首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Tagatose-1,6-bisphosphate aldolase (TBPA) is a tetrameric class II aldolase that catalyzes the reversible condensation of dihydroxyacetone phosphate with glyceraldehyde 3-phosphate to produce tagatose 1,6-bisphosphate. The high resolution (1.45 A) crystal structure of the Escherichia coli enzyme, encoded by the agaY gene, complexed with phosphoglycolohydroxamate (PGH) has been determined. Two subunits comprise the asymmetric unit, and a crystallographic 2-fold axis generates the functional tetramer. A complex network of hydrogen bonds position side chains in the active site that is occupied by two cations. An unusual Na+ binding site is created using a pi interaction with Tyr183 in addition to five oxygen ligands. The catalytic Zn2+ is five-coordinate using three histidine nitrogens and two PGH oxygens. Comparisons of TBPA with the related fructose-1,6-bisphosphate aldolase (FBPA) identifies common features with implications for the mechanism. Because the major product of the condensation catalyzed by the enzymes differs in the chirality at a single position, models of FBPA and TBPA with their cognate bisphosphate products provide insight into chiral discrimination by these aldolases. The TBPA active site is more open on one side than FBPA, and this contributes to a less specific enzyme. The availability of more space and a wider range of aldehyde partners used by TBPA together with the highly specific nature of FBPA suggest that TBPA might be a preferred enzyme to modify for use in biotransformation chemistry.  相似文献   

2.
Lorentzen E  Siebers B  Hensel R  Pohl E 《Biochemistry》2005,44(11):4222-4229
The glycolytic enzyme fructose-1,6-bisphosphate aldolase (FBPA) catalyzes the reversible cleavage of fructose 1,6-bisphosphate to glyceraldehyde 3-phosphate and dihydroxyacetone phosphate. Catalysis of Schiff base forming class I FBPA relies on a number of intermediates covalently bound to the catalytic lysine. Using active site mutants of FBPA I from Thermoproteus tenax, we have solved the crystal structures of the enzyme covalently bound to the carbinolamine of the substrate fructose 1,6-bisphosphate and noncovalently bound to the cyclic form of the substrate. The structures, determined at a resolution of 1.9 A and refined to crystallographic R factors of 0.148 and 0.149, respectively, represent the first view of any FBPA I in these two stages of the reaction pathway and allow detailed analysis of the roles of active site residues in catalysis. The active site geometry of the Tyr146Phe FBPA variant with the carbinolamine intermediate supports the notion that in the archaeal FBPA I Tyr146 is the proton donor catalyzing the conversion between the carbinolamine and Schiff base. Our structural analysis furthermore indicates that Glu187 is the proton donor in the eukaryotic FBPA I, whereas an aspartic acid, conserved in all FBPA I enzymes, is in a perfect position to be the general base facilitating carbon-carbon cleavage. The crystal structure of the Trp144Glu, Tyr146Phe double-mutant substrate complex represents the first example where the cyclic form of beta-fructose 1,6-bisphosphate is noncovalently bound to FBPA I. The structure thus allows for the first time the catalytic mechanism of ring opening to be unraveled.  相似文献   

3.
Alkanediol monoglycolate bisphosphoric esters (P-O-CH2-CO-O-(CH2)n-O-P), which are analogues of the aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) substrate fructose 1,6-bisphosphate, were synthesized and used for probing its active site. The Ki value was lowest when the maximum distance between the phosphorus atoms of the bisphosphate was brought close to that of fructose 1,6-bisphosphate. The binding constants estimated from difference spectra correlate well with Ki values for the substrate analogues. Propanediol monoglycolate bisphosphoric ester protected aldolase from inactivation by 1,2-cyclohexanedione, which preferentially attacks arginine-55. However, propanol phosphate had little protective effect. The synthesized phosphate compounds protected the enzyme against inactivation by trypsin, and also against spontaneous denaturation. These results suggest that the synthesized phosphate compounds bind to aldolase at the active site, which tends to keep the distance constant between the two phosphate-binding sites for the open-chain form of fructose 1,6-bisphosphate, and stabilize the natural conformation of the enzyme. Both arginine-55 and lysine-146 are shown to participate in the phosphate-binding site for the C-1-phosphate of fructose 1,6-bisphosphate.  相似文献   

