首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The dose- and time-response effects of sequential 3 h+3 h NO→NO2 day time exposures [0–9 μl l?1 (ppm) NO, 0–7.5 μl l?1 NO2] followed by 3 h+3 h NO→NO2 night-time exposures (0–9.5 μl l?1 NO, 0–9 μl l?1 NO2) on photosynthesis, transpiration and dark respiration were examined for nine Carpatho-Ukrainian (‘Rachovo’) half-sib families and for two populations, one from the FRG (‘Westerhof’) and one from the GDR (‘Schmiedefeld’) of Norway spruce [Picea abies (L.) Karst.], all in their 4th growing season. In a second exposure series the exposure sequence was reversed. None of the treatments induced needle scorching. The higher NOx (NO or NO2) concentrations reduced photosynthesis and transpiration within 1 h. The physiology of the different spruce types was affected significantly differently, the most sensitive spruce having its photosynthesis suppressed 6.6 times and its transpiration 5.5 times more than the most tolerant. ‘Westerhof’ was more sensitive to NO2 than the average ‘Rachovo’ half-sibs. The gradients of different photosynthesis and transpiration sensitivities among the half-sibs (and ‘Westerhof’) demonstrated a significant, positive, mutual correlation, but significant negative correlations with the gradient of novel decline symptoms among their parents growing in Danish forests. The relative photosynthesis and transpiration sensitivies may thus serve as diagnostic parameters for laboratory selection of the most resistant trees to novel spruce decline. The average NO2 flux density was three times larger than the average NO flux density. Only for NO2 and in light was stomatal NOx uptake larger than the total NOx uptake. Both night transpiration and dark respiration were stimulated by high concentrations of night NOx, preceded by day NOx exposures.  相似文献   

2.
The dose- and time-response effects of single 4-h day-exposures to 0.50, 0.79, 1.28, 1.58, 2.38 or 3.35 μl l?1 (ppm) SO2 followed by single 3-h night-exposures of 0.60, 0.87, 1.54, 1.91, 2.91 or 3.98 μl l?1 SO2 on photosynthesis, transpiration and dark respiration were examined for nine East European (Carpatho-Ukrainian, ‘Rachovo’) half-sib families and for two populations, one from the FRG (‘Westerhof’) and one from the GDR (‘Schmiedefeld’) of Norway spruce [Picea abies (L.) Karst.], all in their 4th growing season. Even the lowest SO2 concentration reduced photosynthesis and transpiration within 1 h. Photosynthesis of the different spruce types was affected significantly differently, the most sensitive spruce being suppressed 2.5 times more than the most tolerant spruce. ‘Westerhof’ was more resistant to SO2 than the average ‘Rachovo’ half-sibs. Neither transpiration (stomatal reaction), which was affected alike by all SO2 concentrations, nor SO2 uptake, explained adequately the effects on photosynthesis. Night transpiration, but not dark respiratin, was stimulated by night SO2 preceded by day SO2 exposure. The gradient of different SO2 sensitivities among young trees from the half-sib families demonstrated a significant negative correlation with the gradient of different sensitivities to novel decline symptoms of their parents growing in a rural seed orchard in Denmark, and with the gradients of four morphology parameters, (height, branching, branch density and the number of Lammas shoots) of the young trees, which in turn demonstrated a positive correlation with decline sensitivity in the seed orchard. The relative photosynthesis sensitivity and the morphology of half-sibs may serve as diagnostic parameters for laboratory selection of the most resistent trees to novel spruce decline in the field. There was a positive correlation between SO2 induced scorching of Lammas shoots and the inhibition of photosynthesis, but not between the severity of SO2 scorching and symptoms of novel spruce decline. The two visible types of symptoms looked very different.  相似文献   

