首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CD1d-restricted Vα14 invariant NKT (iNKT) cells play an important role in the regulation of diverse immune responses. MicroRNA-mediated RNA interference is emerging as a crucial regulatory mechanism in the control of iNKT cell differentiation and function. Yet, roles of specific microRNAs in the development and function of iNKT cells remain to be further addressed. In this study, we identified the gradually increased expression of microRNA-150 (miR-150) during the maturation of iNKT cells in thymus. Using miR-150 knockout (KO) mice, we found that miR-150 deletion resulted in an interruption of iNKT cell final maturation in both thymus and periphery. Upon activation, iNKT cells from miR-150KO mice showed significantly increased IFN-γ production compared with wild-type iNKT cells. Bone marrow-transferring experiments demonstrated the cell-intrinsic characteristics of iNKT cell maturation and functional defects in mice lacking miR-150. Furthermore, miR-150 target c-Myb was significantly upregulated in miR-150KO iNKT cells, which potentially contribute to iNKT cell defects in miR-150KO mice. Our data define a specific role of miR-150 in the development and function of iNKT cells.  相似文献   

2.
The development of invariant NKT (iNKT) cells depends on the thymus. After positive selection by CD4(+)CD8(+)CD1d(+) cortical thymocytes, iNKT cells proceed from CD44(low)NK1.1(-) (stage 1) to CD44(high)NK1.1(-) (stage 2), and then to CD44(high)NK1.1(+) (stage 3) cells. The programming of cytokine production occurs along the three differentiation stages, whereas the acquisition of NK receptors occurs at stage 3. Stage 3 thymic iNKT cells are specifically reduced in Il15ra(-/-) mice. The mechanism underlying this homeostatic deficiency and whether the IL-15 system affects other thymic iNKT cell developmental events remain elusive. In this study, we demonstrate that increased cell death contributed to the reduction of stage 3 cells in Il15ra(-/-) mice, as knockout of Bim restored this population. IL-15-dependent upregulation of Bcl-2 in stage 3 cells affected cell survival, as overexpression of hBcl-2 partially restored stage 3 cells in Il15ra(-/-) mice. Moreover, thymic iNKT cells in Il15ra(-/-) mice were impaired in functional maturation, including the acquisition of Ly49 and NKG2 receptors and the programming of cytokine production. Finally, IL-15Rα expressed by radiation-resistant cells is necessary and sufficient to support the survival as well as the examined maturation events of thymic iNKT cells.  相似文献   

3.
The invariant NKT (iNKT) cell lineage contains CD4(+) and CD4(-) subsets. The mechanisms that control such subset differentiation and iNKT cell maturation in general have not been fully understood. RasGRP1, a guanine nucleotide exchange factor for TCR-induced activation of the Ras-ERK1/2 pathway, is critical for conventional αβ T cell development but dispensable for generating regulatory T cells. Its role in iNKT cells has been unknown. In this study, we report severe decreases of iNKT cells in RasGRP1(-/-) mice through cell intrinsic mechanisms. In the remaining iNKT cells in RasGRP1(-/-) mice, there is a selective absence of the CD4(+) subset. Furthermore, RasGRP1(-/-) iNKT cells are defective in TCR-induced proliferation in vitro. These observations establish that RasGRP1 is not only important for early iNKT cell development but also for the generation/maintenance of the CD4(+) iNKT cells. Our data provide genetic evidence that the CD4(+) and CD4(-) iNKT cells are distinct sublineages with differential signaling requirements for their development.  相似文献   

