首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of strong light in the presence of methyl viologen (MV) on the contents of souble protein and its free carbonyl, photosynthetic pigments, malondialdehyde (MDA), and ch]orophyil fluorescence parameters were investigated in the leaf discs from plants with different photosyn, thetic pathways. The photooxidafive degradation of soluble protein and ch]orophyll occurred after 1 h of treatment, and was accompanied by the increase of malondialdehyde content, and oxygen uptake in the light and dark, as well as the inactivation of PS Ⅱ in all test plants. Unlike the maize ( Zea mays ) and sugarcane ( Saccharum sinense Roxb. ) ( C4 plant ) or pineapple (Ananas comosus ( L. ) Mere. ) (CAM plant), a marked increase of carotenoid and non-photochemical chlorophyll fluorescence quenching(qN) was observed in peanut ( Arachis hypogaea L. ) leaves ( C3 plant), as the photochemical fluorescence quenching (qp) declined and Fo raised. It is suggested that photooxidafive stress induced the active dissipation of excessive excite energy by antenna quenching in C4 plant. The response of increasing 02 uptake in the dark was also found in C4 plants during photooxidation. However, the extents of protein and lipid destruction were larger in leaves of maize and sugarcane than in peanut leaves. Fo went up significantly as the C3 plant did, but qN dropped down to the lowest value (10% of control), which may regard as an obvious change of photooxidative damage in C4 plants. Among the three types of plants, the CAM plant, pineapple showed stronger antioxidative feature due to the relative small range of changes in the estimated items as compared with the control.  相似文献   

2.
以生长于浑善达克沙地上的C3植物白榆(Ulmus pumila)、C4植物沙米(Agriophyllum pungens)和CAM植物钝叶瓦松(Orostachys malacophyllus)3种不同光合途径植物为材料,测定了它们生长期叶片的光合气体交换参数、叶绿素荧光参数和水势,探讨它们对生长环境的生理响应特征.结果表明,白榆和沙米的净光合速率、气孔导度均高于钝叶瓦松,特别是在夏季高温(>40℃)和强光照(>2 100 μmol·m-2·s-1)条件下表现得更加明显.白榆和沙米的光合速率、叶片水势都发生了严重的午休现象,其白天光合速率的降低主要是由于气孔关闭造成的.钝叶瓦松的叶片水势在3种植物中最高,但是白天的光合速率很低;其Fv/Fm值在14:00最低,一天中此时光系统II受伤害最大;CAM物种瓦松的碳固定仅发生在夜间.研究发现,C3植物白榆和C4植物沙米比CAM植物钝叶瓦松对热和高光照有着更强的忍耐力,瓦松固定碳主要发生在生长最快的阶段;CAM植物瓦松为了能够在夏季强光和高温条件下生存,它必须进行高强度的呼吸,仅在早晨和夜间进行碳固定.  相似文献   

3.
Young peach plants (Prunus persica) were grown outdoors under different colored filters, to examine the effect of light quality on plant behavior. It was found that under blue light growth rate, leaf size and number, rate of spring bud opening and secondary branching were very similar to control plants grown under neutral shade. Blue + far-red light showed an overall strong inhibitory effect on all these characteristics. Red + far-red light produced the strongest growth activity with best results in growth rate and leaf size and number. The phytochrome pigment system was suggested to be the only pigment regulating growth under high light intensities. Blue and blue + far-red light acted antagonistically on apical dominance features of the tree. The former produced a wider tree with nearly horizontal shoots, while the latter produced a more erect narrow tree.  相似文献   

4.
Abstract

Biotechnology may soon take greater advantage of extremophiles — microorganisms that grow in high salt or heavy metal concentrations, or at extremes of temperature, pressure, or pH. These organisms and their cellular components are attractive because they permit process operation over a wider range of conditions than their traditional counterparts. However, extremophiles also present a number of challenges for the development of bioprocesses, such as slow growth, low cell yield, and high shear sensitivity. Difficulties inherent in designing equipment suitable for extreme conditions are also encountered. This review describes both the advantages and disadvantages of extremophiles, as well as the specialized equipment required for their study and application in biotechnology.  相似文献   

5.
Journal of Plant Growth Regulation - Plants encounter various abiotic stresses due to their sessile nature which include heavy metals, salt, drought, nutrient deficiency, light intensity, pesticide...  相似文献   

