首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Different carrier-immobilized carbohydrate moieties were employed as tools to detect respective binding sites glycohistochemically and glycobiochemically. Besides ascertaining their presence the pattern of endogenous sugar receptors (lectins) in different regions of the human central nervous system was mapped to reveal any non-uniform expression. A strong and specific staining with biotinylated neoglycoproteins, exposing different sugar moieties as ligands, indicated the presence of sugar receptors in the nuclei, neuronal pathways and accessory structures such as ependyma cells, plexus chorioideus, intra- and extracerebral vessels and leptomeninges localized in the mesencephalon, in the pons, in the medulla oblongata and in the cerebellum. Significant differences were seen for various neuroanatomical regions like nerve cells in the basal and central regions of the nuclei pontis in the glycohistochemically detected level of expression of endogenous sugar receptors (lectins). The used approach with carbohydrate constituents of cellular glycoconjugates as ligands in search of specific receptors complemented studies on the localization of glycoconjugates with sugar-specific tools like plant lectins. Exemplary glycobiochemical investigations on the medulla oblongata and cerebellum were performed to investigate the molecular nature of sugar receptors detected glycohistochemically. Despite notable overall similarities, carbohydrate-binding proteins of differing molecular weight can be isolated from these two regions of the central nervous system, namely in the case of receptors with specificity to beta-galactoside termini, to N-acetyl-D-galactosamine and N-acetyl-D-glucosamine and to D-xylose. These combined glycohistochemical and glycobiochemical results serve as a guideline for exploring the physiological relevance of the detected regional differences.  相似文献   

2.
Summary Ten different types of labelled neoglycoproteins, exposing glycohistochemically pivotal carbohydrate moieties that mostly are constituents of naturally occurring glycoconjugates with an aromatic spacer, were synthesized. The panel was applied to fixed, paraffin-embedded sections of different cortical regions and white matter, of hippocampal gyrus, basal ganglia, thalamus nuclei and adjacent areas of adult human brain to comprehensively map the presence of respective binding sites in these parts. Compliance with accepted criteria for specificity of binding was routinely ascertained. Overall, not a uniform binding pattern, but a distinct distribution with regional differences on the level of specific cytoplasmic and nuclear staining in nerve cells was determined, fiber structures being generally labelled with medium or strong intensity. For example, among the neurons localized in the five cortical laminae the binding of N-acetyl-d-galactosamine varied from strong to undetectable. Biochemical analysis, employing carbohydrate residues as affinity ligands in chromatography, proved that the neuroanatomically different regions exhibited a pattern of receptors with notable similarities. These results on endogenous binding sites for glycoconjugates, especially lectins, are complementary to assessment of localization of cellular glycoconjugates by plant lectins and carbohydrate-specific monoclonal antibodies. They are thus a further obligatory step to substantiate the physiological roles of recognitive protein-carbohydrate interactions in the central nervous system.  相似文献   

3.
Summary Lectins are a useful tool for identification of differently glycosylated hypophyseal hormones, prohormones and glycoconjugates without hormone function. -d-galactose and -N-acetyl-d-galactosamine (GalNAc) containing glycoconjugates were identified by light microscopy with biotinylated lectins in immunocytochemically localized cells of the anterior pituitary of the rat. Galactose, histochemically detectable by the peanut lectin (PNA), was found at penultimate position of the carbohydrate chain after removal of sialic acid. Galactose containing cells correspond to gonadotrophs and thyrotrophs located mainly in medioanterior regions of the pituitary. The lectins from the soybean (SBA) and horse gram (DBA) both specific for GalNAc residues, are bound to round and also polygonal cells corresponding again to gonadotrophs and thyrotrophs.  相似文献   