4.
In a model of peripheral tolerance called anterior chamber-associated immune deviation (ACAID), the differentiation of the T regulatory cells depends on NKT cells and occurs in the spleen. In this study, we show that NKT cells that express the invariant (i) TCR and are the CD1d-reactive NKT cells (required for development of peripheral tolerance) actually produced urokinase-type plasminogen activator (uPA) during tolerance induction. The RT-PCR and in vitro plasmin assay showed that splenic iNKT cells derived uPA-converted plasminogen to plasmin. Moreover, uPA was required for tolerance induction because uPA knockout (KO) mice did not develop peripheral tolerance or develop CD8(+) T regulatory cells after Ag inoculation into the anterior chamber. In contrast, other aspects of ACAID-induced tolerance, including recruitment of iNKT cells to the spleen and production of IL-10 by iNKT cells, were unchanged in uPA-deficient mice. The adoptive transfer of splenic NKT cells from wild-type mice restored ACAID in Jalpha18 KO mice (iNKT cell deficient), but NKT cells from uPA KO mice did not. We postulate that the mechanism of action of uPA is through its binding to the uPAR receptor, and enzymatic cleavage of plasminogen to plasmin, which in turn activates latent TGFbeta. In conclusion, uPA derived from iNKT cells is required to induce peripheral tolerance via the eye.  相似文献   

5.
T cell-mediated autoimmune type-1 diabetes (T1D) in NOD mice partly results from this strain's numerical and functional defects in invariant NK T (iNKT) cells. T1D is inhibited in NOD mice treated with the iNKT cell superagonist alpha-galactosylceramide through a process involving enhanced accumulation of immunotolerogenic dendritic cells in pancreatic lymph nodes. Conversely, T1D is accelerated in NOD mice lacking CD38 molecules that play a role in dendritic cell migration to inflamed tissues. Unlike in standard NOD mice, alpha-galactosylceramide pretreatment did not protect the CD38-deficient stock from T1D induced by an adoptively transferred pancreatic beta cell-autoreactive CD8 T cell clone (AI4). We found that in the absence of CD38, ADP-ribosyltransferase 2 preferentially activates apoptotic deletion of peripheral iNKT cells, especially the CD4+ subset. Therefore, this study documents a previously unrecognized role for CD38 in maintaining survival of an iNKT cell subset that preferentially contributes to the maintenance of immunological tolerance.  相似文献   

6.
The regulatory function of invariant NKT (iNKT) cells for tolerance induction and prevention of autoimmunity is linked to a specific cytokine profile that comprises the secretion of type 2 cytokines like IL-4 and IL-10 (NKT2 cytokine profile). The mechanism responsible for iNKT cell differentiation toward a type 2 phenotype is unknown. Herein we show that costimulatory signals provided by the surface receptor signaling lymphocytic activation molecule (SLAM) on myeloid dendritic cells (mDC) to iNKT cells is crucial for NKT2 orientation. Additionally, we demonstrate that the impaired acquisition of an NKT2 cytokine phenotype in nonobese diabetic (NOD) mice that spontaneously develop autoimmune diabetes is due to defective SLAM-induced signals generated by NOD mDC. Mature mDC of C57BL/6 mice express SLAM and induce C57BL/6 or NOD iNKT cells to acquire a predominant NKT2 cytokine phenotype in response to antigenic stimulation with the iNKT cell-specific Ag, the alpha-galactosylceramide. In contrast, mature NOD mDC express significantly lower levels of SLAM and are unable to promote GATA-3 (the SLAM-induced intracellular signal) up-regulation and IL-4/IL-10 production in iNKT cells from NOD or C57BL/6 mice. NOD mice carry a genetic defect of the Slamf1 gene that is associated with reduced SLAM expression on double-positive thymocytes and altered iNKT cell development in the thymus. Our data suggest that the genetic Slamf1 defect in NOD mice also affects SLAM expression on other immune cells such as the mDC, thus critically impairing the peripheral differentiation of iNKT cells toward a regulatory NKT2 type.  相似文献   

