the methylation modification of m6A mediated by METTL3 was closely related to the degeneration of human endplate cartilage. Next, through a series of functional experiments, we found that miR‐126‐5p can play a significant role in IL‐1β–induced degeneration of endplate chondrocytes. Moreover, we found that miR‐126‐5p can inhibit the PI3K/Akt signalling pathway by targeting PIK3R2 gene, leading to the disorder of cell vitality and functional metabolism. To further determine whether METTL3 could regulate miR‐126‐5p maturation, we first confirmed that METTL3 can bind the key protein underlying pri‐miRNA processing, DGCR8. Additionally, when METTL3 expression was inhibited, the miR‐126‐5p maturation process was blocked. Therefore, we hypothesized that METTL3 can promote cleavage of pri‐miR‐126‐5p and form mature miR‐126‐5p by combining with DGCR8.  相似文献   

7.
8.
BNIP3 is a mitophagy receptor with context‐dependent roles in cancer, but whether and how it modulates melanoma growth in vivo remains unknown. Here, we found that elevated BNIP3 levels correlated with poorer melanoma patient’s survival and depletion of BNIP3 in B16‐F10 melanoma cells compromised tumor growth in vivo. BNIP3 depletion halted mitophagy and enforced a PHD2‐mediated downregulation of HIF‐1α and its glycolytic program both in vitro and in vivo. Mechanistically, we found that BNIP3‐deprived melanoma cells displayed increased intracellular iron levels caused by heightened NCOA4‐mediated ferritinophagy, which fostered PHD2‐mediated HIF‐1α destabilization. These effects were not phenocopied by ATG5 or NIX silencing. Restoring HIF‐1α levels in BNIP3‐depleted melanoma cells rescued their metabolic phenotype and tumor growth in vivo, but did not affect NCOA4 turnover, underscoring that these BNIP3 effects are not secondary to HIF‐1α. These results unravel an unexpected role of BNIP3 as upstream regulator of the pro‐tumorigenic HIF‐1α glycolytic program in melanoma cells.  相似文献   

9.
10.
Cardiac fibrosis critically injured the cardiac structure and function of the hypertensive patients. However, the anti‐fibrotic strategy is still far from satisfaction. This study aims to determine the effect and mechanism of Pirfenidone (PFD), an anti‐lung fibrosis medicine, in the treatment of cardiac fibrosis and heart failure induced by pressure overload. Male C57BL/6 mice were subjected to thoracic aorta constriction (TAC) or sham surgery with the vehicle, PFD (300 mg/kg/day) or Captopril (CAP, 20 mg/kg/day). After 8 weeks of surgery, mice were tested by echocardiography, and then sacrificed followed by morphological and molecular biological analysis. Compared to the sham mice, TAC mice showed a remarkable cardiac hypertrophy, interstitial and perivascular fibrosis and resultant heart failure, which were reversed by PFD and CAP significantly. The enhanced cardiac expression of TGF‐β1 and phosphorylation of Smad3 in TAC mice were both restrained by PFD. Cardiac fibroblasts isolated from adult C57BL/6 mice were treated by Angiotensin II, which led to significant increases in cellular proliferation and levels of α‐SMA, vimentin, TGF‐β1 and phosphorylated TGF‐β receptor and Smad3. These changes were markedly inhibited by pre‐treatment of PFD. Collectively, PFD attenuates myocardial fibrosis and dysfunction induced by pressure overload via inhibiting the activation of TGF‐β1/Smad3 signalling pathway.  相似文献   

11.
12.
Islet β cell dedifferentiation is one of the most important mechanisms in the occurrence and development of diabetes. We studied the possible effects of chemokine stromal cell‐derived factor‐1 (SDF‐1) in the dedifferentiation of islet β cells. It was noted that the number of dedifferentiated islet β cells and the expression of SDF‐1 in pancreatic tissues significantly increased with diabetes. In islet β cell experiments, inhibition of SDF‐1 expression resulted in an increase in the number of dedifferentiated cells, while overexpression of SDF‐1 resulted in a decrease. This seemed to be contradicted by the effect of diabetes on the expression of SDF‐1 in pancreatic tissue, but it was concluded that this may be related to the loss of SDF‐1 activity. SDF‐1 binds to CXCR4 to form a complex, which activates and phosphorylates AKT, subsequently increases the expression of forkhead box O1 (FOXO1), and inhibits the dedifferentiation of islet β cells. This suggests that SDF‐1 may be a novel target in the treatment of diabetes.  相似文献   