6.
After male rats of the Sprague Dawley strain, 5 weeks old, were fed a 20% casein diet with or without 0.5% nicotinamide for 13 days, 180 mg/kg body weight of alloxan was injected in- traperitoneally into the rats. The rats were kept for 18 days with the same diet. The level of blood glucose was increased 6-fold in the group on a 20% casein diet by the injection of alloxan, while there was only a 2-foid increase in the group on a nicotinamide-containing diet and the decreased body weight was also lower in the group on the nicotinamide diet than the group on the casein diet. The body weight was indirectly related to the concentration of blood glucose. A marked increase was observed in the activities of tryptophan oxygenase, aminocarboxymuconate-semialdehyde decarboxylase, and nicotinamide methyltransferase upon the injection of alloxan with both diets; on the other hand, the activities of kynureninase and NAD+ synthetase were decreased by the injection of alloxan. The activity of kynurenine aminotransferase increased in the group on the 20% casein diet by the injection of alloxan, while in the group on the nicotinamide-containing diet its activity was not increased by the injection. These changes in the above enzyme activities mean that the conversion ratio from tryptophan to niacin is lower in the alloxan diabetic rat than normal rat. It was found that the activities of tryptophan oxygenase, aminocarboxymuconate-semialdehyde decarboxylase, and nicotinamide methyltransferase were directly related to the concentration of blood glucose, and that the activities of kynureninase and NAD+ synthetase were inversely related. There was no difference in the activities of 3-hydroxyanthranilic acid oxygenase and nicotinamide mononucleotide adenylyltransferase upon the injection of alloxan with both diets.  相似文献   

7.
CO2 assimilation, transpiration and modulated chlorophyll fluorescence of leaves of Chenopodium bonus-henricus (L.) were measured in the laboratory and, at a high altitude location, in the field. Direct calibration of chlorophyll fluorescence parameters against carbon assimilation in the presence of 1 or 0.5% oxygen (plus CO2) proved necessary to calculate electron transport under photorespiratory conditions in individual experiments. Even when stomata were open in the field, total electron transport was two to three times higher in sunlight than indicated by net carbon gain. It decreased when stomata were blocked by submerging leaves under water or by forcing them to close in air by cutting the petiole. Even under these conditions, electron transport behind closed stomata approached 10 nmol electrons m?2 leaf area s?1 at temperatures between 25 and 30 °C. No photoinactivation of photosystem II was indicated by fluorescence analysis after a day's exposure to full sunlight. Only when leaves were submerged in ice was appreciable photoinactivation noticeable after 4 h exposure to sunlight. Even then almost full recovery occurred overnight. Electron transport behind blocked stomata was much decreased when leaves were darkened for 70 min (in order to deactivate light-regulated enzymes of the Calvin cycle) before exposure to full sunlight. Brief exposure of leaves to HCN (to inhibit photoassimilation and photorespiration) also decreased electron transport drastically compared to electron transport in unpoisoned leaves with blocked stomata. Non-photochemical fluorescence quenching and reduction of QA, the primary electron acceptor of photosystem II was increased by HCN-poisoning. Very similar observations were made when glyceraldehyde was used instead of HCN to inhibit photosynthesis and photorespiration. In HCN-poisoned leaves, residual electron transport increased linearly with temperature and showed early light saturation revealing characteristics of the Mehler reaction. During short exposure of these leaves to photon flux densities equivalent to 25% of sunlight, no or only little photoinactivation of photosystem II was observed. However, prolonged exposure to sunlight caused inactivation even though non-photochemical quenching of chlorophyll fluorescence was extensive. Simultaneously, oxidation of cellular ascorbate and glutathione increased. Inactivation of photosystem II was reversible in dim light and in the dark only after short times of exposure to sunlight. Glyceraldehyde was very similar to HCN in increasing the sensitivity of photosystem II in leaves to sunlight. We conclude from the observations that the electron transport permitted by the interplay of photoassimilatory and photorespiratory electron transport is essential to prevent the photoinactivation of photosynthetic electron transport. The Mehler and Asada reactions, which give rise to strong nonphotochemical fluorescence quenching, are insufficient to protect the chloroplast electron transport chain against photoinactivation.  相似文献   