7.
We explored in this study the status and potential role of IL-17-producing iNKT cells (iNKT17) in type 1 diabetes (T1D) by analyzing these cells in patients with T1D, and in NOD mice, a mouse model for T1D. Our analysis in mice showed an increase of iNKT17 cells in NOD vs control C57BL/6 mice, partly due to a better survival of these cells in the periphery. We also found a higher frequency of these cells in autoimmune-targeted organs with the occurrence of diabetes, suggesting their implication in the disease development. In humans, though absent in fresh PMBCs, iNKT17 cells are detected in vitro with a higher frequency in T1D patients compared to control subjects in the presence of the proinflammatory cytokine IL-1β, known to contribute to diabetes occurrence. These IL-1β-stimulated iNKT cells from T1D patients keep their potential to produce IFN-γ, a cytokine that drives islet β-cell destruction, but not IL-4, with a reverse picture observed in healthy volunteers. On the whole, our results argue in favour of a potential role of IL-17-producing iNKT cells in T1D and suggest that inflammation in T1D patients could induce a Th1/Th17 cytokine secretion profile in iNKT cells promoting disease development.  相似文献   

8.
Invariant NKT (iNKT) cells can prevent diabetes by inhibiting the differentiation of anti-islet T cells. We recently showed that neither iNKT cell protection against diabetes nor iNKT cell inhibition of T cell differentiation in vitro requires cytokines such as IL-4, IL-10, IL-13, and TGF-beta. In contrast, cell-cell contacts were required for iNKT cell inhibition of T cell differentiation in vitro. The present study was designed to determine whether the CD1d molecule is involved in the inhibitory function of iNKT cells. Experiments were performed in vitro and in vivo, using cells lacking CD1d expression. The in vivo experiments used CD1d-deficient mice that were either reconstituted with iNKT cells or expressed a CD1d transgene exclusively in the thymus. Both mouse models had functional iNKT cells in the periphery, even though CD1d was not expressed in peripheral tissues. Surprisingly, both in vitro inhibition of T cell differentiation by iNKT cells and mouse protection against diabetes by iNKT cells were CD1d-independent. These results reveal that iNKT cells can exert critical immunoregulatory effects in the absence of CD1d recognition and that different molecular interactions are involved in iNKT cell functions.  相似文献   

9.
Wen X  Yang JQ  Kim PJ  Singh RR 《PloS one》2011,6(10):e26536
Marginal zone B cells (MZB) mount a rapid antibody response, potently activate naïve T cells, and are enriched in autoreactive B cells. MZBs express high levels of CD1d, the restriction element for invariant natural killer T cells (iNKT). Here, we examined the effect of iNKT cells on MZB cell activation and numbers in vitro and in vivo in normal and autoimmune mice. Results show that iNKT cells activate MZBs, but restrict their numbers in vitro and in vivo in normal BALB/c and C57/BL6 mice. iNKT cells do so by increasing the activation-induced cell death and curtailing proliferation of MZB cells, whereas they promote the proliferation of follicular B cells. Sorted iNKT cells can directly execute this function, without help from other immune cells. Such MZB regulation by iNKTs is mediated, at least in part, via CD1d on B cells in a contact-dependent manner, whereas iNKT-induced proliferation of follicular B cells occurs in a contact- and CD1d-independent manner. Finally, we show that iNKT cells reduce ‘autoreactive’ MZB cells in an anti-DNA transgenic model, and limit MZB cell numbers in autoimmune-prone (NZB×NZW)F1 and non-obese diabetic mice, suggesting a potentially new mechanism whereby iNKT cells might regulate pathologic autoimmunity. Differential regulation of follicular B cells versus potentially autoreactive MZBs by iNKT cells has important implications for autoimmune diseases as well as for conditions that require a rapid innate B cell response.  相似文献   