4.
The combination of binding and kinetic approaches is suggested to study (i) the mechanism of substrate-modulated dynamic enzyme associations; (ii) the specificity of enzyme interactions. The effect of complex formation between aldolase and glyceraldehyde-3-phosphate dehydrogenase (D-glyceraldehyde-3-phosphate:NAD+ oxidoreductase (phosphorylating), EC 1.2.1.12) on aldolase catalysis was investigated under pseudo-first-order conditions. No change in kcat but a significant increase in KM of fructose 1,6-bisphosphate for aldolase was found when both enzymes were obtained from muscle. In contrast, kcat rather than KM changed if dehydrogenase was isolated from yeast. Next, the conversion of fructose 1-phosphate was not affected by interactions between enzyme couples isolated from muscle. The influence of fructose phosphates on the enzyme-complex formation was studied by means of covalently attached fluorescent probe. We found that the interaction ws not perturbed by the presence of fructose 1-phosphate; however, fructose 1,6-bisphosphate altered the dissociation constant of the enzyme complex. A molecular model for fructose 1,6-bisphosphate-modulated enzyme interaction has been evaluated which suggests that high levels of fructose bisphosphate would drive the formation of the 'channelling' complex between aldolase and glyceraldehyde-3-phosphate dehydrogenase.  相似文献   

5.
Treatment of the Class II fructose-1,6-bisphosphate aldolase of Escherichia coli with the arginine-specific alpha-dicarbonyl reagents, butanedione or phenylglyoxal, results in inactivation of the enzyme. The enzyme is protected from inactivation by the substrate, fructose 1,6-bisphosphate, or by inorganic phosphate. Modification with [7-14C] phenylglyoxal in the absence of substrate demonstrates that enzyme activity is abolished by the incorporation of approximately 2 moles of reagent per mole of enzyme. Sequence alignment of the eight known Class II FBP-aldolases shows that only one arginine residue is conserved in all the known sequences. This residue, Arg-331, was mutated to either alanine or glutamic acid. The mutant enzymes were much less susceptible to inactivation by phenylglyoxal. Measurement of the steady-state kinetic parameters revealed that mutation of Arg-331 dramatically increased the K(m) for fructose 1,6-bisphosphate. Comparatively small differences in the inhibitor constant Ki for dihydroxyacetone phosphate or its analogue, 2-phosphoglycolate, were found between the wild-type and mutant enzymes. In contrast, the mutation caused large changes in the kinetic parameters when glyceraldehyde 3-phosphate was used as an inhibitor. Kinetic analysis of the oxidation of the carbanionic aldolase-substrate intermediate of the reaction by hexacyanoferrate (III) revealed that the K(m) for dihydroxyacetone phosphate was again unaffected, whereas that for fructose 1,6-bisphosphate was dramatically increased. Taken together, these results show that Arg-331 is critically involved in the binding of fructose bisphosphate by the enzyme and demonstrate that it interacts with the C-6 phosphate group of the substrate.  相似文献   

6.
N-(omega-Hydroxyalkyl)glycolamidobisphosphoric esters (P-O-CH2-CO-NH-(CH2)n -O-P), which are analogues of the aldolase (D-fructose-1,6-bisphosphate D-glyceraldehyde-3-phosphate-lyase, EC 4.1.2.13) substrate fructose 1,6-bisphosphate, were synthesized and used for probing its active site. These phosphate compounds competitively inhibited aldolase activity. The Ki value was lowest when the maximum distance between the phosphorus atoms of the bisphosphate was brought close to that of fructose 1,6-bisphosphate. The inhibitor constants, Ki, were compared to those of alkanediol monoglycolate bisphosphoric esters and alkanediol bisphosphate compounds, which were reported previously by Ogata et al. The values of Ki for the bisphosphate compounds containing an amide group, the amide bisphosphate compounds, were smaller than those for the bisphosphate compounds containing an ester group, the ester bisphosphate compounds, and those for alkanediol bisphosphates were the largest for the same distance between phosphorus atoms in these bisphosphates. The difference spectra of aldolase caused by binding of a saturating concentration of N-(omega-hydroxypropyl)glycolamidobisphosphoric ester resembled that of butanediol monoglycolate bisphosphoric ester. However, the effects of the amide bisphosphate compounds on the absorption spectrum of aldolase were smaller than those of the ester bisphosphate compounds for the same distance between phosphorus atoms in these bisphosphate compounds. These results suggest that the synthesized phosphate compounds bind to aldolase at the active site and the -CO-NH- group of the compounds might be held more tightly than the -CO-O- group by hydrogen bonds, presumably with the amino acid residues in the active site, such as Lys-146 or -229 and Asp-33 or Glu-187. On the other hand, the -CO-O- group might be more effective in changing the environment of the Trp-147 residue in the active site of this enzyme.  相似文献   

