首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.  相似文献   

2.
Swine generate reassortant influenza viruses because they can be simultaneously infected with avian and human influenza; however, the features that restrict influenza reassortment in swine and human hosts are not fully understood. Type I and III interferons (IFNs) act as the first line of defense against influenza virus infection of respiratory epithelium. To determine if human and swine have different capacities to mount an antiviral response the expression of IFN and IFN-stimulated genes (ISG) in normal human bronchial epithelial (NHBE) cells and normal swine bronchial epithelial (NSBE) cells was evaluated following infection with human (H3N2), swine (H1N1), and avian (H5N3, H5N2, H5N1) influenza A viruses. Expression of IFNλ and ISGs were substantially higher in NHBE cells compared to NSBE cells following H5 avian influenza virus infection compared to human or swine influenza virus infection. This effect was associated with reduced H5 avian influenza virus replication in human cells at late times post infection. Further, RIG-I expression was lower in NSBE cells compared to NHBE cells suggesting reduced virus sensing. Together, these studies identify key differences in the antiviral response between human and swine respiratory epithelium alluding to differences that may govern influenza reassortment.  相似文献   

3.
Influenza H5N1 virus continues to be enzootic in poultry and transmits zoonotically to humans. Although a swine-origin H1N1 virus has emerged to become pandemic, its virulence for humans remains modest in comparison to that seen in zoonotic H5N1 disease. As human respiratory epithelium is the primary target cells for influenza viruses, elucidating the viral tropism and host innate immune responses of influenza H5N1 virus in human bronchial epithelium may help to understand the pathogenesis. Here we established primary culture of undifferentiated and well differentiated normal human bronchial epithelial (NHBE) cells and infected with highly pathogenic influenza H5N1 virus (A/Vietnam/3046/2004) and a seasonal influenza H1N1 virus (A/Hong Kong/54/1998), the viral replication kinetics and cytokine and chemokine responses were compared by qPCR and ELISA. We found that the in vitro culture of the well differentiated NHBE cells acquired the physiological properties of normal human bronchi tissue which express high level of α2-6-linked sialic acid receptors and human airway trypsin-like (HAT) protease, in contrast to the low expression in the non-differentiated NHBE cells. When compared to H1N1 virus, the H5N1 virus replicated more efficiently and induced a stronger type I interferon response in the undifferentiated NHBE cells. In contrast, in well differentiated cultures, H5N1 virus replication was less efficient and elicited a lower interferon-beta response in comparison with H1N1 virus. Our data suggest that the differentiation of bronchial epithelial cells has a major influence in cells'' permissiveness to human H1N1 and avian H5N1 viruses and the host innate immune responses. The reduced virus replication efficiency partially accounts for the lower interferon-beta responses in influenza H5N1 virus infected well differentiated NHBE cells. Since influenza infection in the bronchial epithelium will lead to tissue damage and associate with the epithelium regeneration, the data generated from the undifferentiated NHBE cultures may also be relevant to disease pathogenesis.  相似文献   

4.
Murine nasal septa for respiratory epithelial air-liquid interface cultures   总被引:1,自引:0,他引:1  
Air-liquid interface models using murine tracheal respiratory epithelium have revolutionized the in vitro study of pulmonary diseases. This model is often impractical because of the small number of respiratory epithelial cells that can be isolated from the mouse trachea. We describe a simple technique to harvest the murine nasal septum and grow the epithelial cells in an air-liquid interface. The degree of ciliation of mouse trachea, nasal septum, and their respective cultured epithelium at an air-liquid interface were compared by scanning electron microscopy (SEM). Immunocytochemistry for type IV beta-tubulin and zona occludens-1 (Zo-1) are performed to determine differentiation and confluence, respectively. To rule out contamination with olfactory epithelium (OE), immunocytochemistry for olfactory marker protein (OMP) was performed. Transepithelial resistance and potential measurements were determined using a modified vertical Ussing chamber SEM reveals approximately 90% ciliated respiratory epithelium in the nasal septum as compared with 35% in the mouse trachea. The septal air-liquid interface culture demonstrates comparable ciliated respiratory epithelium to the nasal septum. Immunocytochemistry demonstrates an intact monolayer and diffuse differentiated ciliated epithelium. These cultures exhibit a transepithelial resistance and potential confirming a confluent monolayer with electrically active airway epitheliumn containing both a sodium-absorptive pathway and a chloride-secretory pathway. To increase the yield of respiratory epithelial cells harvested from mice, we have found the nasal septum is a superior source when compared with the trachea. The nasal septum increases the yield of respiratory epithelial cells up to 8-fold.  相似文献   