4.
Summary Peroxidase-labelled lectins specific for various carbohydrate residues were used as histochemical reagents in the investigation of Hurler's syndrome. Peanut lectin was used to detect terminald-galactose, wheatgerm lectin forN-acetyl-d-glucosamine, soybean lectin forN-acetyl-d-galactosamine,Tetragonolobus lotus lectin for -l-fucose andBandeiraea S. lectin for -d-galactose. It was found that Kupffer cells in the liver and splenic reticulo-endothelial cells contain acid mucopolysaccharides which bind lectins in paraffin sections after appropriate fixation. The pattern of lectin binding suggests that such cells contain significant amounts ofd-galactose,l-fucose,N-acetyl-d-galactosamine andN-acetyl-d-glucosamine. It is likely that the last named carbohydrate is present as a polymer. Neurones contain a different carbohydrate, rich in galactose and fucose but poor inN-acetyl-d-glucosamine. This compound is resistant to lipid extraction. Hepatocytes, as a rule, do not react with lectins, most likely because of loss of the more soluble mucopolysaccharides during fixation. The results are consistent with the biochemical data of Hurler's syndrome and indicate that lectins can be a useful tool for the investigation of the cytochemistry of storage disorders.  相似文献   

5.
 High resolution lectin-gold cytochemistry was used to quantitatively analyze the distribution of glycoconjugates in the hamster oviductal ampulla during the five stages of the estrous cycle. Lectins binding to N-acetyl-d-galactosamine-, d-galactose-, and sialic acid-associated glycoconjugates in the secretory granules of ampullary epithelial secretory cells showed staining of equal intensity throughout the five different stages of the estrous cycle. In contrast, the labeling intensity of glycoconjugates which contain N-acetylglucosamine as terminal sugar residues reached its maximum around the time of ovulation, i.e., at proestrus. Glycoconjugates which carry fucose and mannose as terminal sugar residues appeared to be totally absent from the secretory granules of the oviductal ampulla during the estrous cycle. Together, electron microscopic observations combined with quantitative results indicate that N-acetyl-d-galactosamine-, d-galactose-, and sialic acid-associated glycoconjugates may be secreted into the ampullary lumen irrespective of the stage of the estrous cycle, whereas the secretion of certain N-acetylglucosamine-associated glycoconjugates is stage specific and reaches its peak at the time of ovulation. These findings suggest that, at the time of ovulation, the ampullary epithelium changes its secretory activity and contributes its secretory products to the zona pellucida of oocytes freshly released from the ovary. Accepted: 10 August 1998  相似文献   

6.
Ten different types of labelled neoglycoproteins, exposing glycohistochemically pivotal carbohydrate moieties that mostly are constituents of naturally occurring glycoconjugates with an aromatic spacer, were synthesized. The panel was applied to fixed, paraffin-embedded sections of different cortical regions and white matter, of hippocampal gyrus, basal ganglia, thalamus nuclei and adjacent areas of adult human brain to comprehensively map the presence of respective binding sites in these parts. Compliance with accepted criteria for specificity of binding was routinely ascertained. Overall, not a uniform binding pattern, but a distinct distribution with regional differences on the level of specific cytoplasmic and nuclear staining in nerve cells was determined, fiber structures being generally labelled with medium or strong intensity. For example, among the neurons localized in the five cortical laminae the binding of N-acetyl-D-galactosamine varied from strong to undetectable. Biochemical analysis, employing carbohydrate residues as affinity ligands in chromatography, proved that the neuroanatomically different regions exhibited a pattern of receptors with notable similarities. These results on endogenous binding sites for glycoconjugates, especially lectins, are complementary to assessment of localization of cellular glycoconjugates by plant lectins and carbohydrate-specific monoclonal antibodies. They are thus a further obligatory step to substantiate the physiological roles of recognitive protein-carbohydrate interactions in the central nervous system.  相似文献   

7.
The aim of this study was to investigate the distribution of the oligosaccharides of the glycoconjugates in placentas from pregnancies complicated by different degree of altered glycaemia. Placentas from women with physiological pregnancies (group 1), with pregnancies complicated by minor degree of glucose intolerance (group 2) and with pregnancies complicated by gestational diabetes mellitus (GDM) treated with insulin (group 3) were collected. Ten lectins were used (ConA, WGA, PNA, SBA, DBA, LTA, UEA I, GSL II, MAL II and SNA) in combination with chemical and enzymatic treatments. The data showed a decrease of sialic acid linked α(2–6) to galactose/N-acetyl-d-galactosamine and an increase of N-acetyl-d-glucosamine in the placentas of the pathological groups, in particular the group 3, comparing to the group 1. A decrease of l-fucose (LTA) and d-galactose-(β1–3)-N-acetyl-d-galactosamine, and an increase and/or appearance of l-fucose (UEA I) and N-acetyl-d-galactosamine were observed in both the pathological groups, particularly in the group 2, with respect to the group 1. In GDM, and even in pregnancies with a simple alteration of maternal glycaemia, the changes in the distribution of oligosaccharides could be related to alteration of the structure and functionality of the placenta.  相似文献   