10.
Recognition of endogenous lipid Ag(s) on CD1d is required for the development of invariant NKT (iNKT) cells. Isoglobotrihexosylceramide (iGb3) has been implicated as this endogenous selecting ligand and recently suggested to control overstimulation and deletion of iNKT cells in α-galactosidase A-deficient (αGalA(-/-)) mice (human Fabry disease), which accumulate isoglobosides and globosides. However, the presence and function of iGb3 in murine thymus remained controversial. In this study, we generate a globotrihexosylceramide (Gb3)-synthase-deficient (Gb3S(-/-)) mouse and show that in thymi of αGalA(-/-)/Gb3S(-/-) double-knockout mice, which store isoglobosides but no globosides, minute amounts of iGb3 can be detected by HPLC. Furthermore, we demonstrate that iGb3 deficiency does not only fail to impact selection of iNKT cells, in terms of frequency and absolute numbers, but also does not alter the distribution of the TCR CDR 3 of iNKT cells. Analyzing multiple gene-targeted mouse strains, we demonstrate that globoside, rather than iGb3, storage is the major cause for reduced iNKT cell frequencies and defective Ag presentation in αGalA(-/-) mice. Finally, we show that correction of globoside storage in αGalA(-/-) mice by crossing them with Gb3S(-/-) normalizes iNKT cell frequencies and dendritic cell (DC) function. We conclude that, although detectable in murine thymus in αGalA(-/-)/Gb3S(-/-) mice, iGb3 does not influence either the development of iNKT cells or their interaction with peripheral DCs. Moreover, in αGalA(-/-) mice, it is the Gb3 storage that is responsible for the decreased iNKT cell numbers and impeded Ag presentation on DCs.  相似文献   

11.
Invariant NK T (iNKT) cells regulate immune responses, express NK cell markers and an invariant TCR, and recognize lipid Ags in a CD1d-restricted manner. Previously, we reported that activation of iNKT cells by alpha-galactosylceramide (alpha-GalCer) protects against type 1 diabetes (T1D) in NOD mice via an IL-4-dependent mechanism. To further investigate how iNKT cells protect from T1D, we analyzed whether iNKT cells require the presence of another subset(s) of regulatory T cells (Treg), such as CD4+ CD25+ Treg, for this protection. We found that CD4+ CD25+ T cells from NOD.CD1d(-/-) mice deficient in iNKT cell function similarly in vitro to CD4+ CD25+ T cells from wild-type NOD mice and suppress the proliferation of NOD T responder cells upon alpha-GalCer stimulation. Cotransfer of NOD diabetogenic T cells with CD4+ CD25+ Tregs from NOD mice pretreated with alpha-GalCer demonstrated that activated iNKT cells do not influence the ability of T(regs) to inhibit the transfer of T1D. In contrast, protection from T1D mediated by transfer of activated iNKT cells requires the activity of CD4+ CD25+ T cells, because splenocytes pretreated with alpha-GalCer and then inactivated by anti-CD25 of CD25+ cells did not protect from T1D. Similarly, mice inactivated of CD4+ CD25+ T cells before alpha-GalCer treatment were also not protected from T1D. Our data suggest that CD4+ CD25+ T cells retain their function during iNKT cell activation, and that the activity of CD4+ CD25+ Tregs is required for iNKT cells to transfer protection from T1D.  相似文献   

12.
Recent studies have demonstrated that Bacillus subtilis-derived poly-gamma glutamic acid (γPGA) treatment suppresses the development of allergic diseases such as atopic dermatitis (AD). Although basophils, an innate immune cell, are known to play critical roles in allergic immune responses and repeated long-term administration of γPGA results in decreased splenic basophils in an AD murine model, the underlying mechanisms by which γPGA regulates basophil frequency remain unclear. To investigate how γPGA modulates basophils, we employed basophil-mediated Th2 induction in vivo model elicited by the allergen papain protease. Repeated injection of γPGA reduced the abundance of basophils and their production of IL4 in mice, consistent with our previous study using NC/Nga AD model mice. The depletion of basophils by a single injection of γPGA was dependent on the TLR4/DC/IL12 axis. CD1d-dependent Vα14 TCR invariant natural killer T (iNKT) cells are known to regulate a variety of immune responses, such as allergy. Because iNKT cell activation is highly sensitive to IL12 produced by DCs, we evaluated whether the effect of γPGA on basophils is mediated by iNKT cell activation. We found that in vivo γPGA treatment did not induce the reduction of basophils in iNKT cell-deficient CD1d KO mice, suggesting the critical role of iNKT cells in γPGA-mediated basophil depletion at the early time points. Furthermore, increased apoptotic basophil reduction triggered by iNKT cells upon γPGA stimulation was mainly attributed to Th1 cytokines such as IFNγ and TNFα, consequently resulting in inhibition of papain-induced Th2 differentiation via diminishing basophil-derived IL4. Taken together, our results clearly demonstrate that γPGA-induced iNKT cell polarization toward the Th1 phenotype induces apoptotic basophil depletion, leading to the suppression of Th2 immune responses. Thus, elucidation of the crosstalk between innate immune cells will contribute to the design and development of new therapeutics for Th2-mediated immune diseases such as AD.  相似文献   