5.
Hong Xu  Hong-can Shi  Dan Lu 《Cryobiology》2009,58(2):225-231
Vitrification is a promising alternative to tissue preservation, in which the tissue is permeated with cryoprotective agents (CPAs) in order to circumvent the hazardous effects associated with ice formation. In this study, we evaluate the effect of vitreous cryopreservation of rabbit trachea, by comparing vitrification procedure with conventional computer-programmed slow freezing approaches. Harvested rabbit trachea were tailored and divided into groups and cryopreserved by vitrification and programmed freezing, respectively. The morphology and ultrastructure of the thawed tracheal fragments including HE dyes, terminal deoxynucleotidyl transferase-mediated dUTP-digoxigenin nick end-labeling (TUNEL) staining, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) were studied to assess the integrity of the tracheal fragments. Morphological studies demonstrated that both cryopreservation procedure retained the integrity of trachea, both epithelial cells, cilia and cartilage cells were in good shape. Compared with slow freezing methods, vitrification was less detrimental to cartilage cells and had a higher survival rate of chondrocytes and coverage of epithelium and cilia. Therefore, vitrification procedure can be a more satisfactory method to preserve trachea and the survival of chondrocytes in situ in cartilage tissue is adequate and respiratory epithelium is soundly present.  相似文献   

6.
Respiratory epithelial cells play a key role in influenza A virus (IAV) pathogenesis and host innate response. Transformed human respiratory cell lines are widely used in the study of IAV−host interactions due to their relative convenience, and inherent difficulties in working with primary cells. Transformed cells, however, may have altered susceptibility to virus infection. Proper characterization of different respiratory cell types in their responses to IAV infection is therefore needed to ensure that the cell line chosen will provide results that are of relevance in vivo. We compared replication kinetics of human H1N1 (A/USSR/77) IAVs in normal primary human bronchial epithelial (NHBE) and two commonly used respiratory epithelial cell lines namely BEAS-2B and A549 cells. We found that IAV replication was distinctly poor in BEAS-2B cells in comparison with NHBE, A549 and Madin-Darby canine kidney (MDCK) cells. IAV resistance in BEAS-2B cells was accompanied by an activated antiviral state with high basal expression of interferon (IFN) regulatory factor-7 (IRF-7), stimulator of IFN genes (STING) and IFN stimulated genes (ISGs). Treatment of BEAS-2B cells with a pan-Janus-activated-kinase (JAK) inhibitor decreased IRF-7 and ISG expression and resulted in increased IAV replication. Therefore, the use of highly resistant BEAS-2B cells in IAV infection may not reflect the cytopathogenicity of IAV in human epithelial cells in vivo.  相似文献   