8.
Summary In the planum nasolabial glands of the goat, glycoconjugates of glandular and duct cells have been studied by means of a series of electron microscopic cytochemical methods. In the glandular cells glycoconjugates with vicinal diol groupings were present in secretory granules, certain elements of the Golgi complex, lysosome-like dense bodies, the surface coat of the plasma membrane, the majority of intracellular cytomembranes, glycogen particles and the basal lamina. In duct cells, glycoconjugates with the same properties were localized in similar ultrastructures, except for secretory granules, which were not detected in these cells. By lectin cytochemistry, glycoconjugates in glandular cell secretory granules contained a variety of saccharide residues such as -d-mannose, -d-glucose,N-acetyl-d-glucosamine and -l-fucose. The cytochemical properties of the secretory glycoconjugates are discussed in relation to the physiological functions performed by the planum nasolabial glands in the goat.  相似文献   

9.
A panel of biotinylated (neo)glycoproteins was used for specific detection of endogenous sugar receptors, especially lectins, in formaldehyde-fixed, paraffin-embedded muscle biopsy specimens from human deltoid, quadriceps, and biceps muscles, tibial and quadriceps muscles of rat, and bovine masseter muscle. The glycohistochemical probes used consisted of conjugates of a labeled, histochemically inert carrier protein and various covalently linked, histochemically crucial sugar moieties. Specific binding of alpha-L-fucoside, beta-D-galactoside, beta-D-xyloside, and alpha-D-mannoside to muscle sections was detected, showing no species-specific differences. The presence of receptors for the N-acetylated sugars in natural glycoconjugates, and for sugars with a phosphate group, i.e., mannose-6-phosphate and galactose-6-phosphate, was demonstrated glycohistochemically. However, these binding specificities revealed species-specific differences, e.g., the absence of N-acetyl-D-galactosamine-specific receptors or galactose-6-phosphate-specific receptors in rat muscle. Other charged sugars included glucuronic acid and sialic acid, which bound only to ox and rat muscle or failed to reveal their respective receptors in all types of muscle investigated. This different extent of staining with anionic probes served as a further control to ascertain carbohydrate binding specificity. Positive glycohistochemical reaction developed within sarcomeres only at the level of A-bands. Granular staining was observed in the sarcoplasm among the myofibrils and also in the subsarcolemmal regions. Differences in expression of glycohistochemically detectable sugar receptors were noted between type 1, type 2A, and type 2B fibers. The molecular properties of one type of glycohistochemically detectable sugar receptor were inferred both immunohistochemically and biochemically. An antiserum against an endogenous beta-galactoside-specific lectin from muscle tissue localized this lectin within sections consistently similar to (neo)glycoproteins, detecting beta-galactoside-specific receptor(s). This similarity of binding patterns strongly supports the assumption that (neo)glycoproteins with beta-galactoside termini indeed bind to the respective endogenous lectin. The lectin-specific antiserum enabled us to ascertain that glycohistochemical fiber typing corresponds to enzyme histochemical typing. Moreover, biochemical purification using affinity chromatography and subsequent affinity elution revealed only the immunohistochemically detectable beta-galactoside-specific lectin. Consequently, use of a panel of neoglycoproteins, when frozen sections for histochemical analysis are not available, co  相似文献   

10.
Summary Changes in the lectin binding of mouse Leydig cells during fetal and postnatal development were examined by light- and electron-microscopy using eight different biotinylated lectins (ConA, WGA, RCA-I, UEA-I, GS-I, PNA, SBA and GS-II). At the light-microscopic level, ConA, WGA, RCA-I, UEA-I and GS-I showed the same binding pattern in which all five lectins bound to the plasma membrane and cytoplasm of Leydig cells from the 13th day post coitum (p.c.) to the 8th postnatal week. PNA, SBA and GS-II reactions were positive in the plasma membrane and cytoplasm of Leydig cells from the 13th day p.c. to 15th day post partum (p.p.) but disappeared completely by day 20. At the electron-microscopic level, gold particles representing the GS-I or GS-II binding sites were distributed primarily along the cell surface membrane, including that of microvilli, as well as in the cytoplasm. These results indicate that certain glycoconjugates bearingD-galactose,N-acetyl-D-galactosamine, andN-acetyl-D-glucosamine residues are expressed on the cell surface and in the cytoplasm of Leydig cells during the period from the 13th day p.c. to around the 20th day p.p. The results suggest that these glycoconjugates might play some role in modulating hormone-receptor interaction in the Leydig cells before the 20th day. Furthermore, these results may indicate that sugar residues expressed on the cell surface and in the cytoplasm of Leydig cells are different from those in the fetal-neonatal and adult phases.  相似文献   

