首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent research has shown that neuromodulators play importantroles in shaping simple behaviors. They act at many differentsites within the animal in a coordinated fashion, modulatingthe motor circuits in the central nervous system, altering motoneuronexcitability, and modulating muscle response to motoneuron input.Within the central circuits that co-ordinate simple movements,neuromodulators play a dramatic sculpting role, changing thecells that participate in the circuit, altering their intrinsicproperties, and affecting the strength of synaptic interactionsthat form the "wiring diagram" of the circuit. As a result,they are able to shape a family of related circuits out of asingle anatomically identified network, each driving a uniquevariant on the basic motor theme. Examples of these actionsfrom the Crustacea are described in this paper, focussing onthe modulation of posture in the lobster, and on modulationof rhythmic motor programs for stomach movements in the stomatogastricganglion of lobsters and crabs.  相似文献   

2.
3.
4.
In non-anesthetized cats, we examined the effects of iontophoretic microinjections of GABA, a blocker of GABAergic synaptic transmission, and modulators of noradrenergic transmission on impulse activity (IA) generated by motor cortex neurons in the course of realization of an operant motor reflex to the action of a complex of stimuli (warning and imperative ones). We tried to elucidate the role of different membrane receptors in modulation of spiking of cortical neurons. Microiontophoretic applications of GABA and noradrenaline resulted in decreases in the frequency of background IA of cortical neurons and suppression of their reactions related to realization of the operant reflex. The use of selective adrenoactive substances showed that applications of an α1 agonist, Mezaton, suppressed background spiking and impulsation generated within an interspike interval and in the course of the movement. An α2 blocker, yohimbine, exerted an opposite effect; the neuronal IA was intensified within the background period and other examined time intervals. There are reasons to believe that noradrenergic modulation of IA of cortical neurons is realized via direct effects on pyramidal neurons and also indirectly, through changes in the activity of inhibitory cortical interneurons.  相似文献   

5.
The brain can learn and detect mixed input signals masked by various types of noise, and spike-timing-dependent plasticity (STDP) is the candidate synaptic level mechanism. Because sensory inputs typically have spike correlation, and local circuits have dense feedback connections, input spikes cause the propagation of spike correlation in lateral circuits; however, it is largely unknown how this secondary correlation generated by lateral circuits influences learning processes through STDP, or whether it is beneficial to achieve efficient spike-based learning from uncertain stimuli. To explore the answers to these questions, we construct models of feedforward networks with lateral inhibitory circuits and study how propagated correlation influences STDP learning, and what kind of learning algorithm such circuits achieve. We derive analytical conditions at which neurons detect minor signals with STDP, and show that depending on the origin of the noise, different correlation timescales are useful for learning. In particular, we show that non-precise spike correlation is beneficial for learning in the presence of cross-talk noise. We also show that by considering excitatory and inhibitory STDP at lateral connections, the circuit can acquire a lateral structure optimal for signal detection. In addition, we demonstrate that the model performs blind source separation in a manner similar to the sequential sampling approximation of the Bayesian independent component analysis algorithm. Our results provide a basic understanding of STDP learning in feedback circuits by integrating analyses from both dynamical systems and information theory.  相似文献   

6.
Our previous single-pulse transcranial magnetic stimulation (TMS) study revealed that excitability in the motor cortex can be altered by conscious control of walking relative to less conscious normal walking. However, substantial elements and underlying mechanisms for inducing walking-related cortical plasticity are still unknown. Hence, in this study we aimed to examine the characteristics of electromyographic (EMG) recordings obtained during different walking conditions, namely, symmetrical walking (SW), asymmetrical walking 1 (AW1), and asymmetrical walking 2 (AW2), with left to right stance duration ratios of 1:1, 1:2, and 2:1, respectively. Furthermore, we investigated the influence of three types of walking control on subsequent changes in the intracortical neural circuits. Prior to each type of 7-min walking task, EMG analyses of the left tibialis anterior (TA) and soleus (SOL) muscles during walking were performed following approximately 3 min of preparative walking. Paired-pulse TMS was used to measure short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF) in the left TA and SOL at baseline, immediately after the 7-min walking task, and 30 min post-task. EMG activity in the TA was significantly increased during AW1 and AW2 compared to during SW, whereas a significant difference in EMG activity of the SOL was observed only between AW1 and AW2. As for intracortical excitability, there was a significant alteration in SICI in the TA between SW and AW1, but not between SW and AW2. For the same amount of walking exercise, we found that the different methods used to control walking patterns induced different excitability changes in SICI. Our research shows that activation patterns associated with controlled leg muscles can alter post-exercise excitability in intracortical circuits. Therefore, how leg muscles are activated in a clinical setting could influence the outcome of walking in patients with stroke.  相似文献   