13.
Chronic inflammation is associated with the occurrence of several diseases. However, the side effects of anti‐inflammatory drugs prompt the identification of new therapeutic strategies. Plant‐derived extracellular vesicles (PDEVs) are gaining increasing interest in the scientific community for their biological properties. We isolated PDEVs from the juice of Citrus limon L. (LEVs) and characterized their flavonoid, limonoid and lipid contents through reversed‐phase high‐performance liquid chromatography coupled to electrospray ionization quadrupole time‐of‐flight mass spectrometry (RP‐HPLC–ESI‐Q‐TOF‐MS). To investigate whether LEVs have a protective role on the inflammatory process, murine and primary human macrophages were pre‐treated with LEVs for 24 h and then were stimulated with lipopolysaccharide (LPS). We found that pre‐treatment with LEVs decreased gene and protein expression of pro‐inflammatory cytokines, such as IL‐6, IL1‐β and TNF‐α, and reduced the nuclear translocation and phosphorylation of NF‐κB in LPS‐stimulated murine macrophages. The inhibition of NF‐κB activation was associated with the reduction in ERK1‐2 phosphorylation. Furthermore, the ability of LEVs to decrease pro‐inflammatory cytokines and increase anti‐inflammatory molecules was confirmed ex vivo in human primary T lymphocytes. In conclusion, we demonstrated that LEVs exert anti‐inflammatory effects both in vitro and ex vivo by inhibiting the ERK1‐2/NF‐κB signalling pathway.  相似文献   

14.
Epithelial‐mesenchymal transition (EMT) has been contributed to increase migration and invasion of cancer cells. However, the correlate of Naa10p and IKKα with EMT in oral squamous cell carcinoma (OSCC) is not yet fully understood. In our present study, we found N‐α‐acetyltransferase 10 protein (Naa10p) and IκB kinase α (IKKα) were abnormally abundant in oral squamous cell carcinoma (OSCC). Bioinformatic results indicate that the expression of Naa10p and IKKα is correlated with TGF‐β1/Smad and EMT‐related molecules. The Transwell migration, invasion, qRT‐PCR and Western blot assay indicated that Naa10p repressed OSCC cell migration, invasion and EMT, whereas IKKα promoted TGF‐β1–mediated OSCC cell migration, invasion and EMT. Mechanistically, Naa10p inhibited IKKα activation of Smad3 through the interaction with IKKα directly in OSCC cells after TGF‐β1 stimulation. Notably, knockdown of Naa10p reversed the IKKα‐induced change in the migration, invasion and EMT‐related molecules in OSCC cells after TGF‐β1 stimulation. These findings suggest that Naa10p interacted with IKKα mediates EMT in OSCC cells through TGF‐β1/Smad, a novel pathway for preventing OSCC.  相似文献   

15.
Radiation‐induced lung injury (RILI) mainly contributes to the complications of thoracic radiotherapy. RILI can be divided into radiation pneumonia (RP) and radiation‐induced lung fibrosis (RILF). Once RILF occurs, patients will eventually develop irreversible respiratory failure; thus, a new treatment strategy to prevent RILI is urgently needed. This study explored the therapeutic effect of pirfenidone (PFD), a Food and Drug Administration (FDA)‐approved drug for (IPF) treatment, and its mechanism in the treatment of RILF. In vivo, C57BL/6 mice received a 50 Gy dose of X‐ray radiation to the whole thorax with or without the administration of PFD. Collagen deposition and fibrosis in the lung were reversed by PFD treatment, which was associated with reduced M2 macrophage infiltration and inhibition of the transforming growth factor‐β1 (TGF‐β1)/Drosophila mothers against the decapentaplegic 3 (Smad3) signalling pathway. Moreover, PFD treatment decreased the radiation‐induced expression of TGF‐β1 and phosphorylation of Smad3 in alveolar epithelial cells (AECs) and vascular endothelial cells (VECs). Furthermore, IL‐4–induced M2 macrophage polarization and IL‐13–induced M2 macrophage polarization were suppressed by PFD treatment in vitro, resulting in reductions in the release of arginase‐1 (ARG‐1), chitinase 3‐like 3 (YM‐1) and TGF‐β1. Notably, the PFD‐induced inhibitory effects on M2 macrophage polarization were associated with downregulation of nuclear factor kappa‐B (NF‐κB) p50 activity. Additionally, PFD could significantly inhibit ionizing radiation‐induced chemokine secretion in MLE‐12 cells and consequently impair the migration of RAW264.7 cells. PFD could also eliminate TGF‐β1 from M2 macrophages by attenuating the activation of TGF‐β1/Smad3. In conclusion, PFD is a potential therapeutic agent to ameliorate fibrosis in RILF by reducing M2 macrophage infiltration and inhibiting the activation of TGF‐β1/Smad3.  相似文献   

16.
17.
Exercise training (ET) is a non‐drug natural rehabilitation approach for myocardial infarction (MI). Among the numerous beneficial effects of ET, myocardial angiogenesis is indispensable. In the present study, we investigated the role and mechanism of HIF‐1α and miR‐126 in ET‐induced MI myocardial angiogenesis which may provide new insights for MI treatment. Rat model of post‐MI and human umbilical vein endothelial cells (HUVECs) were employed for our research. Histomorphology, immunohistochemistry, quantitative real‐time PCR, Western blotting and small‐interfering RNA (siRNA) transfection were applied to evaluate the morphological, functional and molecular mechanisms. In vivo results showed that 4‐week ET could significantly increase the expression of HIF‐1α and miR‐126 and reduce the expression of PIK3R2 and SPRED1, while 2ME2 (HIF‐1α inhibitor) partially attenuated the effect of ET treatment. In vitro results showed that HIF‐1α could trigger expression of miR‐126 in HUVECs in both normoxia and hypoxia, and miR‐126 may be involved in the tube formation of HUVECs under hypoxia through the PI3K/AKT/eNOS and MAPK signalling pathway. In conclusion, we revealed that HIF‐1α, whose expression experiences up‐regulation during ET, could function as an upstream regulator to miR‐126, resulting in angiogenesis promotion through the PI3K/AKT/eNOS and MAPK signalling pathway and subsequent improvement of the MI heart function.  相似文献   