11.
Summary Sites of binding of eight different lectins (LTA, UEA I, WGA, SBA, DBA, CON A, PNA, RCA I) to cat submandibular gland were studied after exposure of tissue sections to sialidase, -fucosidase, -galactosidase, -mannosidase, -N-acetylglucosaminidase. All lectins were affected by enzymatic predigestion and the labeling of individual lectins was highly dependent upon the glycosidase used to pretreat the sections. Glycoconjugates of demilunar, acinar and ductal cells exhibited a different composition of terminal sequences. For example, fucose proved to form the disaccharide fucose-galactose in demilunar and acinar cells, whereas it was present with the sequence fucose-N-acetyl-d-glucosamine in striated duct cells. Sialic acid participated both to the terminal sequence sialic acid-galactose and sialic acid-N-acetyl-d-galactosamine either in demilunar or in ductal cells. Lectin labeling combined with glycosidase digestion was also helpful in verifying the influence of neighbouring oligosaccharides on the affinity of lectins for the respective sugars.  相似文献   

12.
Summary Concanavalin A and wheat germ agglutinin were employed in conjunction with the horseradish peroxidase-diaminobenzidine method for the detection of sugar residues on the surface coat of exudate and resident murine peritoneal macrophages. Electron microscopical and cytophotometric techniques were used for the visualization and quantification of the final reaction product on the surface of cells. After incubation with concanavalin A and wheat germ agglutinin, both exudate and resident macrophages showed readily detectable final reaction product indicating the presence of numerous, easily accessible, -methyl-d-mannosyl andN-acetyl-d-glucosaminyl residues on their surface. The binding of concanavalin A was higher with resident than with exudate macrophages. With wheat germ agglutinin, a different pattern of lectin binding was observed: more electron-dense product was deposited on exudate than on resident macrophage surfaces. The binding of concanavalin A and wheat germ agglutinin to macrophages was inhibited by the competing sugars -methyl-d-mannoside andN-acetyl-d-glucosamine, respectively.  相似文献   

13.
Summary Fragments of mesonephros were taken from chick embryos and studied from the 4th to the 21st day of incubation. A battery of seven different horseradish peroxidase-labelled lectins was used to study the distribution of carbohydrate residues in glycoconjugates along the mesonephric nephron during the period of excretory activity and the period of involution. ConA and WGA reacted at every site of the nephron thus showing the ubiquitous presence of -D-mannose andN-acetyl-d-glucosamine. SBA was a good marker of the proximal tubule. Other lectins, such as PNA and LTA, reacted only for a short time at some sites during the considered period of incubation. The presence of sialic acid was detected in the podocytes, capillary wall and mesangial cells. From the 10th-11th day of incubation changes were noted in the proximal tubule as shown by PNA reactivity. This may be significant as regards the exact stage of incubation during which the involution of mesonephros begins.  相似文献   

14.
We performed an investigation at the light microscopical level of the differential distribution of lectin-binding sites among cells of the epidermis and glandular domains of the African clawed frog Xenopus laevis. Using a panel of biotinylated lectins (Con-A. PSA, LCA, UEA-I, DBA, SBA, SJA, RCA-I, BSL-I, WGA, s-WGA, PHA-E and PHA-L) and an avidin–biotin–peroxidase complex (ABC), we have identified specific binding patterns. The results show that expression of saccharide moieties in Xenopus epidermal keratinocytes is related to the stage of cellular differentiation, different cell layers expressing different sugar residues. Moreover, oliogosaccharides with “identical” biochemically defined sugar compositions can be distinguished. The method allowed further characterization of complex glycoconjugates of dermal glands. In view of these results, the ABC technique and the biotinylated lectins employed in the present study are believed to be a reliable method for the precise localization of saccharide residues of glycoconjugates present in ectothermic vertebrates.  相似文献   