3.
Three years old seedlings of Douglas fir (Pseudotsuga menziesii) were exposed lo filtered air, O3 (day and night concentrations of 78 and 30 μgm?3: respectively). NH3 (54 μg m?3) and to a mixture of NH3+O3 (day and night concentrations of 49 + 83 and 49 + 44 μg m?3 respectively), for 5 months in fumigation chambers. Both gas exchange and chlorophyll fluorescence were measured on shoots which had sprouted at the beginning of the exposure period. After 4. 8, 10 and 20 weeks of exposure, light response curves of electron transport rate (J) were determined, in which J was deduced from chlorophyll fluorescence. Net CO2 assimiialion was measured at maximum light intensity of 560) μmol m?2 S?1 (Pn.560). After 8 and 10 weeks of exposure also light response curves of CO2 assimilation were assessed. Shoots exposed to O3 showed a reduction in net CO2 assimilation as compared to the control shoots during the entire exposure period. The reduction was related lo a lower chlorophyll content and a lower electron transport rate, whereas no effect on quantum yield efficiency (qy) was observed. In contrast, shoots exposed to NH3 showed a positive effect on photosynthesis. Shoots exposed to NH3. + O3 showed a rapid increase in Pn.560, in the period between 4 and 8 weeks to a level equal of that of the NH3-treatment. After this period a decline in Pn.560 was observed. After 10 weeks of exposure shoots exposed to O3 showed an increased transpiration rate in the dark as compared to the control shoots. In addition, water use efficiency (WUE) declined as a result of an increase in leaf conductance. Both observations indicate that the stomatal apparatus was affected by O3. A high transpiration rate in the dark was also found for shoots esposed to NHX. However, shoots exposed to NH3+ O3 showed neither an effect on WUE, nor an effect on transpiration rate in the dark. The possibility that NH3 delayed the O3 induced effects on photosynthesis and stomatal conductance is discussed.  相似文献   

4.
Field data on the sulphur and cation budget of growing Norway spruce canopies (Picea abies [L.] Karst.) are summarized. They are used to test a spruce decline model capable of quantifying effects of chronic SO2 pollution on spruce forests. At ambient SO2 concentrations, acute SO2 damage is rare, but exposure to polluted air produces reversible thinning of the canopy structure with a half-time of a few years. Canopy thinning in the spruce decline model is highest (i) at elevated SO2 pollution, (ii) in the mountains, (iii) at unfertilized sites with poor K+, Mg2+ or Zn2+ supply, (iv) at low spruce litter decomposition rates, and (v) acidic, shallow soils at high annual precipitation rates in the field and vice versa. Model application using field data from Würzburg (moderate SO2 pollution, alkaline soils, no spruce decline) and from the Erzgebirge (extreme SO2 pollution, acidic soils in the mountains, massive spruce decline) predicts canopy thinning by 2–11% in Würzburg and by 45–70% in the Erzgebirge. The model also predicts different SO2-tolerance limits for Norway spruce depending on the site elevation and on the nutritional status of the needles. If needle loss of more than 25% (damage class 2) is taken to indicate ‘real damage’ exceeding natural variances, then for optimum soil conditions SO2 tolerance limits range from (27.3 ± 7.4) μg m?3 to (62.6 ± 16.5) μg m?3. For shallow and acidic soils, SO2 tolerance limits range from (22.0 ± 5.5) μg m?3 to (37.4 ± 7.5) μ m?3. These tolerance limits, which are calculated on an ecophysiological data basis for Norway spruce are close to epidemiological SO2-toIerance limits as recommended by the IUFRO, UN-ECE and WHO. The observed statistical regression slope of the plot (damaged spruce trees vs. SO2-pollution) in west Germany is confirmed by modelling (6% error). Model application to other forest trees allows deduction of the observed sequence of SO2-sensitivity: Abies > Picea > Pinus > Fagus > Quercus. Thus, acute phytotoxicity of SO2 seems not to be involved in ‘forest decline’. Chronic SO2-pollution induces massive canopy thinning of Abies alba and Picea abies only at unfavourable sites, where natural stress factors and secondary effects of SO2pollution act together to produce tree decline.  相似文献   

