首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
L-Arabinitol 4-dehydrogenase (Lad1) of the cellulolytic and hemicellulolytic fungus Hypocrea jecorina (anamorph: Trichoderma reesei) has been implicated in the catabolism of L-arabinose, and genetic evidence also shows that it is involved in the catabolism of D-xylose in xylitol dehydrogenase (xdh1) mutants and of D-galactose in galactokinase (gal1) mutants of H. jecorina. In order to identify the substrate specificity of Lad1, we have recombinantly produced the enzyme in Escherichia coli and purified it to physical homogeneity. The resulting enzyme preparation catalyzed the oxidation of pentitols (L-arabinitol) and hexitols (D-allitol, D-sorbitol, L-iditol, L-mannitol) to the same corresponding ketoses as mammalian sorbitol dehydrogenase (SDH), albeit with different catalytic efficacies, showing highest k(cat)/K(m) for L-arabinitol. However, it oxidized galactitol and D-talitol at C4 exclusively, yielding L-xylo-3-hexulose and D-arabino-3-hexulose, respectively. Phylogenetic analysis of Lad1 showed that it is a member of a terminal clade of putative fungal arabinitol dehydrogenase orthologues which separated during evolution of SDHs. Juxtapositioning of the Lad1 3D structure over that of SDH revealed major amino acid exchanges at topologies flanking the binding pocket for d-sorbitol. A lad1 gene disruptant was almost unable to grow on L-arabinose, grew extremely weakly on L-arabinitol, D-talitol and galactitol, showed reduced growth on D-sorbitol and D-galactose and a slightly reduced growth on D-glucose. The weak growth on L-arabinitol was completely eliminated in a mutant in which the xdh1 gene had also been disrupted. These data show not only that Lad1 is indeed essential for the catabolism of L-arabinose, but also that it constitutes an essential step in the catabolism of several hexoses; this emphasizes the importance of such reductive pathways of catabolism in fungi.  相似文献   

2.
Cloning and expression of a fungal L-arabinitol 4-dehydrogenase gene   总被引:7,自引:0,他引:7  
L-Arabinitol 4-dehydrogenase (EC ) was purified from the filamentous fungus Trichoderma reesei (Hypocrea jecorina). It is an enzyme in the L-arabinose catabolic pathway of fungi catalyzing the reaction from L-arabinitol to L-xylulose. The amino acid sequence of peptide fragments was determined and used to identify the corresponding gene. We named the gene lad1. It is not constitutively expressed. In a Northern analysis we found it only after growth on L-arabinose. The gene was cloned and overexpressed in Saccharomyces cerevisiae, and the enzyme activity was confirmed in a cell extract. The enzyme consists of 377 amino acids and has a calculated molecular mass of 39,822 Da. It belongs to the family of zinc-binding dehydrogenases and has some amino acid sequence similarity to sorbitol dehydrogenases. It shows activity toward L-arabinitol, adonitol (ribitol), and xylitol with K(m) values of about 40 mM toward L-arabinitol and adonitol and about 180 mM toward xylitol. No activity was observed with D-sorbitol, D-arabinitol, and D-mannitol. NAD is the required cofactor with a K(m) of 180 microM. No activity was observed with NADP.  相似文献   

3.
4.
The fungal L-arabinose pathway consists of five enzymes, aldose reductase, L-arabinitol 4-dehydrogenase, L-xylulose reductase, xylitol dehydrogenase, and xylulokinase. All the genes encoding the enzymes of this pathway are known except for that of L-xylulose reductase (EC 1.1.1.10). We identified a gene encoding this enzyme from the filamentous fungus Trichoderma reesei (Hypocrea jecorina). The gene was named lxr1. It was overexpressed in the yeast Saccharomyces cerevisiae, and the enzyme activity was confirmed in a yeast cell extract. Overexpression of all enzymes of the L-arabinose pathway in S. cerevisiae led to growth of S. cerevisiae on L-arabinose; i.e., we could show that the pathway is active in a heterologous host. The lxr1 gene encoded a protein with 266 amino acids and a calculated molecular mass of 28 428 Da. The LXRI protein is an NADPH-specific reductase. It has activity with L-xylulose, D-xylulose, D-fructose, and L-sorbose. The highest affinity is toward L-xylulose (K(m) = 16 mM). In the reverse direction, we found activity with xylitol, D-arabinitol, D-mannitol, and D-sorbitol. It requires a bivalent cation for activity. It belongs to the protein family of short chain dehydrogenases. The enzyme is catalytically similar and homologous in sequence to a D-mannitol:NADP 2-dehydrogenase (EC 1.1.1.138).  相似文献   