7.
Summary A fructose 1,6-bisphosphate aldolase (E.C.4.1.2.13) from Staphylococcus carnosus DSM 20501 was purified for the first time. The enzymatic activity was insensitive to high levels of EDTA indicating that the enzyme is a class I aldolase. This enzyme exhibits good stability at high temperatures and extreme stability over a wide pH range. The K m for fructose 1,6-bisphosphate as substrate was 0.022 mm. The S. carnosus aldolase is a monomeric enzyme with a molecular mass of about 33 kDa. It exhibits a relatively broad pH optimum between pH 6.5 and 9.0. Furthermore, the aldolase accepts other aldehydes in place of its natural substrate, glyceraldehyde 3-phosphate, allowing the synthesis of various sugar phosphates. Offprint requests to: M. R. Kula  相似文献   

8.
Lysine 274 is conserved in all known fructose-1,6-bisphosphatase sequences. It has been implicated in substrate binding and/or catalysis on the basis of reactivity with pyridoxal phosphate as well as by x-ray crystallographic analysis. Lys274 of rat liver fructose-1,6-bisphosphatase was mutated to alanine by the polymerase chain reaction, and the T7-RNA polymerase-transcribed construct containing the mutant sequence was expressed in Escherichia coli. The mutant and wild-type forms of the enzyme were purified to homogeneity, and their specific activity, substrate dependence, and inhibition by fructose 2,6-bisphosphate and AMP were compared. While the mutant exhibited no change in maximal velocity, its Km for fructose 1,6-bisphosphate was 20-fold higher than that of the wild-type, and its Ki for fructose 2,6-bisphosphate was increased 1000-fold. Consistent with the unaltered maximal velocity, there were no apparent difference between the secondary structure of the wild-type and mutant enzyme forms, as measured by circular dichroism and ultraviolet difference spectroscopy. The Ki for the allosteric inhibitor AMP was only slightly increased, indicating that Lys274 is not directly involved in AMP inhibition. Fructose 2,6-bisphosphate potentiated AMP inhibition of both forms, but 500-fold higher concentrations of fructose 2,6-bisphosphate were needed to reduce the Ki for AMP for the mutant compared to the wild-type. However, potentiation of AMP inhibition of the Lys274----Ala mutant was evident at fructose 2,6-bisphosphate concentrations (approximately 100 microM) well below those that inhibited the enzyme, which suggests that fructose 2,6-bisphosphate interacts either with the AMP site directly or with other residues involved in the active site-AMP synergy. The results also demonstrate that although Lys274 is an important binding site determinant for sugar bisphosphates, it plays a more significant role in binding fructose 2,6-bisphosphate than fructose 1,6-bisphosphate, probably because it binds the 2-phospho group of the former while other residues bind the 1-phospho group of the substrate. It is concluded that the enzyme utilizes Lys274 to discriminate between its substrate and fructose 2,6-bisphosphate.  相似文献   

