共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Cell killing by various monofunctional alkylating agents in Chinese hamster ovary cells 总被引:2,自引:0,他引:2
Cell killing by N-methyl-N'-nitro-N-nitrosoguanidine (MNNG), N-methyl-N-nitrosourea (MNU), N-ethyl-N-nitrosourea (ENU), and methyl methanesulfonate (MMS) was measured in Chinese hamster ovary (CHO) cells using the colony-formation assay. Cell killing by these agents was determined in exponentially growing asynchronous cells, in synchronous cells as a function of cell-cycle position and in nondividing cells. Distinct differences in the cytotoxic effect of the 4 alkylating agents were found in respect to dose-response, cell cycle phase-sensitivity and growth state. MNNG and MNU showed the same biphasic dose-survival relationship in exponentially growing cells, with an initial steep decline followed by a shallow component. The shallow component disappeared in growth-arrested cells. MNNG and MNU differed, however, in the cell-cycle age response. No cell-cycle phase difference was seen with MNNG, whereas cells in G1 seemed more sensitive to MNU than cells in S phase. MMS and ENU both showed shouldered dose-response curves for exponentially growing asynchronous cells, and the same cell-cycle pattern for synchronous cultures with cells in early S phase being the most sensitive. However, survival of nondividing cells versus dividing cells was reduced much more by MMS than by ENU. Caffeine, which interferes with the regulation of DNA synthesis and is known to modify cell killing by DNA-damaging agents, enhanced cell killing by all agents. It is concluded that there must be a number of factors which contribute to cell killing by monofunctional alkylating agents, and that besides alkylation of DNA reaction with other cellular macromolecules should be considered. 相似文献
3.
William J. Bodell 《Mutation research》1990,233(1-2):203-210
The induction of sister-chromatid exchanges (SCEs) and cytotoxicity in 9L cells treated with monofunctional and bifunctional alkylating agents has been investigated. Three classes of monofunctional and bifunctional agents were studied: nitrosoureas, mustards and epoxides. Independent of class the bifunctional agents were 55–630-fold more effective at inducing SCEs and 300–2400-fold more effective at inducing cellular cytotoxicity than the corresponding monofunctional agents. Comparing the induction of SCEs and cytotoxicity by these agents showed that these two cellular responses to DNA damage are highly correlated. The extent of DNA alkylation in cells treated with 1-ethyl-1-nitrosourea (ENU) or 1-(2-chloro-ethyl)-1-nitrosourea (CNU) was similar indicating that the increased effectiveness of CNU to induce SCEs and cytotoxicity was not due to increased DNA alkylation. Molecular dosimetry calculations indicate that for CNU and ENU treatment of 9L cells there are 116 and 8500 alkylations per SCE induced and 2.6 × 104 and 4.6 × 106 alkylations at the dose required to reduce survival of 9L cells by 90%. Comparison of the DNA alkylation products produced by CNU and ENU treatment of 9L cells suggests that the formation of the intrastrand crosslink N7-bis(guanyl)ethane the interstrand crosslink 1-(3-deoxycytidyl)-2-(1-deoxyguanosinyl)ethane by CNU is responsible for the increased effectiveness of CNU treatment at both induction of SCEs and cytotoxicity. 相似文献
4.
The elimination of mutagenic lesions induced by alkylating agents and UV in V79 Chinese hamster cells 总被引:1,自引:0,他引:1
D Jenssen 《Mutation research》1986,165(3):185-190
The mutagenicity of MNU, EMS, BMS and UV light was compared by analyzing the dose-response curve just before and after the replicative process of the HGPRT gene in synchronized V79 Chinese hamster cells. This system makes it possible to compare a 10-h period for repair of different mutagenic lesions with no time for repair. Additional time for repair in synchronized V79 cells resulted in a reduced response for MNU and UV, but not for EMS and BMS. This result suggests that an error-free repair process operates on mutagenic lesions in methylated DNA and on thymine dimers, but not on ethylated and butylated DNA. Based on these results, it is concluded that the repair capacity of V79 cells to remove mutagenic lesions is characterized as low for UV, moderate for MNU and not detectable for the mutagenic lesions induced by EMS and BMS. 相似文献
5.
6.
Mechanisms of carcinogenesis induced by alkylating agents 总被引:42,自引:0,他引:42
7.
8.
Distribution of methyl and ethyl adducts following alkylation with monofunctional alkylating agents 总被引:29,自引:4,他引:29
D T Beranek 《Mutation research》1990,231(1):11-30
Alkylating agents, because of their ability to react directly with DNA either in vitro or in vivo, or following metabolic activation as in the case of the dialkylnitrosamines, have been used extensively in studying the mechanisms of mutagenicity and carcinogenicity. Their occurrence is widespread in the environment and human exposure from natural and pollutant sources is universal. Since most of these chemicals show varying degrees of both carcinogenicity and mutagenicity, and exhibit compound-specific binding patterns, they provide an excellent model for studying molecular dosimetry. Molecular dosimetry defines dose as the number of adducts bound per macromolecule and relates the binding of these adducts to the human mutagenic or carcinogenic response. This review complies DNA alkylation data for both methylating and ethylating agents in a variety of systems and discusses the role these alkylation products plays in molecular mutagenesis. 相似文献
9.