13.
Invariant NK T (iNKT) cells are a distinct subset of T cells that rapidly produce an array of immunoregulatory cytokines upon activation. Cytokines produced by iNKT cells subsequently transactivate other leukocytes and elicit their respective effector functions. In this way, iNKT cells play a central role in coordinating the development of immune responses in a variety of settings. However, the mechanisms governing the quality of the iNKT cell response elicited remain poorly defined. To address whether changes in the CD1d expression pattern could regulate iNKT cell function, we generated a transgenic (Tg) mouse model in which thymocytes and peripheral T cells express high levels of CD1d (Lck-CD1d Tg+ mice). The expression of CD1d by T cells was sufficient to rescue development of iNKT cells in mice deficient of endogenous CD1d. However, the relative proportions of iNKT cell subsets in Lck-CD1d Tg+ mice were distinctly different from those in wild-type mice, suggesting an altered developmental program. Additionally, iNKT cells were hyporesponsive to antigenic stimulation in vivo. Interestingly, Lck-CD1d Tg+ mice develop liver pathology in the absence of any exogenous manipulation. The results of these studies suggest that changes to the CD1d expression program modulate iNKT cell development and function.  相似文献   

14.
15.
The ability to rapidly secrete cytokines upon stimulation is a functional characteristic of the invariant natural killer T (iNKT) cell lineage. iNKT cells are therefore characterized as an innate T cell population capable of activating and steering adaptive immune responses. The development of improved techniques for the culture and expansion of murine iNKT cells facilitates the study of iNKT cell biology in in vitro and in vivo model systems. Here we describe an optimized procedure for the isolation and expansion of murine splenic iNKT cells.Spleens from C57Bl/6 mice are removed, dissected and strained and the resulting cellular suspension is layered over density gradient media. Following centrifugation, splenic mononuclear cells (MNCs) are collected and CD5-positive (CD5+) lymphocytes are enriched for using magnetic beads. iNKT cells within the CD5+ fraction are subsequently stained with αGalCer-loaded CD1d tetramer and purified by fluorescence activated cell sorting (FACS). FACS sorted iNKT cells are then initially cultured in vitro using a combination of recombinant murine cytokines and plate-bound T cell receptor (TCR) stimuli before being expanded in the presence of murine recombinant IL-7. Using this technique, approximately 108 iNKT cells can be generated within 18-20 days of culture, after which they can be used for functional assays in vitro, or for in vivo transfer experiments in mice.  相似文献   

16.
NKT cells are a small subset of regulatory T cells conserved in humans and mice. In humans they express the Valpha24Jalpha18 invariant chain (hence invariant NKT (iNKT) cells) and are restricted by the glycolipid-presenting molecule CD1d. In mice, iNKT cells may enhance or inhibit anti-infectious and antitumor T cell responses but suppress autoimmune and alloreactive responses. We postulated that iNKT cells might also modulate human alloreactive responses. Using MLR assays we demonstrate that in the presence of the CD1d-presented glycolipid alpha-galactosylceramide (alphaGC) alloreactivity is enhanced (37 +/- 12%; p < 0.001) in an iNKT cell-dependent manner. iNKT cells are activated early during the course of the MLR, presumably by natural ligands. In MLR performed without exogenous ligands, depletion of iNKT cells significantly diminished the alloresponse in terms of proliferation (58.8 +/- 24%; p < 0.001) and IFN-gamma secretion (43.2 +/- 15.2%; p < 0.001). Importantly, adding back fresh iNKT cells restored the reactivity of iNKT cell-depleted MLR to near baseline levels. CD1d-blocking mAbs equally reduced the reactivity of the iNKT cell-replete and -depleted MLR compared with IgG control, indicating that the effect of iNKT cells in the in vitro alloresponse is CD1d-dependent. These findings suggest that human iNKT cells, although not essential for its development, can enhance the alloreactive response.  相似文献   