5.
6.
The fungal pathway for L-arabinose catabolism converts L-arabinose to D-xylulose 5-phosphate in five steps. The intermediates are, in this order: L-arabinitol, L-xylulose, xylitol and D-xylulose. Only some of the genes for the corresponding enzymes were known. We have recently identified the two missing genes for L-arabinitol 4-dehydrogenase and L-xylulose reductase and shown that overexpression of all the genes of the pathway in Saccharomyces cerevisiae enables growth on L-arabinose. Under anaerobic conditions ethanol is produced from L-arabinose, but at a very low rate. The reasons for the low rate of L-arabinose fermentation are discussed.  相似文献   

7.
Considerable interest in the D-xylose catabolic pathway of Pachysolen tannophilus has arisen from the discovery that this yeast is capable of fermenting D-xylose to ethanol. In this organism D-xylose appears to be catabolized through xylitol to D-xylulose. NADPH-linked D-xylose reductase is primarily responsible for the conversion of D-xylose to xylitol, while NAD-linked xylitol dehydrogenase is primarily responsible for the subsequent conversion of xylitol to D-xylulose. Both enzyme activities are readily detectable in cell-free extracts of P. tannophilus grown in medium containing D-xylose, L-arabinose, or D-galactose and appear to be inducible since extracts prepared from cells growth in media containing other carbon sources have only negligible activities, if any. Like D-xylose, L-arabinose and D-galactose were found to serve as substrates for NADPH-linked reactions in extracts of cells grown in medium containing D-xylose, L-arabinose, or D-galactose. These L-arabinose and D-galactose NADPH-linked activities also appear to be inducible, since only minor activity with L-arabinose and no activity with D-galactose is detected in extracts of cells grown in D-glucose medium. The NADPH-linked activities obtained with these three sugars may result from the actions of distinctly different enzymes or from a single aldose reductase acting on different substrates. High-performance liquid chromatography and gas-liquid chromatography of in vitro D-xylose, L-arabinose, and D-galactose NADPH-linked reactions confirmed xylitol, L-arabitol, and galactitol as the respective conversion products of these sugars. Unlike xylitol, however, neither L-arabitol nor galactitol would support comparable NAD-linked reaction(s) in cellfree extracts of induced P. tannophilus. Thus, the metabolic pathway of D-xylose diverges from those of L-arabinose or D-galactose following formation of the pentitol.  相似文献   

8.
Klebsiella pneumoniae PRL-R3 has inducible catabolic pathways for the degradation of ribitol and D-arabitol but cannot utilize xylitol as a growth substrate. A mutation in the rbtB regulatory gene of the ribitol operon permits the constitutive synthesis of the ribitol catabolic enzymes and allows growth on xylitol. The evolved xylitol catabolic pathway consists of an induced D-arabitol permease system that also transports xylitol, a constitutively synthesized ribitol dehydrogenase that oxidizes xylitol at the C-2 position to produce D-xylulose, and an induced D-xylulokinase from either the D-arabitol or D-xylose catabolic pathway. To investigate the potential of K. pneumoniae to evolve a different xylitol catabolic pathway, strains were constructed which were unable to synthesize ribitol dehydrogenase or either type of D-xylulokinase but constitutively synthesized the D-arabitol permease system. These strains had an inducible L-xylulokinase; therefore, the evolution of an enzyme which oxidized xylitol at the C-4 position to L-xylulose would establish a new xylitol catabolic pathway. Four independent xylitol-utilizing mutants were isolated, each of which had evolved a xylitol-4-dehydrogenase activity. The four dehydrogenases appeared to be identical because they comigrated during nondenaturing polyacrylamide gel electrophoresis. This novel xylitol dehydrogenase was constitutively synthesized, whereas L-xylulokinase remained inducible. Transductional analysis showed that the evolved dehydrogenase was not an altered ribitol or D-arabitol dehydrogenase and that the evolved dehydrogenase structural gene was not linked to the pentitol gene cluster. This evolved dehydrogenase had the highest activity with xylitol as a substrate, a Km for xylitol of 1.4 M, and a molecular weight of 43,000.  相似文献   

9.
10.
Characterization of xylitol-utilizing mutants of Erwinia uredovora.   总被引:3,自引:3,他引:0       下载免费PDF全文
Of the four pentitols ribitol, xylitol, D-arabitol, and L-arabitol, Erwinia uredovora was able to utilize only D-arabitol as a carbon and energy source. Although attempts to isolate ribitol- or L-arabitol-utilizing mutants were unsuccessful, mutants able to grow on xylitol were isolated at a frequency of 9 X 10(-8). Xylitol-positive mutants constitutively synthesized both a novel NAD-dependent xylitol-4-dehydrogenase, which oxidized xylitol to L-xylulose, and an L-xylulokinase. The xylitol dehydrogenase had a Km for xylitol of 48 mM and showed best activity with xylitol and D-threitol as substrates. However, D-threitol was not a growth substrate for E. uredovora, and its presence did not induce either dehydrogenase or kinase activity. Attempts to determine the origin of the xylitol catabolic enzymes were unsuccessful; neither enzyme was induced on any growth substrate or in the presence of any polyol tested. Analysis of xylitol-negative mutants isolated after Tn5 mutagenesis suggested that the xylitol dehydrogenase and the L-xylulokinase structural genes were components of two separate operons but were under common regulatory control.  相似文献   