15.
Protein-carbohydrate recognition may be involved in an array of molecular interactions on the cellular and subcellular levels. To gain insight into the role of proteins in this type of interaction, surgically removed specimens of human endomyocardial tissue were processed for histochemical and biochemical analysis. The inherent capacity of these sections to bind individual sugar moieties, which are constituents of the carbohydrate part of cellular glycoconjugates, was assessed using a panel of biotinylated neoglycoproteins according to a standardized procedure. Together with appropriate controls, it primarily allowed localization of endogenous lectins. Differences in lectin expression were observed between layers of endocardial tissue, myocardial cell constituents, connective-tissue elements, and vascular structures. The endocardium proved to be positive with beta-galactoside-bearing probes; with neoglycoproteins carrying beta-xylosides, alpha-fucosides, and galactose-6-phosphate moieties; and with probes containing a carboxyl group within the carbohydrate structure, namely sialic acid and glucuronic acid. In contrast, only fucose-and maltose-specific receptors were apparent in the elastic layers of the endocardium. Aside from ascertaining the specificity of the protein-carbohydrate interaction by controls, i.e., lack of binding of the probe in the presence of the unlabelled neoglycoprotein and lack of binding of the labelled sugar-free carrier protein, respective sugar receptors were isolated from heart extracts by using histochemically effective carbohydrates as immobilized affinity ligand. Moreover, affinity chromatography using immobilized lactose as affinity ligand as well as the use of polyclonal antibodies against the predominant beta-galactoside-specific lectin of heart demonstrated that the lactose-specific neoglycoprotein binding was due to this lectin. Remarkably, the labelled endogenous lectin, preferred to plant lectins for detecting ligands of the endogenous lectin, localized ligands in tissue parts where the lectin itself was detected glycohistochemically as well as immunohistologically. This demonstration of receptor-ligand presence in the same system is a further step toward functional assignment of the recorded protein-carbohydrate interaction. Overall, the observed patterns of lectin expression may serve as a guideline to elucidate the precise physiological relevance of lectins and to analyze pathological conditions comparatively.  相似文献   

16.
Hyperprolinemia type II (HPII) is an autosomal recessive disorder caused by the severe deficiency of enzyme 1-pyrroline-5-carboxylic acid dehydrogenase leading to tissue accumulation of proline. Chronic administration of Pro led to significant reduction of cytosolic ALT activity of olfactory lobes (50.57%), cerebrum (40%) and medulla oblongata (13.71%) only. Whereas mitochondrial ALT activity was reduced significantly in, all brain regions such as olfactory lobes (73.23%), cerebrum (70.26%), cerebellum (65.39%) and medulla oblongata (65.18%). The effect of chronic Pro administration on cytosolic AST activity was also determined. The cytosolic AST activity from olfactory lobes, cerebrum and medulla oblongata reduced by 75.71, 67.53 and 76.13%, respectively while cytosolic AST activity from cerebellum increased by 28.05%. The mitochondrial AST activity lowered in olfactory lobes (by 72.45%), cerebrum (by 78%), cerebellum (by 49.56%) and medulla oblongata (by 69.30%). In vitro studies also showed increase in brain tissue proline and decrease in glutamate levels. In vitro studies indicated that proline has direct inhibitory effect on these enzymes and glutamate levels in brain tissue showed positive correlation with AST and ALT activities. Acid phosphatase (ACP) activity reduced significantly in olfactory lobes (40.33%) and cerebrum (20.82%) whereas it elevated in cerebellum (97.32%) and medulla oblongata (76.33%). The histological studies showed degenerative changes in brain. Following proline treatment, the animals became sluggish and showed low responses to tail pricks and lifting by tails and showed impaired balancing. These observations indicate influence of proline on AST, ALT and ACP activities of different brain regions leading to lesser synthesis of glutamate thereby causing neurological dysfunctions.  相似文献   