7.
We have recently reported that the tricyclic antidepressants (TCAs) imipramine, clomipramine, and citalopram induce apoptosis in human peripheral lymphocytes. This system is well suited for studies on the pathophysiology/physiology of apoptosis regulation. Apoptosis was determined using both DNA gel electrophoresis and flow cytometric analysis. TCA-induced apoptosis in lymphocytes was monitored in the presence of the protein synthesis inhibitor cycloheximide (CHX), the RNA synthesis inhibitor actinomycin D (Act D), the antioxidant reduced glutathione (GSH), the nuclease inhibitor aurintricarboxylic acid (ATA), the cytokine interlukin-2 (IL-2), and the immunostimulator linomide. CHX and Act D failed to prevent and actually enhanced TCA-induced apoptosis in lymphocytes, indicating that protein and RNA syntheses are not required for this process. Exogenous IL-2, GSH, and ATA protected the lymphocytes from apoptosis induced by TCAs in a dose-dependent manner, whereas linomide had no effect on TCA-induced apoptosis under our in vitro conditions. Our data demonstrate that TCA-induced apoptosis in human lymphocytes shares many common features with other stimuli-induced apoptotic processes. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 115–123, 1998  相似文献   

8.
Chimpanzee culture has generated intense recent interest, fueled by the technical complexity of chimpanzee tool-using traditions; yet it is seriously doubted whether chimpanzees are able to learn motor procedures by imitation under natural conditions. Here we take advantage of an unusual chimpanzee population as a ‘natural experiment’ to identify evidence for imitative learning of this kind in wild chimpanzees. The Sonso chimpanzee community has suffered from high levels of snare injury and now has several manually disabled members. Adult male Tinka, with near-total paralysis of both hands, compensates inability to scratch his back manually by employing a distinctive technique of holding a growing liana taut while making side-to-side body movements against it. We found that seven able-bodied young chimpanzees also used this ‘liana-scratch’ technique, although they had no need to. The distribution of the liana-scratch technique was statistically associated with individuals'' range overlap with Tinka and the extent of time they spent in parties with him, confirming that the technique is acquired by social learning. The motivation for able-bodied chimpanzees copying his variant is unknown, but the fact that they do is evidence that the imitative learning of motor procedures from others is a natural trait of wild chimpanzees.  相似文献   

9.
We show, for the first time, that in cortical areas, for example the insular, orbitofrontal, and lateral prefrontal cortex, there is signal-dependent noise in the fMRI blood-oxygen level dependent (BOLD) time series, with the variance of the noise increasing approximately linearly with the square of the signal. Classical Granger causal models are based on autoregressive models with time invariant covariance structure, and thus do not take this signal-dependent noise into account. To address this limitation, here we describe a Granger causal model with signal-dependent noise, and a novel, likelihood ratio test for causal inferences. We apply this approach to the data from an fMRI study to investigate the source of the top-down attentional control of taste intensity and taste pleasantness processing. The Granger causality with signal-dependent noise analysis reveals effects not identified by classical Granger causal analysis. In particular, there is a top-down effect from the posterior lateral prefrontal cortex to the insular taste cortex during attention to intensity but not to pleasantness, and there is a top-down effect from the anterior and posterior lateral prefrontal cortex to the orbitofrontal cortex during attention to pleasantness but not to intensity. In addition, there is stronger forward effective connectivity from the insular taste cortex to the orbitofrontal cortex during attention to pleasantness than during attention to intensity. These findings indicate the importance of explicitly modeling signal-dependent noise in functional neuroimaging, and reveal some of the processes involved in a biased activation theory of selective attention.  相似文献   