9.
Pezza JA  Stopa JD  Brunyak EM  Allen KN  Tolan DR 《Biochemistry》2007,46(45):13010-13018
Conformational flexibility is emerging as a central theme in enzyme catalysis. Thus, identifying and characterizing enzyme dynamics are critical for understanding catalytic mechanisms. Herein, coupling analysis, which uses thermodynamic analysis to assess cooperativity and coupling between distal regions on an enzyme, is used to interrogate substrate specificity among fructose-1,6-(bis)phosphate aldolase (aldolase) isozymes. Aldolase exists as three isozymes, A, B, and C, distinguished by their unique substrate preferences despite the fact that the structures of the active sites of the three isozymes are nearly identical. While conformational flexibility has been observed in aldolase A, its function in the catalytic reaction of aldolase has not been demonstrated. To explore the role of conformational dynamics in substrate specificity, those residues associated with isozyme specificity (ISRs) were swapped and the resulting chimeras were subjected to steady-state kinetics. Thermodynamic analyses suggest cooperativity between a terminal surface patch (TSP) and a distal surface patch (DSP) of ISRs that are separated by >8.9 A. Notably, the coupling energy (DeltaGI) is anticorrelated with respect to the two substrates, fructose 1,6-bisphosphate and fructose 1-phosphate. The difference in coupling energy with respect to these two substrates accounts for approximately 70% of the energy difference for the ratio of kcat/Km for the two substrates between aldolase A and aldolase B. These nonadditive mutational effects between the TSP and DSP provide functional evidence that coupling interactions arising from conformational flexibility during catalysis are a major determinant of substrate specificity.  相似文献   

10.
Fructose 1,6-bisphosphate aldolase catalyzes the reversible cleavage of fructose 1,6-bisphosphate and fructose 1-phosphate to dihydroxyacetone phosphate and either glyceraldehyde 3-phosphate or glyceraldehyde, respectively. Catalysis involves the formation of a Schiff's base intermediate formed at the epsilon-amino group of Lys229. The existing apo-enzyme structure was refined using the crystallographic free-R-factor and maximum likelihood methods that have been shown to give improved structural results that are less subject to model bias. Crystals were also soaked with the natural substrate (fructose 1,6-bisphosphate), and the crystal structure of this complex has been determined to 2.8 A. The apo structure differs from the previous Brookhaven-deposited structure (1ald) in the flexible C-terminal region. This is also the region where the native and complex structures exhibit differences. The conformational changes between native and complex structure are not large, but the observed complex does not involve the full formation of the Schiff's base intermediate, and suggests a preliminary hydrogen-bonded Michaelis complex before the formation of the covalent complex.  相似文献   

11.
Class II fructose 1,6-bisphosphate aldolases (FBP-aldolases) catalyse the zinc-dependent, reversible aldol condensation of dihydroxyacetone phosphate (DHAP) and glyceraldehyde 3-phosphate (G3P) to form fructose 1,6-bisphosphate (FBP). Analysis of the structure of the enzyme from Escherichia coli in complex with a transition state analogue (phosphoglycolohydroxamate, PGH) suggested that substrate binding caused a conformational change in the beta5-alpha7 loop of the enzyme and that this caused the relocation of two glutamate residues (Glu181 and Glu182) into the proximity of the active site. Site-directed mutagenesis of these two glutamate residues (E181A and E182A) along with another active site glutamate (Glu174) was carried out and the mutant enzymes characterised using steady-state kinetics. Mutation of Glu174 (E174A) resulted in an enzyme which was severely crippled in catalysis, in agreement with its position as a zinc ligand in the enzyme's structure. The E181A mutant showed the same properties as the wild-type enzyme indicating that the residue played no major role in substrate binding or enzyme catalysis. In contrast, mutation of Glu182 (E182A) demonstrated that Glu182 is important in the catalytic cycle of the enzyme. Furthermore, the measurement of deuterium kinetic isotope effects using [1(S)-(2)H]DHAP showed that, for the wild-type enzyme, proton abstraction was not the rate determining step, whereas in the case of the E182A mutant this step had become rate limiting, providing evidence for the role of Glu182 in abstraction of the C1 proton from DHAP in the condensation direction of the reaction. Glu182 lies in a loop of polypeptide which contains four glycine residues (Gly176, Gly179, Gly180 and Gly184) and a quadruple mutant (where each glycine was converted to alanine) showed that flexibility of this loop was important for the correct functioning of the enzyme, probably to change the microenvironment of Glu182 in order to perturb its pK(a) to a value suitable for its role in proton abstraction. These results highlight the need for further studies of the dynamics of the enzyme in order to fully understand the complexities of loop closure and catalysis in this enzyme.  相似文献   