8.
重金属离子对高等植物光合膜结构与功能的影响   总被引:1,自引:0,他引:1  
杨丹慧 《植物学报》1991,8(3):26-29
  相似文献   

9.
Photosynthetic Response of Barley Plants to Soil Flooding   总被引:1,自引:0,他引:1  
Yordanova  R.Y.  Popova  L.P. 《Photosynthetica》2001,39(4):515-520
72 to 120 h of soil flooding of barley plants (Hordeum vulgare L. cv. Alfa) led to a noticeable decrease in the rates of CO2 assimilation and transpiration, and in chlorophyll and dry mass contents. Stomatal conductance decreased following flooding without appreciable changes in the values of intercellular CO2 concentrations. A drop in the activity of ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) and of the photorespiratory enzymes phosphoglycollate phosphatase (EC 3.1.3.18) and glycollate oxidase (EC 1.1.3.1) was observed, while the activity of phosphoenolpyruvate carboxylase (EC 4.1.1.31) increased in all flooded plants. Flooding of barley plants caused an increase in proline content and in leaf acidity.  相似文献   

10.
Respiration in cyanobacterial thylakoid membranes is interwoven with photosynthetic processes. We have constructed a range of mutants that are impaired in several combinations of respiratory and photosynthetic electron transport complexes and have examined the relative effects on the redox state of the plastoquinone (PQ) pool by using a quinone electrode. Succinate dehydrogenase has a major effect on the PQ redox poise, as mutants lacking this enzyme showed a much more oxidized PQ pool. Mutants lacking type I and II NAD(P)H dehydrogenases also had more oxidized PQ pools. However, in the mutant lacking type I NADPH dehydrogenase, succinate was essentially absent and effective respiratory electron donation to the PQ pool could be established after addition of 1 mM succinate. Therefore, lack of the type I NADPH dehydrogenase had an indirect effect on the PQ pool redox state. The electron donation capacity of succinate dehydrogenase was found to be an order of magnitude larger than that of type I and II NAD(P)H dehydrogenases. The reason for the oxidized PQ pool upon inactivation of type II NADH dehydrogenase may be related to the facts that the NAD pool in the cell is much smaller than that of NADP and that the NAD pool is fully reduced in the mutant without type II NADH dehydrogenase, thus causing regulatory inhibition. The results indicate that succinate dehydrogenase is the main respiratory electron transfer pathway into the PQ pool and that type I and II NAD(P)H dehydrogenases regulate the reduction level of NADP and NAD, which, in turn, affects respiratory electron flow through succinate dehydrogenase.  相似文献   

11.
The generation of nonphotochemical quenching of chlorophyll fluorescence (qN) in the antenna of photosystem II (PSII) is accompanied by the de-epoxidation of violaxanthin to antheraxanthin and zeaxanthin. The function of zeaxanthin in two mechanisms of qN, energy-dependent quenching (qE) and photoinhibitory quenching (qI), was investigated by measuring the de-epoxidation state in the antenna subcomplexes of PSII during the generation and relaxation of qN under varying conditions. Three different antenna subcomplexes were separated by isoelectric focusing: Lhcb1/2/3, Lhcb5/6, and the Lhcb4/PSII core. Under all conditions, the highest de-epoxidation state was detected in Lhcb1/2/3 and Lhcb5/6. The kinetics of de-epoxidation in these complexes were found to be similar to the formation of qE. The Lhcb4/PSII core showed the most pronounced differences in the de-epoxidation state when illumination with low and high light intensities was compared, correlating roughly with the differences in qI. Furthermore, the epoxidation kinetics in the Lhcb4/PSII core showed the most pronounced differences of all subcomplexes when comparing the epoxidation after either moderate or very strong photoinhibitory preillumination. Our data support the suggestion that zeaxanthin formation/epoxidation in Lhcb1-3 and Lhcb5/6 may be related to qE, and in Lhcb4 (and/or PSII core) to qI.  相似文献   

12.
13.
不同水分处理对日光温室黄瓜叶片光合特性的影响   总被引:23,自引:1,他引:23  
研究了不同土壤含水量对不同栽培茬口 (冬春茬、秋冬茬 )的日光温室黄瓜叶片的光合速率、气孔阻力、气孔结构特性及叶绿体超微结构的影响。结果表明 :随着土壤含水量的降低 ,单位黄瓜叶片面积气孔密度增加 ,气孔阻力上升 ,光合速率下降 ;叶绿体超微结构观察表明 :土壤含水量的减少明显地降低叶片细胞的叶绿体数目及每个叶绿休内的淀粉粒数。不同茬口的黄瓜其上述特性变化规律相似。  相似文献   