7.
The reconstruction of extensive tracheal defects is still an unsolved challenge for thoracic surgery. Tissue engineering is a promising possibility to solve this problem through the generation of an autologous tracheal replacement from patients’ own tissue. Therefore, this study investigated the potential of three different coculture systems, combining human respiratory epithelial cells and human chondrocytes. The coculture systems were analyzed by histological staining with alcian blue, immunohistochemical staining with the antibodies, 34betaE12 and CD44v6, and scanning electron microscopy. The first composite culture consisted of human respiratory epithelial cells seeded on human high-density chondrocyte pellets. For the second system, we used native articular cartilage chips as base for the respiratory epithelial cells. The third system consisted of a collagen membrane, seeded with respiratory epithelial cells and human chondrocytes onto different sides of the membrane, which achieved the most promising results. In combination with an air–liquid interface system and fibroblast-conditioned medium, an extended epithelial multilayer with differentiated epithelial cells could be generated. Our results suggest that at least three factors are necessary for the development towards a tracheal replacement: (1) a basal lamina equivalent, consisting of collagen fibers for cell–cell interaction and cell polarization, (2) extracellular factors of mesenchymal fibroblasts, and (3) the presence of an air–liquid interface system for proliferation and differentiation of the epithelial cells.  相似文献   

8.
The gel-forming MUC5AC and MUC5B mucins have been identified as major components of human airway mucus but it is not known whether additional mucin species, possibly with other functions, are also present. MUC16 mucin is a well-known serum marker for ovarian cancer, but the molecule has also been found on the ocular surface and in cervical secretions suggesting that it may play a role on the normal mucosal surface. In this investigation, the LUM16-2 antiserum (raised against a sequence in the N-terminal repeat domain) recognized MUC16 in goblet and submucosal gland mucous cells as well as on the epithelial surface of human tracheal tissue suggesting that the mucin originates from secretory cells. MUC16 mucin was present in 'normal' respiratory tract mucus as well as in secretions from normal human bronchial epithelial (NHBE) cells. MUC16 from NHBE cells was a high-molecular-mass, monomeric mucin which gave rise to large glycopeptides after proteolysis. N- and C-terminal fragments of the molecule were separated on gel electrophoresis showing that the MUC16 apoprotein undergoes a cleavage between these domains, possibly in the SEA domain as demonstrated for other transmembrane mucins; MUC1 and MUC3. After metabolic labeling of NHBE cells, most of the secreted monomeric, high-molecular-mass [(35)S]sulphate-labelled molecules were immunoprecipitated with the OC125 antibody indicating that MUC16 is the major [(35)S]sulphate-labelled mucin in NHBE cell secretions.  相似文献   

9.
In vitro models using human primary epithelial cells are essential in understanding key functions of the respiratory epithelium in the context of microbial infections or inhaled agents. Direct comparisons of cells obtained from diseased populations allow us to characterize different phenotypes and dissect the underlying mechanisms mediating changes in epithelial cell function. Culturing epithelial cells from the human tracheobronchial region has been well documented, but is limited by the availability of human lung tissue or invasiveness associated with obtaining the bronchial brushes biopsies. Nasal epithelial cells are obtained through much less invasive superficial nasal scrape biopsies and subjects can be biopsied multiple times with no significant side effects. Additionally, the nose is the entry point to the respiratory system and therefore one of the first sites to be exposed to any kind of air-borne stressor, such as microbial agents, pollutants, or allergens. Briefly, nasal epithelial cells obtained from human volunteers are expanded on coated tissue culture plates, and then transferred onto cell culture inserts. Upon reaching confluency, cells continue to be cultured at the air-liquid interface (ALI), for several weeks, which creates more physiologically relevant conditions. The ALI culture condition uses defined media leading to a differentiated epithelium that exhibits morphological and functional characteristics similar to the human nasal epithelium, with both ciliated and mucus producing cells. Tissue culture inserts with differentiated nasal epithelial cells can be manipulated in a variety of ways depending on the research questions (treatment with pharmacological agents, transduction with lentiviral vectors, exposure to gases, or infection with microbial agents) and analyzed for numerous different endpoints ranging from cellular and molecular pathways, functional changes, morphology, etc. In vitro models of differentiated human nasal epithelial cells will enable investigators to address novel and important research questions by using organotypic experimental models that largely mimic the nasal epithelium in vivo.  相似文献   