18.
The cell‐to‐cell transfer of α‐synuclein (α‐Syn) greatly contributes to Parkinson''s disease (PD) pathogenesis and underlies the spread of α‐Syn pathology. During this process, extracellular α‐Syn can activate microglia and neuroinflammation, which plays an important role in PD. However, the effect of extracellular α‐Syn on microglia autophagy is poorly understood. In the present study, we reported that extracellular α‐Syn inhibited the autophagy initiation, as indicated by LC3‐II reduction and p62 protein elevation in BV2 and cultured primary microglia. The in vitro findings were verified in microglia‐enriched population isolated from αSyn‐overexpressing mice induced by adeno‐associated virus (AAV2/9)‐encoded wildtype human αSyn injection into the substantia nigra (SN). Mechanistically, α‐Syn led to microglial autophagic impairment through activating toll‐like receptor 4 (Tlr4) and its downstream p38 and Akt‐mTOR signaling because Tlr4 knockout and inhibition of p38, Akt as well as mTOR prevented α‐Syn‐induced autophagy inhibition. Moreover, inhibition of Akt reversed the mTOR activation but failed to affect p38 phosphorylation triggered by α‐Syn. Functionally, the in vivo evidence showed that lysozyme 2 Cre (Lyz2 cre)‐mediated depletion of autophagyrelated gene 5 (Atg5) in microglia aggravated the neuroinflammation and dopaminergic neuron losses in the SN and exacerbated the locomotor deficit in αSyn‐overexpressing mice. Taken together, the results suggest that extracellular α‐Syn, via Tlr4‐dependent p38 and Akt‐mTOR signaling cascades, disrupts microglial autophagy activity which synergistically contributes to neuroinflammation and PD development.  相似文献   

19.
Recent studies demonstrate that metabolic disturbance, such as augmented glycolysis, contributes to fibrosis. The molecular regulation of this metabolic perturbation in fibrosis, however, has been elusive. COUP‐TFII (also known as NR2F2) is an important regulator of glucose and lipid metabolism. Its contribution to organ fibrosis is undefined. Here, we found increased COUP‐TFII expression in myofibroblasts in human fibrotic kidneys, lungs, kidney organoids, and mouse kidneys after injury. Genetic ablation of COUP‐TFII in mice resulted in attenuation of injury‐induced kidney fibrosis. A non‐biased proteomic study revealed the suppression of fatty acid oxidation and the enhancement of glycolysis pathways in COUP‐TFII overexpressing fibroblasts. Overexpression of COUP‐TFII in fibroblasts also induced production of alpha‐smooth muscle actin (αSMA) and collagen 1. Knockout of COUP‐TFII decreased glycolysis and collagen 1 levels in fibroblasts. Chip‐qPCR revealed the binding of COUP‐TFII on the promoter of PGC1α. Overexpression of COUP‐TFII reduced the cellular level of PGC1α. Targeting COUP‐TFII serves as a novel treatment approach for mitigating fibrosis in chronic kidney disease and potentially fibrosis in other organs.  相似文献   

20.
In Parkinson''s disease with dementia, up to 50% of patients develop a high number of tau‐containing neurofibrillary tangles. Tau‐based pathologies may thus act synergistically with the α‐synuclein pathology to confer a worse prognosis. A better understanding of the relationship between the two distinct pathologies is therefore required. Liquid–liquid phase separation (LLPS) of proteins has recently been shown to be important for protein aggregation involved in amyotrophic lateral sclerosis, whereas tau phase separation has been linked to Alzheimer''s disease. We therefore investigated the interaction of α‐synuclein with tau and its consequences on tau LLPS. We find α‐synuclein to have a low propensity for both, self‐coacervation and RNA‐mediated LLPS at pH 7.4. However, full‐length but not carboxy‐terminally truncated α‐synuclein efficiently partitions into tau/RNA droplets. We further demonstrate that Cdk2‐phosphorylation promotes the concentration of tau into RNA‐induced droplets, but at the same time decreases the amount of α‐synuclein inside the droplets. NMR spectroscopy reveals that the interaction of the carboxy‐terminal domain of α‐synuclein with the proline‐rich region P2 of tau is required for the recruitment of α‐synuclein into tau droplets. The combined data suggest that the concentration of α‐synuclein into tau‐associated condensates can contribute to synergistic aSyn/tau pathologies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号