11.
12.
Azospirillum brasiliense converts L-arabinose to alpha-ketoglutarate via five hypothetical enzymatic steps. We purified and characterized L-arabinose 1-dehydrogenase (EC 1.1.1.46), catalyzing the conversion of L-arabinose to L-arabino-gamma-lactone as an enzyme responsible for the first step of this alternative pathway of L-arabinose metabolism. The purified enzyme preferred NADP+ to NAD+ as a coenzyme. Kinetic analysis revealed that the enzyme had high catalytic efficiency for both L-arabinose and D-galactose. The gene encoding L-arabinose 1-dehydrogenase was cloned using a partial peptide sequence of the purified enzyme and was overexpressed in Escherichia coli as a fully active enzyme. The enzyme consists of 308 amino acids and has a calculated molecular mass of 33,663.92 Da. The deduced amino acid sequence had some similarity to glucose-fructose oxidoreductase, D-xylose 1-dehydrogenase, and D-galactose 1-dehydrogenase. Site-directed mutagenesis revealed that the enzyme possesses unique catalytic amino acid residues. Northern blot analysis showed that this gene was induced by L-arabinose but not by D-galactose. Furthermore, a disruptant of the L-arabinose 1-dehydrogenase gene did not grow on L-arabinose but grew on D-galactose at the same growth rate as the wild-type strain. There was a partial gene for L-arabinose transport in the flanking region of the L-arabinose 1-dehydrogenase gene. These results indicated that the enzyme is involved in the metabolism of L-arabinose but not D-galactose. This is the first identification of a gene involved in an alternative pathway of L-arabinose metabolism in bacterium.  相似文献   

13.
14.
The compositions of intracellular pentose phosphate pathway enzymes have been examined in mutants of Pachysolen tannophilus NRRL Y-2460 which possessed enhanced D-xylose fermentation rates. The levels of oxidoreductive enzymes involved in converting D-xylose to D-xylulose via xylitol were 1.5–14.7-fold higher in mutants than in the parent. These enzymes were still under inductive control by D-xylose in the mutants. The D-xylose reductase activity (EC 1.1.1.21) which catalyses the conversion of D-xylose to xylitol was supported with either NADPH or NADH as coenzyme in all the mutant strains. Other enzyme specific activities that generally increased were: xylitol dehydrogenase (EC 1.1.1.9), 1.2–1.6-fold; glucose-6-phosphate dehydrogenase (EC 1.1.1.49), 1.9–2.6-fold; D-xylulose-5-phosphate phosphoketolase (EC 4.1.2.9), 1.2–2.6-fold; and alcohol dehydrogenase (EC 1.1.1.1), 1.5–2.7-fold. The increase of enzymatic activities, 5.3–10.3-fold, occurring in D-xylulokinase (EC 2.7.1.17), suggested a pivotal role for this enzyme in utilization of D-xylose by these mutants. The best ethanol-producing mutant showed the highest ratio of NADH- to NADPH-linked D-xylose reductase activity and high levels of all other pentose phosphate pathway enzymes assayed.  相似文献   

15.
Selective inhibition of growth by pentitols was observed when Klebsiella aerogenes M-7 which could not utilize pentitols was grown on pentoses. D-Arabitol inhibited the growth on D-arabinose as a sole carbon source, but had no effect on the growth on L-arabinose, D-xylose, and D-ribose. Similarly, L-arabitol inhibited the growth on D-arabinose and L-arabinose, ribitol inhibited the growth on D-arabinose and L-arabinose, and xylitol inhibited the growth on D-xylose. From the following reasons, we postulated that the selective growth inhibition by pentitols was due to the competitive inhibition of pentose isomerase reaction by the cell by pentitols. (i) D-Arabinose transport activity was not inhibited by pentitols. (ii) Induction of D-arabinose and L-arabinose isomerases was not inhibited by D- and L-arabitol, respectively. (iii) The specificity of growth inhibition by pentitols was the same as that of competitive inhibition of pentose isomerases by pentitols.  相似文献   