12.
Tagatose-1,6-bisphosphate aldolase from Streptococcus pyogenes is a class I aldolase that exhibits a remarkable lack of chiral discrimination with respect to the configuration of hydroxyl groups at both C3 and C4 positions. The enzyme catalyzes the reversible cleavage of four diastereoisomers (fructose 1,6-bisphosphate (FBP), psicose 1,6-bisphosphate, sorbose 1,6-bisphosphate, and tagatose 1,6-bisphosphate) to dihydroxyacetone phosphate (DHAP) and d-glyceraldehyde 3-phosphate with high catalytic efficiency. To investigate its enzymatic mechanism, high resolution crystal structures were determined of both native enzyme and native enzyme in complex with dihydroxyacetone-P. The electron density map revealed a (α/β)8 fold in each dimeric subunit. Flash-cooled crystals of native enzyme soaked with dihydroxyacetone phosphate trapped a covalent intermediate with carbanionic character at Lys205, different from the enamine mesomer bound in stereospecific class I FBP aldolase. Structural analysis indicates extensive active site conservation with respect to class I FBP aldolases, including conserved conformational responses to DHAP binding and conserved stereospecific proton transfer at the DHAP C3 carbon mediated by a proximal water molecule. Exchange reactions with tritiated water and tritium-labeled DHAP at C3 hydrogen were carried out in both solution and crystalline state to assess stereochemical control at C3. The kinetic studies show labeling at both pro-R and pro-S C3 positions of DHAP yet detritiation only at the C3 pro-S-labeled position. Detritiation of the C3 pro-R label was not detected and is consistent with preferential cis-trans isomerism about the C2–C3 bond in the carbanion as the mechanism responsible for C3 epimerization in tagatose-1,6-bisphosphate aldolase.  相似文献   

13.
I A Rose  J V Warms 《Biochemistry》1985,24(15):3952-3957
Minimum values for the content of covalent intermediates in the equilibria of muscle aldolase with its cleavable substrates have been determined by acid denaturation/precipitation. Ribulose 1,5-bisphosphate, a nonsubstrate that binds well to aldolase in the native state, does not form a covalent complex that is acid precipitable. The insoluble protein complexes with substrates fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate, representing approximately 50% and approximately 60% of total bound substrate, are much more stable in acid and alkali than that with substrate 5-deoxyfructose 1,6-bisphosphate, suggesting that they have the form of protein-bound N-glycosides. Whether such complexes exist on the enzyme in the native state in addition to being formed subsequent to denaturation is unresolved. Both the acid-precipitable and nonprecipitable forms of fructose 1,6-bisphosphate are converted to triose phosphate products at the same rate, providing no kinetic evidence for a pool that is not on the main reaction path. Total fructose 1,6-bisphosphate liganded to enzyme returns to the free solution about 9 times for each net cleavage reaction. It is still not clear whether this is limited by the cleavage step or by release of glyceraldehyde phosphate.  相似文献   

14.
Substrate analogs xylulose 1,5-bisphosphate, glucitol 1,6-bisphosphate, α-2,5-anhydroglucitol 1,6-bisphosphate, α-, β-methyl fructofuranoside 1,6-bisphosphate, ribulose 1,5-bisphosphate, ribulose 5-phosphate, and ribose 5-phosphate and inactivating agents 1-chloro-2, 4-dinitrobenzene, 4-hydroxymercuribenzoate, and pyridoxal phosphate were examined for their effects on liver aldolase. These studies support the use of the β-anomer and acyclic form as substrate. They also suggest that the liver enzyme active site is similar to the muscle enzyme but with a much weaker 6-phosphate binding site.  相似文献   