17.
A novel lectin was isolated and characterized from Bryopsis plumosa (Hudson) Agardh and named BPL-3. This lectin showed specificity to N-acetyl-d-galactosamine as well as N-acetyl-d-glucosamine and agglutinated human erythrocytes of all blood types, showing slight preference to the type A. SDS-PAGE and MALDI-TOF MS data showed that BPL-3 was a monomeric protein with molecular weight of 11.5 kDa. BPL-3 was a non-glycoprotein with pI value of ∼7.0. It was stable in high temperatures up to 70°C and exhibited optimum activity in pH 5.5–10. The N-terminal and internal amino acid sequences of the lectin were determined by Edman degradation and enzymatic digestion, which showed no sequence homology to any other reported proteins. The full sequence of the cDNA encoding this lectin was obtained from PCR using cDNA library, and the degenerate primers were designed from the N-terminal amino acid sequence. The size of the cDNA was 622 bp containing single ORF encoding the lectin precursor. This lectin showed the same sugar specificity to previously reported lectin, Bryohealin, involved in protoplast regeneration of B. plumosa. However, the amino acid sequences of the two lectins were completely different. The homology analysis of the full cDNA sequence of BPL-3 showed that it might belong to H lectin group, which was originally isolated from Roman snails.  相似文献   

18.
Lectins have been classified into a structurally diverse group of proteins that bind carbohydrates and glycoconjugates with high specificity. They are extremely useful molecules in the characterization of saccharides, as drug delivery mediators, and even as cellular surface makers. In this study, we present camptosemin, a new lectin from Camptosema ellipticum. It was characterized as an N-acetyl-d-galactosamine-binding homo-tetrameric lectin, with a molecular weight around 26 kDa/monomers. The monomers were stable over a wide range of pH values and exhibited pH-dependent oligomerization. Camptosemin promoted adhesion of breast cancer cells and hemagglutination, and both activities were inhibited by its binding of sugar. The stability and unfolding/folding behavior of this lectin was characterized using fluorescence and far-UV circular dichroism spectroscopies. The results indicate that chemical unfolding of camptosemin proceeds as a two-state monomer-tetramer process. In addition, small-angle X-ray scattering shows that camptosemin behaves as a soluble and stable homo-tetramer molecule in solution.  相似文献   

19.
Alkaline borohydride reductive cleavage of hen ovomucin resulted in the release of a series of neutral and acidic oligosaccharide-alditols.1H-NMR spectroscopy in combination with fast ion bombardment-mass spectrometry in negative ion mode were used for investigation of the structures of three oligosaccharide-alditols. The following structures were established: Abbreviations NeuAc N-acetyl-d-neuraminic acid - Gal d-galactose - GlcNAc N-acetyl-d-glucosamine - Gal-NAc-ol N-acetyl-d-galactosaminitol - NMR nuclear magnetic resonance - FAB-MS fast atom bombardmentmass spectrometry  相似文献   

20.
Summary Biotinylation of chemically glycosylated bovine serum albumin, yielding a panel of neoglycoproteins, and of desialylated, naturally occurring glycoproteins allowed to systematically evaluate presence and distribution of various types of endogenous sugar receptors in the sections of human glioblastomas and gangliocytomas by a routine histochemical procedure. Pronounced cytoplasmic staining with markers, carrying constituents of natural glycoconjugates, e.g. for -galactoside-specific receptors, contrasted with the different intensities, noticed for - and -glucosidespecific receptors. Significant qualitative differences between the two tumor types were detected with N-acetyl-D-galactosamine-and sialic acid-carrying probes. Nuclear staining with only a part of the applied panel underscored the specificity of the protein-carbohydrate interaction. Fine structural features of the synthetic neoglycoproteins, e.g. the mode of coupling of the carbohydrate moiety to the protein, were found to exert a significant influence on their suitability as histochemical markers. On the basis of the histochemical results, exemplary biochemical analysis of certain classes of endogenous sugar receptors by affinity chromatography and subsequent gel electrophoresis, namely of -galactoside-, -fucoside-, -mannoside- and -glucoside-specific proteins, revealed presence and characteristics of respective sugar receptors that can contribute to the histochemical staining. Similar extent of histochemical staining with the respective probes notwithstanding, the different tumor types exhibited qualitative differences in the expression of individual endogenous sugar receptors. The combined histochemical and biochemical analysis is supposed to be of conspicuous value for biological and clinical investigations on endogenous sugar receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号