5.
The goal of the present study was to examine the effects of slow and rapid changes of ozone (O3) concentrations on the physiological behaviour of current-year needles of Norway spruce (Picea abies (L.) Karst.). For this purpose five-year-old spruce seedlings were exposed in growth chambers for 49 days to either charcoal-filtered air, slowly increasing O3 concentrations from zero up to 100 nl I?1 in weekly steps of 25 nl I?1, or immediately to 100 nl I?1 of O3. During the investigation period gas exchange, carbohydrate and antioxidant contents of the current flush were measured. In needles which experienced slowly increasing O3 concentrations, cumulative O3 uptake was approximately 30 % lower than in needles continuously fumigated with 100 nl I?1 of O3. The higher 03 uptake in the permanent 100 nl I?1 O3 treatment caused a pronounced decline in net photosynthesis, in the efficiency of CO2 uptake and in the starch content of the seedlings. Initially the ascorbate pool increased, but after 5 weeks of exposure ascorbate concentrations declined and were comparable to values obtained in charcoal-filtered controls, while the thiol contents were enhanced during fumigation with permanent 100 nl I-?1 O3. On the contrary, slowly increasing O3 caused a significant increase in total needle ascorbate throughout the fumigation period, which probably prevented an O3-induced decline in the photosynthetic machinery as photosynthesis was not affected although the thiol contents were not enhanced. Furthermore, starch content was slightly higher than in O3-free controls. These results suggest that seedlings of Norway spruce have the possibility to acclimate to O3 stress, as slowly increasing O3 concentrations seemed to increase resistance and the seedlings were able to compensate.  相似文献   

6.
The dose- and time-response effects of 3 days of 6 h day-time sequential exposures to NO2, SO2 and SO2+NO2 of 0.45–1.81 μl l−1 (ppm) SO2 and 1.50–7.65 μl l−1 NO2 on photosynthesis, transpiration and dark respiration were examined for nine Carpatho-Ukrainian half-sib families and a population from the GFR ('Westerhof') of Norway spruce [ Piecea abies (L.) Karst.], all in their 5th growing season.
SO2+NO2 inhibited photosynthesis and transpiration and stimulated dark respiration more than SO2 alone. SO2 and SO2+NO2 at the lowest concentrations inhibited night transpiration, but increased it at the highest concentration, the strongest effects being obtained with combined exposures. Photosynthesis of the different half-sib families was affected significantly differently by SO2+NO2 exposures. NO2 alone had no effects.
Sensitivity to transpiration decline correlated negatively with branch density. Height of trees correlated postitively with decline sensitivity in the seed orchard. The distribution of photosynthesis and transpiration sensitivities over all tested half-sib families correlated negatively with the distribution of decline sensitivity of their parents in a rural Danish seed orchard. The relative photosynthesis and transpiration sensitivities may thus serve as diagnostic parameters for selecting against novel spruce decline.  相似文献   

7.
For one group of C4 species we have proposed that the C4 acid decarboxylation phase of C4 photosynthesis proceeds via a NAD ‘malic’ enzyme located in bundle sheath mitochondria. The present studies with Atriplex spongiosa demonstrate the capacity of isolated mitochondria and bundle sheath cell strands to decarboxylate malate at rates commensurate with an integral role in photosynthesis. With bundle sheath cells, rates of H14CO3? fixation into Calvin cycle intermediates and evolution of O2 when HCO3? was added, were above 2 μmoles/min/mg chlorophyll. Similar rates of O2 evolution resulted from the addition of C4 acids, and the C-4 carboxyl of malate was rapidly assimilated into photosynthetic intermediates and products.  相似文献   

8.
Teruo Ogawa 《BBA》1982,681(1):103-109
Illumination of leaves of Vicia faba L. provoked oscillations in the rates of CO2 uptake and O2 evolution. The oscillations were marked under anaerobic conditions, but were absent at 20% O2. The minimum CO2 concentration required for the appearance of oscillations was 600 μl · l?1. The higher the CO2 concentration, the stronger the oscillations. The effect of CO2 concentration was saturated at 1000 μl CO2 · l?1. The period of the oscillations was 5–6 min at a light intensity of 80 nE · cm?2 · s?1 and became longer on lowering of the intensity. No oscillations appeared at intensities below 12 nE · cm?2 · s?1. Oscillations could also be generated by increasing the CO2 concentration in the atmosphere during strong illumination under anaerobic conditions. The chlorophyl a fluorescence yield showed oscillations, similar in shape and frequency to those of photosynthesis, after such an environmental change. Oscillations were also observed in photosynthesis of other C3 plants, Lycopersicon esulentum Mill and Glycine max Merrill, under the same conditions as those required for V. faba, but were absent for the C4 plants, Zea mays and Amaranthus retroflexus L.  相似文献   