14.
王绍辉  张福墁 《植物学报》2002,19(6):727-733
研究了不同土壤含水量对不同栽培茬口(冬春茬、秋冬茬)的日光温室黄瓜叶片的光合速率、气孔阻力、气孔结构特性及叶绿体超微结构的影响。结果表明:随着土壤含水量的降低,单位黄瓜叶片面积气孔密度增加,气孔阻力上升,光合速率下降;叶绿体超微结构观察表明:土壤含水量的减少明显地降低叶片细胞的叶绿体数目及每个叶绿休内的淀粉粒数。不同茬口的黄瓜其上述特性变化规律相似。  相似文献   

15.
Photosynthetic adaptation to high temperature was investigatedin intact cells and isolated thylakoid membranes of the cyanobacterium,Synechococcus PCC7002. In intact cells, the thermal stabilityof photosynthesis and photosystem 2-mediated electron transportfrom H2O to 1,4-benzoquinone changed in concert with growthtemperature. The photosystem 2-mediated electron transport fromH2O to phenyl-1,4-benzoquinone showed greater thermal stabilityin thylakoid membranes isolated from cells which had adaptedto high temperature than in those from non-adapted cells. Enhancedthermal stability was also observed in the thylakoid membranesin the transport of electrons from H2O to 2,6-dichlorophenolindophenolbut not in the transport of electrons from diphenylcarbazideto 2,6-dichlorophenolindophenol. These observations suggestthat oxygen-evolving sites acquire enhanced thermal stability,and that factors which are responsible for thermal stabilityremain in isolated thylakoid membranes. (Received October 30, 1992; Accepted December 18, 1992)  相似文献   

16.
Activities of noncyclic and alternative pathways of photosynthetic electron transport were studied in intact leaves of broad been (Vicia faba L.) seedlings grown under white light at irradiances of 176, 36, and 18 µmol quanta/(m2 s). Electron flows were followed from light-induced absorbance changes at 830 nm related to redox transformations of P700, the photoactive PSI pigment. The largest absorbance changes at 830 nm, induced by either white or far-red light, were observed in leaves of seedlings grown at irradiance of 176 µmol quanta/(m2 s), which provides evidence for the highest concentration of PSI reaction centers per unit leaf area in these seedlings. When actinic white light of 1800 µmol quanta/(m2 s) was turned on, the P700 oxidation proceeded most rapidly in leaves of seedlings grown at irradiance of 176 µmol quanta/(m2 s). The rates of electron transfer from PSII to PSI were measured from the kinetics of dark P700+ reduction after turning off white light. These rates were similar in leaves of all light treatments studied, and their characteristic reaction times were found to range from 9.2 to 9.5 ms. Four exponentially decaying components were resolved in the kinetics of dark P700+ reduction after leaf exposure to far-red light. A minor but the fastest component of P700+ reduction with a halftime of 30–60 ms was determined by electron transfer from PSII, while the three other slow components were related to the operation of alternative electron transport pathways. Their halftimes and relative magnitudes were almost independent on irradiance during plant cultivation. It is concluded that irradiance during plant growth affects the absolute content of PSI reaction centers in leaves but did not influence the rates of noncyclic and alternative electron transport.From Fiziologiya Rastenii, Vol. 52, No. 4, 2005, pp. 485–491.Original English Text Copyright © 2005 by Nikolaeva, Bukhov, Egorova.The article was translated by the authors.  相似文献   