10.
Since April 2012, there have been 17 laboratory-confirmed human cases of respiratory disease associated with newly recognized human betacoronavirus lineage C virus EMC (HCoV-EMC), and 7 of them were fatal. The transmissibility and pathogenesis of HCoV-EMC remain poorly understood, and elucidating its cellular tropism in human respiratory tissues will provide mechanistic insights into the key cellular targets for virus propagation and spread. We utilized ex vivo cultures of human bronchial and lung tissue specimens to investigate the tissue tropism and virus replication kinetics following experimental infection with HCoV-EMC compared with those following infection with human coronavirus 229E (HCoV-229E) and severe acute respiratory syndrome coronavirus (SARS-CoV). The innate immune responses elicited by HCoV-EMC were also investigated. HCoV-EMC productively replicated in human bronchial and lung ex vivo organ cultures. While SARS-CoV productively replicated in lung tissue, replication in human bronchial tissue was limited. Immunohistochemistry revealed that HCoV-EMC infected nonciliated bronchial epithelium, bronchiolar epithelial cells, alveolar epithelial cells, and endothelial cells. Transmission electron microscopy showed virions within the cytoplasm of bronchial epithelial cells and budding virions from alveolar epithelial cells (type II). In contrast, there was minimal HCoV-229E infection in these tissues. HCoV-EMC failed to elicit strong type I or III interferon (IFN) or proinflammatory innate immune responses in ex vivo respiratory tissue cultures. Treatment of human lung tissue ex vivo organ cultures with type I IFNs (alpha and beta IFNs) at 1 h postinfection reduced the replication of HCoV-EMC, suggesting a potential therapeutic use of IFNs for treatment of human infection.  相似文献   

11.
This study describes distrinctive cells with ultrastructural and histochemical features of APUD-type endocrine cells within the tracheal epithelium of human fetuses, newborns and children as well as different animal species. These cells referred to as Kultschitzky cells (K cells) were found to be argyrophilic, but not argentaffin, and are considered analogous to the same type of cells in lung and gastro-intestinal tract. Fluorescence histochemistry demonstrated the presence of intracellular amine within tracheal K cells, but only after in-vitro or in-vivo administration of amine precursor (L-DOPA). Ultrastructurally, these cells are characterized by the presence of numerous cytoplasmic granules (dense core vesicles) which show species related morphologic variations. Two different types of K cells were found in trachea of lamb and armadillo, each type possessing morphologically different dense core vesicles. In human and rabbit tracheas, only one type of K cell was identified. K cells in the trachea are distributed as single cells between other epithelial cells; neuroepithelial bodies such as those found in bronchial mucosa were not identified. Well differentiated K cells were found in tracheas of early human fetuses and throughout gestation, infancy, and childhood. Preservation of K cells in human autopsy material and widespread occurence of these cells in various laboratory animals will permit further studies into the nature and function of tracheobronchial endocrine cells.  相似文献   

12.
Epithelial cells from tracheal mucosa offer significant potential as a cell source in development of tissue-engineered trachea. The purpose of this study was to investigate and optimize a suitable culture system for tracheal epithelial cells, including the methods of primary culture, passage, identification, and cryopreservation. Epithelial cells were isolated from rabbit tracheal mucosa using tissue explant technique and were subjected to immunohistochemistry, immunofluorescence, and cryopreservation after purification. Epithelial cells reached confluency at 14–15 d. Immunohistochemical staining for cytokeratin showed brown yellow-positive cytoplasm and blue-counterstained nuclei, while immunofluorescence staining for cytokeratin showed green-positive cytoplasm and clear cell outline, indicating that the cultured cells had properties of epithelial cells. After recovery, epithelial cells exhibited high survival and viability. The results demonstrated that in vitro isolation and cultivation model was successfully established to provide high proliferative capacity, typical morphology and characteristics of tracheal epithelial cells from trachea mucosa by the use of the tissue explant technique.  相似文献   