15.
Pyrophosphate-dependent phosphofructokinase (PPi-PFK) was purified from the mung bean Phaseolus aureus. The enzyme is activated by fructose 2,6-bisphosphate at nanomolar concentrations. The enzyme exhibits Michaelis-Menten kinetics, and the reaction mechanism, deduced from initial velocity studies in the absence of inhibitors as well as product and dead-end inhibition studies, is rapid equilibrium random in the presence and absence of fructose 2,6-bisphosphate. In the direction of fructose 6-phosphate phosphorylation, saturating fructose 2,6-bisphosphate (1 microM) increases V congruent to 9-fold and increases V/KMgPPi and V/KF6P about 30-fold. In the reverse direction (phosphate phosphorylation), the same concentration of activator has little if any effect on V or the Km for inorganic phosphate (Pi) and Mg2+ but does increase V/KFBP about 42-fold. No changes were observed in any of the other rate constants. The binding affinity of fructose 2,6-bisphosphate to all enzyme forms is identical. The activator site of the mung bean PPi-PFK binds fructose 2,6-bisphosphate with a Kact of 30 nM with the 2,5-anhydro-D-glucitol 1,6-bisphosphate (the most effective analogue) 33-fold less tightly. Of the alkanediol bisphosphate series, 1,4-butanediol bisphosphate exhibited the tightest binding (Kact congruent to 3 microM). These and a series of other activating analogues are discussed in relation to the activator site.  相似文献   

16.
Kinetics of fructose-1,6-disphosphate aldolase (EC 4.1.2.13) catalyzed conversion of fructose phosphates was analyzed by coupling the aldolase reactions to the metabolically sequential enzyme, glycerol-3-phosphate dehydrogenase (EC 1.1.1.8), which interacts with aldolase. At low enzyme concentration poly(ethylene glycol) was added to promote complex formation of aldolase and glycerol-phosphate dehydrogenase resulting in a 3-fold increase in KM of fructose-1,6-bisphosphate and no change in Vmax. Kinetic parameters for fructose-1-phosphate conversion changed inversely upon complex formation: Vmax increased while KM remained unchanged. Gel penetration and ion-exchange chromatographic experiments showed positive modulation of the interaction of aldolase and dehydrogenase by fructose-1,6-bisphosphate. The dissociation constant of the heterologous enzyme complex decreased 10-fold in the presence of this substrate. Fructose-1-phosphate or dihydroxyacetone phosphate had no effect on the dissociation constant of the aldolase-dehydrogenase complex. In addition, titration of fluorescein-labelled glycerol-phosphate dehydrogenase with aldolase indicated that both fructose-1,6-bisphosphate and fructose-2,6-biphosphate enhanced the affinity of aldolase to glycerol-phosphate dehydrogenase. The results of the kinetic and binding experiments suggest that binding of the C-6 phosphate group of fructose-1,6-bisphosphate to aldolase complexed with dehydrogenase is sterically impeded while saturation of the C-6 phosphate group site increases the affinity of aldolase for dehydrogenase. The possible molecular mechanism of the fructose-1,6-bisphosphate modulated interaction is discussed.  相似文献   

17.
Possible binding proteins of CP12 in a green alga, Chlamydomonas reinhardtii, were investigated. We covalently immobilized CP12 on a resin and then used it to trap CP12 partners. Thus, we found an association between CP12 and phosphoribulokinase (EC 2.7.1.19), glyceraldehyde 3-phosphate dehydrogenase (EC 1.2.1.13) and aldolase. Immunoprecipitation with purified CP12 antibodies supported these data. The dissociation constant between CP12 and fructose 1,6-bisphosphate (EC 4.1.2.13) aldolase was measured by surface plasmon resonance and is equal to 0.48 +/- 0.05 mum and thus corroborated an interaction between CP12 and aldolase. However, the association is even stronger between aldolase and the phosphoribulokinase/glyceraldehyde 3-phosphate dehydrogenase/CP12 complex and the dissociation constant between them is equal to 55+/-5 nm. Moreover, owing to the fact that aldolase has been poorly studied in C. reinhardtii, we purified it and analyzed its kinetic properties. The enzyme displayed Michaelis-Menten kinetics with fructose 1,6-bisphosphate and sedoheptulose 1,7-bisphosphate, with a catalytic constant equal to 35 +/- 1 s(-1) and 4 +/- 0.1 s(-1), respectively. The K(m) value for fructose 1,6-bisphosphate was equal to 0.16 +/- 0.02 mm and 0.046 +/- 0.005 mm for sedoheptulose 1,7-bisphosphate. The catalytic efficiency of aldolase was thus 219 +/- 31 s(-1).mm(-1) with fructose 1,6-bisphosphate and 87 +/- 9 s(-1).mm(-1) with sedoheptulose 1,7-bisphosphate. In the presence of the complex, this parameter for fructose 1,6-bisphosphate increased to 310 +/- 23 s(-1).mm(-1), whereas no change was observed with sedoheptulose 1,7-bisphosphate. The condensation reaction of aldolase to form fructose 1,6-bisphosphate was also investigated but no effect of CP12 or the complex on this reaction was observed.  相似文献   