9.
Exposure of spinach (Spinacia oleracea L. cv. Monosa) to 0.25 μl l?1 H2S reduced the relative growth rate by 26, 47 and 60% at 15, 18 and 25°C, respectively. Shoot to root ratio decreased in plants fumigated at 18 and 25°C. Growth of spinach was not affected by a 2-week exposure to 0.10 or 0.25 μl l?1 SO2. Both H2S and SO2 fumigation increased the content of sulfhydryl compounds and sulfate. A 2-week exposure to 0.25 μl l?1 H2S resulted in an increase in sulfhydryl and sulfate content of 250 to 450% and 63 to 248% in the shoots, respectively, depending on growth temperature. Exposure to 0.15 and 0.30 μl l?1 H2S at 20°C for 2 weeks resulted in a 46% increase in sulfate content of the shoots at 0.30 μl l?1 and no detectable increase at 0.15 μl l?1 H2S; the sulfate content of the roots increased by 195 and 145% at 0.15 and 0.30 μl l?1 H2S, respectively. Fumigation with 0.25 μl l?1 SO2 at 20°C for 2 weeks resulted in an increase in sulfhydryl content and sulfate content in the shoots of 285% and 300 to 1100%. H2S fumigation during the 12 h light period or only during the dark period resulted in identical growth reduction and accumulation of sulfhydryl compounds; they were about 50 and 67% of those observed in continuously exposed plants. H2S- and SO2-exposed plants showed an increased transpiration rate, which was mainly caused by an increased dark-period transpiration. No effect of H2S and SO2 on the water uptake of the plants and the osmotic potential of the leaves was detected. Plants fumigated with 0.25 μl l?1 H2S for 2 weeks were smaller and differed morphologically from the control plants by slightly more abaxially curved leaf margins. Cross sections of the leaves showed smaller cells at the margins and smaller and fewer air spaces. The increased transpiration in the H2S-exposed plants is discussed in relation to the observed morphological changes.  相似文献   

10.
The effects of oxygen concentration and light intensity on the rates of apparent photosynthesis, true photosynthesis, photorespiration and dark respiration of detached spruce twigs were determined by means of an infra-red carbon dioxide analyzer (IRCA). A closed circuit system IRCA was filled with either 1 per cent of oxygen in nitrogen, air (21 % O2) or pure oxygen (100 % O2). Two light intensities 30 × 103 erg · cm ?2· s?1 and 120 × 103 erg · cm?2· s?1 were applied. It has been found that the inhibitory effect of high concentration of oxygen on the apparent photosynthesis was mainly a result of a stimulation of the rate of CO2 production in light (photorespiration). In the atmosphere of 100 % O2, photorespiration accounts for 66–80 per cent of total CO2 uptake (true photosynthesis). Owing to a strong acceleration of photorespiration by high oxygen concentrations, the rate of true photosynthesis calculated as the sum of apparent photosynthesis and photorespiration was by several times less inhibited by oxygen than the rate of apparent photosynthesis. The rates of dark respiration were essentially unaffected by the oxygen concentrations used in the experiments. An increase in the intensity of light from 30 × 103 erg · cm?3· s?1 to 120 · 103 erg · cm?2· s?1 enhanced the rate of photorespiration in the atmospheres of 21 and 100 % oxygen but not in 1 % O2. The rate of apparent photosynthesis, however, was little affected by light intensity in an atmosphere of 1 % oxygen.  相似文献   