10.
目的:在建立亚慢性砷暴露模型的基础上,探讨砷暴露对SD大鼠肝脏自噬水平的影响.方法:出生21天断乳雄性SD大鼠分为不同水平砷暴露组,通过饮水给与NaAsO2的方式染毒;全自动生化分析仪检测血清肝功能项目的变化;HE染色检测肝脏组织病理学改变;透射电镜法超微结构的改变.Western blot方法检测自噬相关蛋白Beclin1、LC3表达水平变化.结果:砷暴露组肝脏出现显著的异常,同时伴随肝组织形态学改变.于是此同时,LC3Ⅱ/LC3Ⅰ比值以及beclin1的表达水平均随着砷作用浓度的升高而降低.结论:亚慢性砷暴露在诱导肝脏损伤的同时可伴随自噬水平的抑制,这种水平的改变可能参与了砷的肝脏毒性.  相似文献   

11.

Introduction

In humans, cortical mechanisms can interfere with autonomic breathing. Respiratory-related activation of the supplementary motor area (SMA) has been documented during voluntary breathing and in response to inspiratory constraints. The SMA could therefore participate in the increased resting state of the respiratory motor system during wake (i.e. "wakefulness drive to breathe").

Methods

The SMA was conditioned by continuous theta burst magnetic stimulation (cTBS, inhibitory) and 5 Hz conventional rTMS (5 Hz, excitatory). The ensuing effects were described in terms of the diaphragm motor evoked response (DiMEPs) to single-pulse transcranial magnetic stimulation over the motor cortex. DiMEPs were recorded at baseline, and at 3 time-points ("post1", "post2", "post3") up to 15 minutes following conditioning of the SMA.

Results

cTBS reduced the amplitude of DiMEPs from 327.5±159.8 µV at baseline to 243.3±118.7 µV, 217.8±102.9 µV and 240.6±123.9 µV at post 1, post 2 and post 3, respectively (F = 6.341, p = 0.002). 5 Hz conditioning increased the amplitude of DiMEPs from 184.7±96.5 µV at baseline to 270.7±135.4 µV at post 3 (F = 4.844, p = 0.009).

Conclusions

The corticospinal pathway to the diaphragm can be modulated in both directions by conditioning the SMA. This suggests that the baseline respiratory activity of the SMA represents an equipoise from which it is possible to move in either direction. The resting corticofugal outflow from the SMA to phrenic motoneurones that this study evidences could putatively contribute to the wakefulness drive to breathe.  相似文献   

12.
Brachial plexus injury (BPI) and experimental spinal root avulsion result in loss of motor function in the affected segments. After root avulsion, significant motoneuron function is restored by re-implantation of the avulsed root. How much this functional recovery depends on corticospinal inputs is not known. Here, we studied that question using Celsr3|Emx1 mice, in which the corticospinal tract (CST) is genetically absent. In adult mice, we tore off right C5–C7 motor and sensory roots and re-implanted the right C6 roots. Behavioral studies showed impaired recovery of elbow flexion in Celsr3|Emx1 mice compared to controls. Five months after surgery, a reduced number of small axons, and higher G-ratio of inner to outer diameter of myelin sheaths were observed in mutant versus control mice. At early stages post-surgery, mutant mice displayed lower expression of GAP-43 in spinal cord and of myelin basic protein (MBP) in peripheral nerves than control animals. After five months, mutant animals had atrophy of the right biceps brachii, with less newly formed neuromuscular junctions (NMJs) and reduced peak-to-peak amplitudes in electromyogram (EMG), than controls. However, quite unexpectedly, a higher motoneuron survival rate was found in mutant than in control mice. Thus, following root avulsion/re-implantation, the absence of the CST is probably an important reason to hamper axonal regeneration and remyelination, as well as target re-innervation and formation of new NMJ, resulting in lower functional recovery, while fostering motoneuron survival. These results indicate that manipulation of corticospinal transmission may help improve functional recovery following BPI.  相似文献   