13.
The apical and basolateral surfaces of airway epithelial cells demonstrate directional responses to pathogen exposure in vivo. Thus, ideal in vitro models for examining cellular responses to respiratory pathogens polarize, forming apical and basolateral surfaces. One such model is differentiated normal human bronchial epithelial cells (NHBE). However, this system requires lung tissue samples, expertise isolating and culturing epithelial cells from tissue, and time to generate an air-liquid interface culture.Calu-3 cells, derived from a human bronchial adenocarcinoma, are an alternative model for examining the response of proximal airway epithelial cells to respiratory insult1, pharmacological compounds2-6, and bacterial7-9 and viral pathogens, including influenza virus, rhinovirus and severe acute respiratory syndrome - associated coronavirus10-14. Recently, we demonstrated that Calu-3 cells are susceptible to respiratory syncytial virus (RSV) infection in a manner consistent with NHBE15,16 . Here, we detail the establishment of a polarized, liquid-covered culture (LCC) of Calu-3 cells, focusing on the technical details of growing and culturing Calu-3 cells, maintaining cells that have been cultured into LCC, and we present the method for performing respiratory virus infection of polarized Calu-3 cells.To consistently obtain polarized Calu-3 LCC, Calu-3 cells must be carefully subcultured before culturing in Transwell inserts. Calu-3 monolayer cultures should remain below 90% confluence, should be subcultured fewer than 10 times from frozen stock, and should regularly be supplied with fresh medium. Once cultured in Transwells, Calu-3 LCC must be handled with care. Irregular media changes and mechanical or physical disruption of the cell layers or plates negatively impact polarization for several hours or days. Polarization is monitored by evaluating trans-epithelial electrical resistance (TEER) and is verified by evaluating the passive equilibration of sodium fluorescein between the apical and basolateral compartments17,18 . Once TEER plateaus at or above 1,000 Ω×cm2, Calu-3 LCC are ready to use to examine cellular responses to respiratory pathogens.  相似文献   

14.
Rapid repair of the denuded alveolar surface after injury is a key to survival. The respiratory tract contains several sources of endogenous adult stem cells residing within the basal layer of the upper airways, within or near pulmonary neuroendocrine cell rests, at the bronchoalveolar junction, and within the alveolar epithelial surface, which contribute to the repair of the airway wall. Bone marrow-derived adult mesenchymal stem cells circulating in blood are also involved in tracheal regeneration. However, an organism is frequently incapable of repairing serious damage and defects of the respiratory tract resulting from acute trauma, lung cancers, and chronic pulmonary and airway diseases. Therefore, replacement of the tracheal tissue should be urgently considered. The shortage of donor trachea remains a major obstacle in tracheal transplantation. However, implementation of tissue engineering and stem cell therapy-based approaches helps to successfully solve this problem. To date, huge progress has been achieved in tracheal bioengineering. Several sources of stem cells have been used for transplantation and airway reconstitution in animal models with experimentally induced tracheal defects. Most tracheal tissue engineering approaches use biodegradable three-dimensional scaffolds, which are important for neotracheal formation by promoting cell attachment, cell redifferentiation, and production of the extracellular matrix. The advances in tracheal bioengineering recently resulted in successful transplantation of the world's first bioengineered trachea. Current trends in tracheal transplantation include the use of autologous cells, development of bioactive cell-free scaffolds capable of supporting activation and differentiation of host stem cells on the site of injury, with a future perspective of using human native sites as micro-niche for potentiation of the human body's site-specific response by sequential adding, boosting, permissive, and recruitment impulses.  相似文献   