Alterations in Bacillus subtilis transforming DNA induced by beta-propiolactone and 1,3-propane sultone, two mutagenic and carcinogenic alkylating agents.
下载免费PDF全文

Transforming DNA was exposed to either beta-propiolactone or 1,3-propane sultone and then used for transformation of competent bacteria to nutritional independence from tyrosine and tryptophan (linked markers) and leucine (an unlinked marker). The ability to transform was progressively lost by the DNA during incubation with either of these two chemicals. For all three markers the inactivation curve was biphasic, with a short period of rapid inactivation followed by one characterized by a much slower rate. The overall rate of inactivation was different for all three markers and presumably was related to the size of the marker. The decrease in the transforming activity was in part due to the slower rate of penetration of alkylated DNA through the cellular membrane and its inability to enter the recipient bacteria. This decrease in the rate of cellular uptake, even for DNA eventually destined to enter the cell, began almost immediately after its exposure to the chemical and ended up with an almost complete lack of recognition of the heavily alkylated DNA by the specific surface receptors of competent cells. Such DNA attached to sites on the surface of competent bacteria which were different from receptors specific for the untreated nucleic acid. This attachment was not followed by uptake of the altered DNA. Presence of albumin during the incubation with a carcinogen further increased the degree of inactivation, indicating that the artificial nucleoproteins produced under such conditions were less efficient in the transformation assay than was the naked DNA. Cotransfomration of close markers progressively decreased, beginning immediately after the start of incubation of DNA with the chemicals. Extensively alkylated DNA fractionated by sedimentation through sucrose density gradients showed a peculiar distribution of cotransforming activity for such markers; namely, molecules larger than the bulk of DNA ("megamolecules") showed less ability to transform the second marker than did some of the apparently smaller molecules which sedimented more slowly through the gradient. An increase in cotransformation of distant markers was evident in DNA molecules after a short exposure to an alkylating agent, but cotransformation of such markers was absent in DNA treated for longer periods. The observed changes in the transforming and cotransforming activities of the alkylated DNA can be explained by what is known about the physicochemistry of such DNA and in particular about the propensity of the alkylated and broken molecules to form complexes with themselves and with other macromolecules. 相似文献
10.
G Mohn 《Mutation research》1973,20(1):7-15
The induction of 5-methyltryptophan (5-MT) resistance mutations was assayed as a test system for mutagenic chemicals in Escherichia coli. It is assumed that different premutational alterations in several genes of the Escherichia coli chromosome will lead to 5-MT-resistant mutants. The chemicals used were three monofunctional alkylating agents as reference compounds, namely β-propiolactone (β-PL), N-methyl-N′-nitro-N-nitrosoguanidine (MNNG), and methyl methanesulfonate (MMS), which are all mutagenic in the 5-MT system; of the eight organophosphorus insecticides tested, four have definite mutagenic activity (Dichlorvos, Oxydemetonmethyl, Dimethoate, and Bidrin), one is probably mutagenic (Methylparathion) and the remaining three (Parathion, Malathion and Diazinon) do not induce 5-MT resistance mutations in the conditions used here (< 30% survival). The relative mutagenic activity after a treatment time of 60 min is (in decreasing order) MNNG > MMS > Dichlorvos > Oxydemetonmethyl, Dimethoate and Bidrin. The concentration-dependent mutagenic activity of all mutagenic compounds is nearly linear when plotted on a log-log scale (with slopes varying from 1.0 to 1.5) and could be taken as an indication that one premutational reaction will be sufficient for the induction of one 5-MT-resistant mutant. 相似文献
11.
The simple eukaryotic organism baker's yeast allows demonstration of primary DNA lesions in parallel with measurement of mutagenicity and lethality after treatment with alkylating chemicals. Several anti-cancer drugs formed cross-linked DNA molecules and were genetically active. The mutagenicity and lethality of these drugs varied substantially and were dependent on the function of some processes of DNA dark-repair. 相似文献
12.
13.
14.
15.
16.
A series of 18 alpha, omega-dihalogenoalkanes (kappa(CH2)n kappa with n = 1-6 and kappa = Cl, Br, I) was tested for direct mutagenic activity in Salmonella strains TA1530, TA1535 and TA100 using spot-test procedures. The results indicate that the mutagenic behaviour of these compounds is strongly dependent upon the carbon chain length as well as the type of halogen involved. This behaviour correlates with the leaving group ability and the degree of neighbouring group participation in nucleophilic displacement reactions of the different halogen atoms. 相似文献
17.
18.
Contrary to expectation, l-cysteine did not protect Escherichia coli from the lethal action of two monofunctional alkylating agents (nitrosomethylurethane and methylmethane sulfonate). The antibacterial action of these compounds was actually greatly enhanced by l-cysteine. This synergistic effect was also exhibited, to some extent, by d-cysteine but not by homocysteine, S-methylcysteine, or serine. The synergistic action between methylating agents and l-cysteine was not due to the formation of S-methylcysteine. l-Cysteine had no effect on the bacteriostatic action of ethylmethane sulfonate. 相似文献
19.