18.
Phosphoglucose isomerase negative mutant of mucoid Pseudomonas aeruginosa accumulated relatively higher concentration of fructose 1,6-bisphosphate (Fru-1,6-P2) when mannitol induced cells were incubated with this sugar alcohol. Also the toluene-treated cells of fructose 1,6-bisphosphate aldolase negative mutant of this organism produced Fru-1,6-P2 from fructose 6-phosphate in presence of ATP, but not from 6-phosphogluconate. The results together suggested the presence of an ATP-dependent fructose 6-phosphate kinase (EC 2.7.1.11) in mucoid P. aeruginosa.Abbreviations ALD Fru-1,6-P2 aldolse - DHAP dihydroxyacetone phosphate - F6P fructose 6-phosphate - G6P glucose 6-phosphate - Gly3P glyceraldehyde 3-phosphate - KDPG 2-keto 3-deoxy 6-phosphogluconate - PFK fructose 6-phosphate kinase - PGI phosphoglucose isomerase - 6PG 6-phosphogluconate  相似文献   

19.
The binding of the inhibitory ligands fructose 2,6-bisphosphate and AMP to rat liver fructose 1,6-bisphosphatase has been investigated. 4 mol of fructose-2,6-P2 and 4 mol of AMP bind per mol of tetrameric enzyme at pH 7.4. Fructose 2,6-bisphosphate exhibits negative cooperatively as indicated by K'1 greater than K'2 greater than K'3 greater than or equal to K'4 and a Hill plot, the curvature of which indicates K'2/K'1 less than 1, K'3/K'2 less than 1, and K'4/K'3 = 1. AMP binding, on the other hand, exhibits positive cooperativity as indicated by K'1 less than K'2 less than K'3 less than K'4 and an nH of 2.05. Fructose 2,6- and fructose 1,6-bisphosphates enhance the binding of AMP as indicated by an increase in the intrinsic association constants. At pH 9.2, where fructose 2,6-bisphosphate and AMP inhibition of the enzyme are diminished, fructose 2,6-bisphosphate binds with a lower affinity but in a positively cooperative manner, whereas AMP exhibits half-sites reactivity with only 2 mol of AMP bound per mol of tetramer. Ultraviolet difference spectroscopy confirmed the results of these binding studies. The site at which fructose 2,6-bisphosphate binds to fructose 1,6-bisphosphatase has been identified as the catalytic site on the basis of the following. 1) Fructose 2,6-bisphosphate binds with a stoichiometry of 1 mol/mol of monomer; 2) covalent modification of the active site with acetylimidazole inhibits fructose 2,6-bisphosphate binding; and 3) alpha-methyl D-fructofuranoside-1,6-P2 and beta-methyl D-fructofuranoside-1,6-P2, substrate analogs, block fructose 2,6-bisphosphate binding. We propose that fructose 2,6-bisphosphate enhances AMP affinity by binding to the active site of the enzyme and bringing about a conformational change which may be similar to that induced by AMP interaction at the allosteric site.  相似文献   

20.
Fructose 1,6-bisphosphate decreases the activation of yeast 6-phosphofructokinase (ATP:fructose 6-phosphate 1-phosphotransferase, EC 2.7.1.11) by fructose 2,6-bisphosphate, especially at cellular substrate concentrations. AMP activation of the enzyme is not influenced by fructose 1,6-bisphosphate. Inorganic phosphate increases the activation by fructose 2,6-bisphosphate and augments the deactivation of the fructose 2,6-bisphosphate activated enzyme by fructose 1,6-bisphosphate. Because various states of yeast glucose metabolism differ in the levels of the two fructose bisphosphates, the observed interactions might be of regulatory significance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号