15.
Differentiated cultures of primary hamster tracheal airway epithelial cells   总被引:5,自引:0,他引:5  
Summary Primary airway epithelial cell cultures can provide a faithful representation of the in vivo airway while allowing for a controlled nutrient source and isolation from other tissues or immune cells. The methods used have significant differences based on tissue source, cell isolation, culture conditions, and assessment of culture purity. We modified and optimized a method for generating tracheal epithelial cultures from Syrian golden hamsters and characterized the cultures for cell composition and function. Soon after initial plating, the epithelial cells reached a high transepithelial resistance and formed tight junctions. The cells differentiated into a heterogeneous, multicellular culture containing ciliated, secretory, and basal cells after culture at an air-liquid interface (ALI). The, secretory cell populations initially consisted of MUC5AC-positive goblet cells and MUC5AC/CCSP double-positive cells, but the makeup changed to predominantly Clara cell secretory protein (CCSP)-positive Clara cells after 14 d. The ciliated cell populations differentiated rapidly after ALI as judged by the appearance of β tubulin IV-positive cells. The cultures produced mucus, CCSP, and trypsin-like proteases and were capable of wound repair as judged by increased expression of matrilysin. Our method provides an efficient, high-yield protocol for producing differentiated hamster tracheal epithelial cells that can be used for a variety of in vitro studies including tracheal cell differentiation, airway disease mechanisms, and pathogen-host interactions.  相似文献   

16.
Tissue engineering (TE) of long tracheal segments is conceptually appealing for patients with inoperable tracheal pathology. In tracheal TE, stem cells isolated from bone marrow or adipose tissue have been employed, but the ideal cell source has yet to be determined. When considering the origin of stem cells, cells isolated from a source embryonically related to the trachea may be more similar. In this study, we investigated the feasibility of isolating progenitor cells from pleura and pericard as an alternative cells source for tracheal tissue engineering. Porcine progenitor cells were isolated from pleura, pericard, trachea and adipose tissue and expanded in culture. Isolated cells were characterized by PCR, RNA sequencing, differentiation assays and cell survival assays and were compared to trachea and adipose-derived progenitor cells. Progenitor-like cells were successfully isolated and expanded from pericard and pleura as indicated by gene expression and functional analyses. Gene expression analysis and RNA sequencing showed a stem cell signature indicating multipotency, albeit that subtle differences between different cell sources were visible. Functional analysis revealed that these cells were able to differentiate towards chondrogenic, osteogenic and adipogenic lineages. Isolation of progenitor cells from pericard and pleura with stem cell features is feasible. Although functional differences with adipose-derived stem cells were limited, based on their gene expression, pericard- and pleura-derived stem cells may represent a superior autologous cell source for cell seeding in tracheal tissue engineering.  相似文献   

17.
Epithelial cells attach to the basement membrane through adhesive contacts between the basal cells of the epithelium and the proteins of the extracellular matrix (ECM). The hemidesmosome (HD) is a specialized cell-ECM contact, that mediates the attachment of the epithelial cell basal surface to the ECM. In bronchial epithelial cells, the protein components that constitute the HD have not been demonstrated. Using immunohistochemical techniques, we determined that normal human bronchial epithelial (NHBE) cells express the HD cell surface integrin alpha6beta4 and produce laminin 5, the ECM protein associated with HDs. Furthermore, expression of the HD-associated structural proteins, bullous pemphigoid antigens 1 (BPAG 1) and 2 (BPAG 2), was demonstrated in NHBE cells by immunofluorescence microscopy and immunoblot analyses. In addition, we confirmed the presence of laminin 5 in the basement membrane (BM) of bronchial epithelial biopsy specimens and of BP230, BP180, and the alpha6beta4 integrin heterodimer at the site of bronchial epithelial cell-ECM interaction in vivo. Finally, using electron microscopy, we were able to demonstrate intact HDs in a glutaraldehyde-fixed NHBE cell monolayer. These findings suggest that bronchial epithelium forms HDs and that the laminin 5-alpha6beta4 integrin interaction may be important in stabilizing epithelial cell adhesion to the BM in the lung.  相似文献   