11.
The nature of the interaction between drought and elevated CO2 partial pressure (pCa) is critically important for the effects of global change on crops. Some crop models assume that the relative responses of transpiration and photosynthesis to soil water deficit are unaltered by elevated pCa, while others predict decreased sensitivity to drought at elevated pCa. These assumptions were tested by measuring canopy photosynthesis and transpiration in spring wheat (cv. Minaret) stands grown in boxes with 100 L rooting volume. Plants were grown under controlled environments with constant light (300 µmol m?2 s?1) at ambient (36 Pa) or elevated (68 Pa) pCa and were well watered throughout growth or had a controlled decline in soil water starting at ear emergence. Drought decreased final aboveground biomass (?15%) and grain yield (?19%) while elevated pCa increased biomass (+24%) and grain yield (+29%) and there was no significant interaction. Elevated pCa increased canopy photosynthesis by 15% on average for both water regimes and increased dark respiration per unit ground area in well‐watered plants, but not drought‐grown ones. Canopy transpiration and photosynthesis were decreased in drought‐grown plants relative to well‐watered plants after about 20–25 days from the start of the drought. Elevated pCa decreased transpiration only slightly during drought, but canopy photosynthesis continued to be stimulated so that net growth per unit water transpired increased by 21%. The effect of drought on canopy photosynthesis was not the consequence of a loss of photosynthetic capacity initially, as photosynthesis continued to be stimulated proportionately by a fixed increase in irradiance. Drought began to decrease canopy transpiration below a relative plant‐available soil water content of 0.6 and canopy photosynthesis and growth below 0.4. The shape of these responses were unaffected by pCa, supporting the simple assumption used in some models that they are independent of pCa.  相似文献   

12.
Recent work has suggested that the photosynthetic rate of certain C4 species can be stimulated by increasing CO2 concentration, [CO2], even under optimal water and nutrients. To determine the basis for the observed photosynthetic stimulation, we tested the hypothesis that the CO2 leak rate from the bundle sheath would be directly related to any observed stimulation in single leaf photosynthesis at double the current [CO2]. Three C4 species that differed in the reported degree of bundle sheath leakiness to CO2, Flaveria trinervia, Panicum miliaceum, and Panicum maximum, were grown for 31–48 days after sowing at a [CO2] of 350 μl l?1 (ambient) or 700 μl l?1 (elevated). Assimilation as a function of increasing [CO2] at high photosynthetic photon flux density (PPFD, 1 600 μmol m?2 s?1) indicated that leaf photosynthesis was not saturated under current ambient [CO2] for any of the three C4 species. Assimilation as a function of increasing PPFD also indicated that the response of leaf photosynthesis to elevated [CO2] was light dependent for all three C4 species. The stimulation of leaf photosynthesis at elevated [CO2] was not associated with previously published values of CO2 leak rates from the bundle sheath, changes in the ratio of activities of PEP-carboxylase to RuBP carboxylase/oxgenase, or any improvement in daytime leaf water potential for the species tested in this experiment. In spite of the simulation of leaf photosynthesis, a significant increase in growth at elevated [CO2] was only observed for one species, F. trinervia. Results from this study indicate that leaf photosynthetic rates of certain C4 species can respond directly to increased [CO2] under optimal growth conditions, but that the stimulation of whole plant growth at elevated carbon dioxide cannot be predicted solely on the response of individual leaves.  相似文献   

13.
The occurrence of an active CO2 transport system and of carbonic anhydrase (CA) has been investigated by mass spectrometry in the marine, unicellular rhodophyte Porphyridium cruentum (S.F. Gray) Naegeli and two marine chlorophytes Nannochloris atomus Butcher and Nannochloris maculata Butcher. Illumination of darkened cells incubated with 100 μM H13CO3? caused a rapid initial drop, followed by a slower decline in the extracellular CO2 concentration. Addition of bovine CA to the medium raised the CO2 concentration by restoring the HCO3?–CO2 equilibrium, indicating that cells were taking up CO2 and were maintaining the CO2 concentration in the medium below its equilibrium value during photosynthesis. Darkening the cell suspensions caused a rapid increase in the extracellular CO2 concentration in all three species, indicating that the cells had accumulated an internal pool of unfixed inorganic carbon. CA activity was detected by monitoring the rate of exchange of 18O from 13C18O2 into water. Exchange of 18O was rapid in darkened cell suspensions, but was not inhibited by 500 μM acetazolamide, a membrane‐impermeable inhibitor of CA, indicating that external CA activity was not present in any of these species. In all three species, the rate of exchange was completely inhibited by 500 μM ethoxyzolamide, a membrane‐permeable CA‐inhibitor, showing that an intracellular CA was present. These results demonstrate that the three species are capable of CO2 uptake by active transport for use as a carbon source for photosynthesis.  相似文献   