13.
The purpose of the present study was to investigate whether corticospinal projections from human supplementary motor area (SMA) are functional during precise force control with the precision grip (thumb-index opposition). Since beta band corticomuscular coherence (CMC) is well-accepted to reflect efferent corticospinal transmission, we analyzed the beta band CMC obtained with simultaneous recording of electroencephalographic (EEG) and electromyographic (EMG) signals. Subjects performed a bimanual precise visuomotor force tracking task by applying isometric low grip forces with their right hand precision grip on a custom device with strain gauges. Concurrently, they held the device with their left hand precision grip, producing similar grip forces but without any precision constraints, to relieve the right hand. Some subjects also participated in a unimanual control condition in which they performed the task with only the right hand precision grip while the device was held by a mechanical grip. We analyzed whole scalp topographies of beta band CMC between 64 EEG channels and 4 EMG intrinsic hand muscles, 2 for each hand. To compare the different topographies, we performed non-parametric statistical tests based on spatio-spectral clustering. For the right hand, we obtained significant beta band CMC over the contralateral M1 region as well as over the SMA region during static force contraction periods. For the left hand, however, beta band CMC was only found over the contralateral M1. By comparing unimanual and bimanual conditions for right hand muscles, no significant difference was found on beta band CMC over M1 and SMA. We conclude that the beta band CMC found over SMA for right hand muscles results from the precision constraints and not from the bimanual aspect of the task. The result of the present study strongly suggests that the corticospinal projections from human SMA become functional when high precision force control is required.  相似文献   

14.
This study used a proportion congruency manipulation in the Stroop task in order to investigate, at the behavioral and brain substrate levels, the predictions derived from the Dual Mechanisms of Control (DMC) account of two distinct modes of cognitive control depending on the task context. Three experimental conditions were created that varied the proportion congruency: mostly incongruent (MI), mostly congruent (MC), and mostly neutral (MN) contexts. A reactive control strategy, which corresponds to transient interference resolution processes after conflict detection, was expected for the rare conflicting stimuli in the MC context, and a proactive strategy, characterized by a sustained task-relevant focus prior to the occurrence of conflict, was expected in the MI context. Results at the behavioral level supported the proactive/reactive distinction, with the replication of the classic proportion congruent effect (i.e., less interference and facilitation effects in the MI context). fMRI data only partially supported our predictions. Whereas reactive control for incongruent trials in the MC context engaged the expected fronto-parietal network including dorsolateral prefrontal cortex (DLPFC) and anterior cingulate cortex, proactive control in the MI context was not associated with any sustained lateral prefrontal cortex activations, contrary to our hypothesis. Surprisingly, incongruent trials in the MI context elicited transient activation in common with incongruent trials in the MC context, especially in DLPFC, superior parietal lobe, and insula. This lack of sustained activity in MI is discussed in reference to the possible involvement of item-specific rather than list-wide mechanisms of control in the implementation of a high task-relevant focus.  相似文献   

15.
Using the patch-clamp technique in the whole-cell configuration, we studied the characteristics of a series of action potentials (APs) induced by a 500-msec-long current pulse applied to a pre-synaptic unit, as well as the kinetic characteristics of post-synaptic currents (PSCs) evoked by the APs in a post-synaptic unit, in synaptically connected pairs of cultured hippocampal neurons. Presynaptic inhibitory units were identified as GABA-ergic interneurons; they were divided into two groups according to the size of the soma and the number of processes. The kinetic characteristics of PSCs, which were induced in the post-synaptic neuron by a series of the APs generated in the pre-synaptic cell, demonstrated a certain dependence on the morphological characteristics of these cells. In interneurons with large-sized somata, the kinetics of the currents were more fast, and the reversal potential was close to the equilibrium Cl potential. In interneurons with small-sized somata, currents were slower, and the reversal potential was shifted. We conclude that under conditions of culturing, a pre-synaptic cell not only directly provokes the development of PSC in a post-synaptic neuron and determines the amplitude of this current but also significantly influences the kinetics of this current. Neirofiziologiya/Neurophysiology, Vol. 37, No. 2, pp. 116–123, March–April, 2005.  相似文献   

16.