17.
Rotaviruses, the single most important agents of acute severe gastroenteritis in children, are nonenveloped viruses formed by a three-layered capsid that encloses a genome formed by 11 segments of double-stranded RNA. The mechanism of entry of these viruses into the host cell is not well understood. The best-studied strain, RRV, which is sensitive to neuraminidase (NA) treatment of the cells, uses integrins α2β1 and αvβ3 and the heat shock protein hsc70 as receptors and enters MA104 cells through a non-clathrin-, non-caveolin-mediated pathway that depends on a functional dynamin and on the presence of cholesterol on the cell surface. In this work, using a combination of pharmacological, biochemical, and genetic approaches, we compared the entry characteristics of four rotavirus strains known to have different receptor requirements. We chose four rotavirus strains that represent all phenotypic combinations of NA resistance or sensitivity and integrin dependence or independence. We found that even though all the strains share their requirements for hsc70, dynamin, and cholesterol, three of them differ from the simian strain RRV in the endocytic pathway used. The human strain Wa, porcine strain TFR-41, and bovine strain UK seem to enter the cell through clathrin-mediated endocytosis, since treatments that inhibit this pathway block their infectivity; consistent with this entry route, these strains were sensitive to changes in the endosomal pH. The inhibition of other endocytic mechanisms, such as macropinocytosis or caveola-mediated uptake, had no effect on the internalization of the rotavirus strains tested here.Endocytosis is a cellular process that involves the formation of a vesicle whose cargo is transported from the extracellular milieu to the interior of the cell. Several endocytic pathways have been described, and all of them have been shown to be used by viruses during cell entry. These pathways include clathrin-mediated endocytosis, uptake via caveolae, macropinocytosis, phagocytosis, and a novel non-clathrin-, non-caveola-mediated pathway that is currently not well characterized (32). While detailed information about the entry of several enveloped viruses is now available (4, 35, 49, 53, 56), the mechanism by which nonenveloped viruses enter cells is not well understood. Two general mechanisms have been proposed to be used by these viruses to reach the cell''s cytoplasm: direct penetration at the cell surface, during which the viral particles are directly translocated from the external milieu into the cytoplasm, or internalization through endocytic processes (55).Rotaviruses, members of the family Reoviridae, are the leading etiologic agent of viral gastroenteritis in infants and young children worldwide, being responsible for an estimated 500,000 deaths each year (41). These nonenveloped viruses are formed by three concentric layers of protein that surround the viral genome, formed by 11 segments of double-stranded RNA. The outermost layer of the virion is formed by two proteins, VP4 and VP7, which are involved in the early interactions of the virus with its host cell (7, 27). VP4 is involved in receptor binding and cell penetration. The role of VP7 is less clear, although it has been shown that it interacts with the cell surface molecules at a postattachment step (17). After binding to the cell surface, the virus penetrates the plasma membrane to productively infect the cell. This penetration depends on the trypsin treatment of the virus, which results in the specific cleavage of VP4 to polypeptides VP8 and VP5. This cleavage promotes VP4 rearrangements in the viral particles that rigidify the spikes (7, 11).Despite the fact that, in vivo, rotaviruses primarily infect the mature enterocytes of the small intestine, studies of the infection of this type of cells have been limited due to the lack of established intestinal cell lines of small intestine origin. Given the absence of a better model, most of the studies on the entry and replication cycle of rotavirus have been conducted either in the epithelial monkey kidney cell line MA104 or in the human colon carcinoma cell line Caco-2, which are highly permissible to these viruses.Using as a model MA104 cells and the simian rotavirus RRV, we have proposed that rotavirus cell entry is a complex multistep process that involves the two virus surface proteins and several cell receptors, including sialic acids, gangliosides, integrins α2β1, α4β1, αvβ3, and αxβ2, and the heat shock cognate protein hsc70 (22). We have also shown that depletion of cholesterol from the cellular membrane severely impairs the infectivity of rotavirus (19, 50) and have suggested that sphingolipid- and cholesterol-enriched membrane lipid microdomains might be involved in rotavirus cell entry, since the virus and its receptors associate with these domains at early times during infection (23). However, there are some rotavirus strains that may not use all these molecules; some rotavirus strains are resistant to the neuraminidase (NA) treatment of the cell, and thus, they have been classified as NA resistant (6, 34). Additionally, the infectivity of some viral strains is not blocked by anti-integrin antibodies, suggesting the existence of rotavirus strains that are integrin independent (Table (Table1)1) (17).

TABLE 1.

Cellular receptor requirements of different rotavirus strains
StrainOriginNeuraminidase sensitivityIntegrin dependentReferences
RRVSimianYesYes5, 6, 17
TFR-41PorcineYesNo6, 17
UKBovineNoNo6, 17
WaHumanNoYes5, 17, 34
Open in a separate windowThe precise mechanism utilized by rotavirus to enter the cell is, however, not yet defined. Recently, we reported that the entry of the simian rotavirus strain RRV is independent of clathrin- and caveola-mediated endocytosis; however, it is dependent on dynamin (a protein involved in the scission of the endocytic vesicles from the cellular membrane) and requires the presence of cholesterol in the cell membrane (50). In this work, using a combination of pharmacological, biochemical, and genetic approaches, we compared the entry characteristics of four rotavirus strains known to have different receptor requirements. We found that all the strains tested share the requirement for hsc70, cholesterol, and dynamin. Unexpectedly, we found that there were differences in the type of endocytic route utilized by three of the strains compared to that of simian strain RRV. Bovine strain UK, porcine strain TFR-41, and human strain Wa more likely enter the cell through a clathrin-dependent mechanism, since treatments that inhibit this process block the infectivity of these rotavirus strains; in contrast, the entry of RRV, as previously shown (50), is independent of this pathway. The inhibition of other endocytic mechanisms, such as macropinocytosis or caveola-mediated uptake, had no effect on the entry of the rotavirus strains tested here.  相似文献   