14.
The crop sensitivity to ozone (O3) is affected by the timing of the O3 exposure, by the O3 concentration, and by the crop age. To determine the physiological response to the acute ozone stress, tomato plants were exposed to O3 at two growth stages. In Experiment I (Exp. I), O3 (500 μg m?3) was applied to 30-d-old plants (PL30). In Experiment II (Exp. II), three O3 concentrations (200, 350, and 500 μg m?3) were applied to 51-d-old plants (PL51). The time of the treatment was 4 h (7:30–11:30 h). Photosynthesis and chlorophyll fluorescence measurements were done 4 times (before the exposure; 20 min, 20 h, and 2–3 weeks after the end of the treatment) using a LI-COR 6400 photosynthesis meter. The stomatal pore area and stomatal conductance were reduced as the O3 concentration increased. Ozone induced the decrease in the photosynthetic parameters of tomato regardless of the plant age. Both the photosystem (PS) II operating efficiency and the maximum quantum efficiency of PSII photochemistry declined under the ozone stress suggesting that the PSII activity was inhibited by O3. The impaired PSII contributed to the reduced photosynthetic rate. The greater decline of photosynthetic parameters was found in the PL30 compared with the PL51. It proved the age-dependent ozone sensitivity of tomato, where the younger plants were more vulnerable. Ozone caused the degradation of photosynthetic apparatus, which affected the photosynthesis of tomato plants depending on the growth stage and the O3 concentration.  相似文献   

15.
We present a novel approach to estimating the transpiration flux and gross primary productivity (GPP) from Normalized Difference Vegetation Index, leaf functional types, and readily available climate data. We use this approach to explore the impact of variations in the concentration of carbon dioxide in the atmosphere ([CO2]) and consequent predicted changes in vegetation cover, on the transpiration flux and GPP. There was a near 1 : 1 relationship between GPP estimated with this transpiration flux approach and that estimated using a radiation‐use efficiency (RUE) approach. Model estimates are presented for the Australian continent under three vegetation–[CO2] scenarios: the present vegetation and hypothetical ‘natural’ vegetation cover with atmospheric CO2 concentration ([CO2]) of 350 μmol mol?1 (pveg350 and nveg350), and for the ‘natural’ vegetation with [CO2] 280 μmol mol?1 (nveg280). Estimated continental GPP is 6.5, 6.3 and 4.3 Gt C yr?1 for pveg350, nveg350 and nveg280, respectively. The corresponding transpiration fluxes are 232, 224 and 190 mm H2O yr?1. The contribution of the raingreen and evergreen components of the canopy to these fluxes are also estimated.  相似文献   

16.
Photosynthetic rate, transpiration rate and SO2 absorption rate were simultaneously measured under exposure to SO2 (0.1–1.0 μl l ?1) for 5 or 8 hr in six species belonging to C4 or C3 plants (Zea mays, Sorghum vulgare, Amaranthus tricolor, Oryza sativa, Avena sativa andHelianthus annuus). Distinct interspecific differences were found as to the extent of inhibition of photosynthetic rate. Calculation of diffusive resistance to H2O(r) and SO2(r′) showed that the ratio of r′/r was 1.9 irrespective of species and coincided well with the theoretical value based on molecular diffusion. Thus it was made clear that the absorption of SO2 was dependent upon the gas exchange capacity of leaf blade. Using the ratio of r′/r the rate of SO2 absorption could be calculated from transpiration rate and was compared with the inhibition rate of photosynthesis. In three C4 species, the inhibition of photosynthesis increased linearly with the amount of SO2 absorbed during a 5-hour period. The pattern of inhibition of photosynthesis inA. sativa andH. annuus among C3 species was similar to that of C4 species until the amount of SO2 absorbed reached 60 mg-SO2 m?2 above which the inhibition abruptly increased. The inhibition of photosynthesis inO. sativa was exceptionally severe even with only a small amount of SO2 absorbed.  相似文献   