16.
Pentose fermentation to ethanol with recombinant Saccharomyces cerevisiae is slow and has a low yield. A likely reason for this is that the catabolism of the pentoses D-xylose and L-arabinose through the corresponding fungal pathways creates an imbalance of redox cofactors. The process, although redox neutral, requires NADPH and NAD+, which have to be regenerated in separate processes. NADPH is normally generated through the oxidative part of the pentose phosphate pathway by the action of glucose-6-phosphate dehydrogenase (ZWF1). To facilitate NADPH regeneration, we expressed the recently discovered gene GDP1, which codes for a fungal NADP+-dependent D-glyceraldehyde-3-phosphate dehydrogenase (NADP-GAPDH) (EC 1.2.1.13), in an S. cerevisiae strain with the D-xylose pathway. NADPH regeneration through an NADP-GAPDH is not linked to CO2 production. The resulting strain fermented D-xylose to ethanol with a higher rate and yield than the corresponding strain without GDP1; i.e., the levels of the unwanted side products xylitol and CO2 were lowered. The oxidative part of the pentose phosphate pathway is the main natural path for NADPH regeneration. However, use of this pathway causes wasteful CO2 production and creates a redox imbalance on the path of anaerobic pentose fermentation to ethanol because it does not regenerate NAD+. The deletion of the gene ZWF1 (which codes for glucose-6-phosphate dehydrogenase), in combination with overexpression of GDP1 further stimulated D-xylose fermentation with respect to rate and yield. Through genetic engineering of the redox reactions, the yeast strain was converted from a strain that produced mainly xylitol and CO2 from D-xylose to a strain that produced mainly ethanol under anaerobic conditions.  相似文献   

17.
Wild type Escherichia coli K-12 cannot grow on xylitol and we have been unsuccessful in isolating a mutant directly which had acquired this new growth ability. However, a mutant had been selected previously for growth on L-1,2-propanediol as the sole source of carbon and energy. This mutant constitutively synthesized a propanediol dehydrogenase. Recently, we have found that this dehydrogenase fortuitously converted xylitol to D-xylose which could normally be metabolized by E. coli K-12. In addition, it was also discovered that the D-xylose permease fortuitously transported xylitol into the cell. A second mutant was thus isolated from the L-1,2-propanediol-growing mutant that was constitutive for the enzymes of the D-xylose pathway. This mutant could indeed grow on xylitol as the sole source of carbon and energy, by utilizing the enzymes normally involved in D-xylose and L-1,2-propanediol metabolism.  相似文献   

18.
Xylitol dehydrogenase (XDH) was purified from the cytoplasmic fraction of Gluconobacter oxydans ATCC 621. The purified enzyme reduced D-xylulose to xylitol in the presence of NADH with an optimum pH of around 5.0. Based on the determined NH2-terminal amino acid sequence, the gene encoding xdh was cloned, and its identity was confirmed by expression in Escherichia coli. The xdh gene encodes a polypeptide composed of 262 amino acid residues, with an estimated molecular mass of 27.8 kDa. The deduced amino acid sequence suggested that the enzyme belongs to the short-chain dehydrogenase/reductase family. Expression plasmids for the xdh gene were constructed and used to produce recombinant strains of G. oxydans that had up to 11-fold greater XDH activity than the wild-type strain. When used in the production of xylitol from D-arabitol under controlled aeration and pH conditions, the strain harboring the xdh expression plasmids produced 57 g/l xylitol from 225 g/l D-arabitol, whereas the control strain produced 27 g/l xylitol. These results demonstrated that increasing XDH activity in G. oxydans improved xylitol productivity.  相似文献   

19.

Background  

L-arabitol dehydrogenase (LAD) and xylitol dehydrogenase (XDH) are involved in the degradation of L-arabinose and D-xylose, which are among the most abundant monosaccharides on earth. Previous data demonstrated that LAD and XDH not only differ in the activity on their biological substrate, but also that only XDH has significant activity on D-sorbitol and may therefore be more closely related to D-sorbitol dehydrogenases (SDH). In this study we aimed to identify residues involved in the difference in substrate specificity.  相似文献   

20.
Wild type Escherichia coli K-12 cannot grow on xylitol and we have been unsuccessful in isolating a mutant directly which had acquired this new growth ability. However, a mutant had been selected previously for growth on L-1,2-propanediol as the sole source of carbon and energy. This mutant constitutively synthesized a propanediol dehydrogenase. Recently, we have found that this dehydrogenase fortuitously converted xylitol to D-xylose which could normally be metabolized by E. coli K-12. In addition, it was also discovered that the D-xylose permease fortuitously transported xylitol into the cell. A second mutant was thus isolated from the L-1,2-propanediol-growing mutant that was constitutive for enzymes of the D-xylose pathway. This mutant could indeed grow on xylitol as the sole source of carbon and energy, by utilizing the enzymes normally involved in D-xylose and L-1,2-propanediol metabolism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号