17.
18.
B cell development in bone marrow (BM) is a multi-staged process involving pro-B, pre-B, immature B, and mature B cells, among which pre-B cells undergo vigorous proliferation, differentiation, apoptosis, and gene rearrangement. While several signaling pathways participate in pre-B cell development have been clarified, detailed intrinsic mechanisms regulating pre-B cell proliferation and survival have not been fully understood. In the current study, we report that miR-582 regulates pre-B cell proliferation and survival. miR-582 is enriched in pre-B cells. Deletion of miR-582 in mice expanded the BM pre-B cell population in a cell-autonomous manner as shown by competitive BM transplantation. We show that forced miR-582 overexpression inhibited pre-B cell proliferation and survival, whereas downregulation of miR-582 by siRNA significantly promoted pre-B cell proliferation and survival in vitro. We identified that Hif1α and Rictor are authentic targets of miR-582 in pre-B cells as shown by reporter assays. Moreover, miR-582 overexpression reduced the expression of Hif1α and its downstream molecule Glut1, as well as Rictor and mTORC2 activity as shown by attenuated AKT and FoxO1 phosphorylation, while miR-582 knockdown showed opposite effects. miR-582 knockdown-induced increases in pre-B proliferation and survival was abrogated by Hif1α and Rictor inhibitors. Together, miR-582 functions as a negative regulator of pre-B cell proliferation and survival by simultaneously targeting Hif1α and mTORC2 signaling that regulates metabolism in early B cell development.Subject terms: Developmental biology, Cell proliferation  相似文献   

19.
Semi-invariant NK T cell (iNKT) deficiency has long been associated with the pathogenesis of type 1 diabetes (T1D), but the linkage between this the deficiency and T1D susceptibility gene(s) remains unclear. We analyzed NOD mice subcongenic for resistant alleles of Idd9 locus in search for protective mechanisms against T1D, and found that iNKT cell development was significantly enhanced with a more advanced mature phenotype and function in mice containing Idd9.1 sublocus of B10 origin. The enhanced iNKT cell development and function suppressed effector function of diabetogenic T cells. Elimination of iNKT cells by CD1d deficiency almost abolished T1D protection in these mice. Interestingly, although the iNKT cells were responsible for a Th2 orientated cytokine profile that is often regarded as a mechanism of T1D prevention, our data suggests that the Th2 bias played little if any role for the protection. In addition, dendritic cells from the congenic NOD mice showed increased abilities to engage and potentiate iNKT cells, suggesting that a mechanism mediated by dendritic cells or other APCs may be critical for the enhanced development and maturation of iNKT cells. The products of T1D susceptibility gene(s) in Idd9.1 locus may be a key factor for this mechanism.  相似文献   

20.
Invariant NKT cells are innate lymphocytes with a broad tissue distribution. Here we demonstrate that iNKT cells reside in the central nervous system (CNS) in the absence of inflammation. Their presence in the CNS dramatically augments following inoculation of C57Bl/6 mice with the neurotropic Theiler''s murine encephalomyelitis virus (TMEV). At the peak of inflammation the cellular infiltrate comprises 45 000 iNKT cells for 1 250 CD8 T cells specific for the immunodominant TMEV epitope. To study the interaction between these two T cell subsets, we infected both iNKT cell deficient Jα18-/- mice and iNKT cell enriched Vα14 transgenic mice with TMEV. The CD8 T cell response readily cleared TMEV infection in the iNKT cell deficient mice. However, in the iNKT cell enriched mice TMEV infection persisted and was associated with significant mortality. This was caused by the inhibition of the CD8 T cell response in the cervical lymph nodes and spleen after T cell priming. Taken together we demonstrate that iNKT cells reside in the CNS in the absence of inflammation and that their enrichment is associated with the inhibition of the anti-viral CD8 T cell response and an augmented mortality during acute encephalomyelitis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号