17.
Abstract Results obtained with Hydrodictyon africanum, and data from the literature, show that most green algae of the chlorophyte type (e.g. Chlorella, Chlamydomonas, Hydrodictyon) differ in their photosynthetic C fixation characteristics from most green algae of the charophyte type (e.g. Spirogyra, Chara) and from C3 higher plants. The chlorophyte algae fix inorganic carbon by the photosynthetic carbon reduction cycle pathway, but have a low CO2 compensation point in 250 μM O2, a low inhibition of CO2 fixation from 10 μM CO2/250 μM O2 when compared with 10 μM CO2/zero O2, and a low half-saturation constant for CO2. These three characteristics are different from those of charophytes and C3 higher plants, and resemble those of C4 higher plants. It is suggested that these characteristics of chlorophyte algae are the result of a ‘CO2 concentrating mechanism’ which increases the CO2/O2 ratio at the site of ribulose bisphosphate carboxylase-oxygenase action in a similar way to that achieved by the C4?C3 acid cycle in C4 plants. In the chlorophyte algae, however, CO2 concentration probably involves active HCO3? transport at the inner membrane of the chloroplast envelope. Active HCO3? transport can occur at the plasmalemma of charophyte algae and submerged aquatic higher plants as well as chlorophyte algae, so it is unlikely to explain the differences between the two groups of aquatic green plants. Differences in the properties of ribulose bisphosphate carboxylase-oxygenase, and differences in CO2 production in the light, also seem inadequate to account for the different photosynthetic characteristics. The chlorophyte type of ‘C02 concentrating mechanism’ appears to be common in other classes of eukaryotic algae, and in cyanophytes. Some of the ‘advanced’ members of these eukaryotic algal classes (including the chlorophytes) may lack the mechanism, while some ‘primitive’ charophytes may retain the mechanism which their ancestors presumably possessed.  相似文献   

18.
Simultaneous assimilation of NH4 and NO3 by Gelidium nudifrons Gardner was observed in culture experiments of 4 possible combinations of NH4 and NO3. The combinations tested were those in which the concentration of both N sources were in the range of 3.0–4.0 μg-atN · l?1; both in the range of 0.5–1.0 μg-atN · l?1; one in the 3.0–4.0 μg-atN · l?1 range and the other in the 0.5–1.0 μg-atN · l?1 range; and, visa versa. The data suggest that the pools of both NH4 and NO3 are simultaneously available for algal assimilation.  相似文献   

19.
Photosynthesis and respiration rates of blades from a selected, fast growing strain of the marine red alga. Gigartina exasperata Harvey and Bailey, a carrageenan producer, were measured with an oxygen electrode and compared with rates similarly obtained from wild material of the same species. The measurements, expressed as μl O2 · mg chl a?1, min?1. were made over a light intensity range from 5 to 800 μE · m?2 · sec?1 and a temperature range of 6 to 16°C. The photosynthesis light intensity data are best described by hyperbolic functions.  相似文献   

20.
Ulva lactuca, collected on the west coast of Sweden at the end of May, was able to utilize the HCO3 ? pool of seawater only through extracellular dehydration via carbonic anhydrase, followed by uptake of the CO2 formed. A decrease in the CO2 supply via this mechanism resulted in the gradual development of an additional method of HCO3 ? utilization, namely a direct uptake of HCO3 ? . Photosynthesis could then be supported by either a ‘HCO3 ? dehydration mechanism’ or a ‘HCO3 ? uptake mechanism’. Through selective inhibition of either of these mechanisms, the physiological properties of the other could be assessed. These properties suggest that the HCO3 ? uptake mechanism of U. lactuca is important under conditions when low concentrations of inorganic C, high pH and high external O2 concentrations would limit photosynthesis supported by the HCO3 ? dehydration mechanism. Such conditions may occur during intense irradiation of the alga in rockpools or in shallow bays with low rates of water exchange. The results are discussed in relation to a possible coupling between mechanisms for inorganic C acquisition and cell structure (or even morphology) of green macroalgae. They also illustrate some necessary precautions when using Michaelis–Menten kinetics for estimations of Vmax and K1/2 values.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号