18.
以气体交换和叶绿素荧光测定相结合的方法研究了亚热带自然林乔木荷树、黧蒴和林下灌木九节、罗伞幼苗的光合电子传递及激发能利用的分配对生长光强的适应特性。4种植物生长于100%、36%和16%的自然光下8个月,叶片的光化学速率和热能耗散速率随光强增大而提高,热能耗散占总的光能吸收的比例也因光强不同而改变,16%光下的相对热耗散率约为40%~45%,100%自然光下增大至50%~75%。叶片总的非环式电子流速率及其分配到光呼吸的比例在100%光强下最高。乔木和灌木的电子传递和光能分配特性在16%光下相似,在100%光下差别较明显。除灌木种有较高的热耗散比例之外,其余的参数皆比乔木的低。结果表明乔木与灌木皆可通过提高激发能热耗散比例和提高光合电子传递向光呼吸的比例来适应于高光强条件。  相似文献   

19.
Hidema J  Makino A  Mae T  Ojima K 《Plant physiology》1991,97(4):1287-1293
Effects of irradiance on photosynthetic characteristics were examined in senescent leaves of rice (Oryza sativa L.). Two irradiance treatments (100 and 20% natural sunlight) were imposed after the full expansion of the 13th leaf through senescence. The photosynthetic rate was measured as a function of intercellular CO2 pressure with a gas-exchange system. The amounts of cytochrome f, coupling factor 1, ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco), and chlorophyll were determined. The coupling factor 1 and cytochrome f contents decreased rapidly during senescence, and their rates of decrease were much faster from the 20% sunlight treatment than from the full sunlight treatment. These changes were well correlated with those in the photosynthetic rate at CO2 pressure = 600 microbars, but not with those under the ambient air condition (350 microbars CO2) and 200 microbars CO2. This suggested that the amounts of coupling factor 1 and cytochrome f from the full sunlight treatment cannot be limiting factors for the photosynthetic rate at ambient air conditions. The Rubisco content also decreased during senescence, but its decrease from the 20% sunlight treatment was appreciably retarded. However, this difference was not reflected in the photosynthetic rates at the ambient and 200 microbars CO2. This implied that in vivo Rubisco activity may be regulated in the senescent leaves from the 20% sunlight treatment. The chlorophyll content decreased most slowly. In the 20% sunlight treatment, it remained apparently constant with a decline in chlorophyll a/b ratio. These photosynthetic characteristics of the senescent rice leaves under low irradiance were discussed in relation to acclimation of shade plants.  相似文献   

20.
β-淀粉样蛋白(β-amyloid peptide, Aβ)与神经细胞膜的相互作用是阿尔茨海默症(Alzheimer’s disease, AD)发病的重要事件,但不同寡聚形式的Aβ与细胞膜相互作用的差异仍缺乏直接比较。本文通过膜天平、透射电子显微镜、Thioflavin T(ThT)和细胞毒性实验等方法,检测Aβ42单体、ADDL、原纤维等形式的β-淀粉样蛋白与磷脂膜的作用方式,分析不同形式淀粉样蛋白对细胞的毒性作用。结果显示,(1)单层膜的实验数据可以判断Aβ42单体和寡聚体插膜能力存在差异,Aβ42单体能插入磷脂单层膜内,而Aβ42 ADDL不具备插膜能力;(2)透射电镜和ThT荧光检测,定性定量地分析出不同聚集形式的Aβ42具有不同的纤维化能力,Aβ42单体纤维化能力最强,而Aβ42原纤维的纤维化能力次之,Aβ42ADDL很难形成纤维;(3)Aβ42单体细胞毒性较弱,而Aβ42 ADDL和原纤维的细胞毒性较强。由以上结果可以得出结论:在磷脂膜存在的条件下,Aβ42单体可以插入膜内并迅速形成无毒性的Aβ42纤维,因此,细胞毒性较弱。而ADDL及原纤维不能插入膜内,纤维化能力较弱,从而以寡聚体的形式发挥细胞毒性。将单体、ADDL及原纤维形式的Aβ42与细胞膜相互作用进行分析,将为Aβ42在AD中的毒性机制研究提供一定的参考。但各种寡聚体入胞的方式及毒性机制仍需要进一步研究。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号