18.
The respiratory syncytial virus (RSV) causes potentially fatal lower respiratory tract infection in infants. The molecular mechanism of RSV infection is unknown. Our data show that RSV colocalizes with intercellular adhesion molecule-1 (ICAM-1) on the HEp-2 epithelial cell surface. Furthermore, a neutralizing anti-ICAM-1 mAb significantly inhibits RSV infection and infection-induced secretion of proinflammatory chemokine RANTES and mediator ET-1 in HEp-2 cells. Similar decrease in RSV infection is also observed in A549, a type-2 alveolar epithelial cell line, and NHBE, the normal human bronchial epithelial cell line when pretreated with anti-ICAM-1 mAb prior to RSV infection. Incubation of virus with soluble ICAM-1 also significantly decreases RSV infection of epithelial cells. Binding studies using ELISA indicate that RSV binds to ICAM-1, which can be inhibited by an antibody to the fusion F protein and also the recombinant F protein can bind to soluble ICAM-1, suggesting that RSV interaction with ICAM-1 involves the F protein. It is thus concluded that ICAM-1 facilitates RSV entry and infection of human epithelial cells by binding to its F protein, which is important to viral replication and infection and may lend itself as a therapeutic target.  相似文献   

19.
人呼吸道禽流感病毒受体的分布趋势   总被引:6,自引:1,他引:6  
禽类流感病毒和人类流感病毒具有很强的受体识别特异性,分别与唾液酸α-2,3Gal和α-2,6Gal受体分子结合而感染各自的宿主细胞.这种受体结合特异性是流感病毒在禽类和人类之间跨种属传递的主要障碍.应用凝集素组织化学染色技术,探讨人呼吸道各解剖学部位流感病毒唾液酸受体的分布特征.结果显示,唾液酸α-2,3Gal受体, 即禽类流感受体,主要分布在下呼吸道的呼吸部即呼吸细支气管和肺泡, 而在主气管、支气管和细支气管仅少量分布.相反,人类流感病毒受体,唾液酸α-2,6Gal受体在气管、支气管呈高密度分布,随着支气管分级逐渐降低分布减少,至肺泡分布最少.但比较人呼吸道发育成熟过程中,唾液酸α-2,3Gal和α-2,6Gal受体的表达,未发现明显差别.禽流感H5N1病毒体外感染人呼吸道组织试验结果表明,肺泡上皮较支气管和气管上皮易感染,与唾液酸α-2,3Gal受体分布特点相符合.结果提示,人呼吸道可被禽流感病毒感染,目前H5N1病毒极少发生人传人的特点,可能与个体间上呼吸道唾液酸α-2,3Gal受体表达差异有关.  相似文献   

20.
Membrane differentiation markers of airway epithelial secretory cells   总被引:2,自引:0,他引:2  
We describe here a system for culturing epithelial cells isolated from hamster trachea, which results in a highly enriched population of mucus-secreting cells. The culture system has enabled us to study the process of secretory cell differentiation in vitro. We found that epithelial secretory cells, in vivo and after 5 days in vitro, selectively bind the lectin Helix pomatia agglutinin (HPA) to apical and, to a lesser extent, basolateral surfaces as well as to mucin granules and intracellular secretory organelles. SDS-PAGE gels of detergent extracts of secretory cells cultured for 5 days reveal three HPA-binding glycoproteins with MW of 120 KD, 220 KD, and greater than 400 KD. The high-MW glycoprotein appears identical to mucin, since it is found in secretions from intact trachea and in spent media from 5-day cultures. It does not appear in spent media from 3-day cultures when cells contain few mucous granules and secrete little mucin. The 220 KD HPA-binding glycoprotein is also present in 5-day but not in 3-day cultures. In contrast, the 120 KD glycoprotein is present at both times. HPA-gp120 is a hydrophobic integral membrane protein, whereas HPA-gp220 and mucin are hydrophilic and are membrane associated. These studies define three membrane glycoproteins, one of which is specific for the tracheal epithelial secretory cell regardless of its mucous content, whereas the other two glycoproteins correlate with mucin secretion. They also demonstrate that, in the fully differentiated state, mucin is bound in a non-covalent fashion to the apical plasma membrane of the tracheal epithelial secretory cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号