Background

Observing competitive games such as sports is a pervasive entertainment among humans. The inclination to watch others play may be based on our social-cognitive ability to understand the internal states of others. The mirror neuron system, which is activated when a subject observes the actions of others, as well as when they perform the same action themselves, seems to play a crucial role in this process. Our previous study showed that activity of the mirror neuron system was modulated by the outcome of the subject''s favored player during observation of a simple competitive game (rock-paper-scissors). However, whether the mirror neuron system responds similarly in a more complex and naturalistic sports game has not yet been fully investigated.

Methodology/Principal Findings

In the present study, we measured the activity of motor areas when the subjects, who were amateur baseball field players (non-pitchers), watched short movie clips of scenes in professional baseball games. The subjects were instructed to support either a batter or a pitcher when observing the movie clip. The results showed that activity in the motor area exhibited a strong interaction between the subject''s supported side (batter or pitcher) and the outcome (a hit or an out). When the subject supported the batter, motor area activity was significantly higher when the batter made an out than when he made a hit. However, such modulation was not apparent when the subject supported the pitcher.

Conclusions/Significance

This result indicates that mirror neuron system activity is modulated by the outcome for a particular player in a competitive game even when observing a complex and naturalistic sports game. We suggest that our inclination to watch competitive games is facilitated by this characteristic of the mirror neuron system.  相似文献   

17.

Background

Clinical treatments with typical antipsychotic drugs (APDs) are accompanied by extrapyramidal motor side-effects (EPS) such as hypokinesia and catalepsy. As little is known about electrophysiological substrates of such motor disturbances, we investigated the effects of a typical APD, α-flupentixol, on the motor behavior and the neuronal activity of the whole basal ganglia nuclei in the rat.

Methods and Findings

The motor behavior was examined by the open field actimeter and the neuronal activity of basal ganglia nuclei was investigated using extracellular single unit recordings on urethane anesthetized rats. We show that α-flupentixol induced EPS paralleled by a decrease in the firing rate and a disorganization of the firing pattern in both substantia nigra pars reticulata (SNr) and subthalamic nucleus (STN). Furthermore, α-flupentixol induced an increase in the firing rate of globus pallidus (GP) neurons. In the striatum, we recorded two populations of medium spiny neurons (MSNs) after their antidromic identification. At basal level, both striato-pallidal and striato-nigral MSNs were found to be unaffected by α-flupentixol. However, during electrical cortico-striatal activation only striato-pallidal, but not striato-nigral, MSNs were found to be inhibited by α-flupentixol. Together, our results suggest that the changes in STN and SNr neuronal activity are a consequence of increased neuronal activity of globus pallidus (GP). Indeed, after selective GP lesion, α-flupentixol failed to induce EPS and to alter STN neuronal activity.

Conclusion

Our study reports strong evidence to show that hypokinesia and catalepsy induced by α-flupentixol are triggered by dramatic changes occurring in basal ganglia network. We provide new insight into the key role of GP in the pathophysiology of APD-induced EPS suggesting that the GP can be considered as a potential target for the treatment of EPS.  相似文献   

18.
Specific binding of radiolabeled L-glutamic acid (Glu) was examined using rat brain synaptic membranes treated with a low concentration of Triton X-100. The binding drastically increased in proportion to increasing concentrations of the detergent used up to 0.1%. Addition of 100 mM sodium acetate significantly potentiated the binding in membranes not treated with Triton X-100, whereas it markedly inhibited the binding in Triton-treated membranes. The binding in Triton-treated membranes was inversely dependent on incubation temperature and reached a plateau within 10 min after the initiation of incubation at 2 degrees C, whereas the time required to attain equilibrium at 30 degrees C was less than 1 min. Sodium acetate invariably inhibited the binding detected at both temperatures independently of the incubation time via decreasing the affinity for the ligand. The binding was significantly displaced by agonists and antagonists for an N-methyl-D-aspartate (NMDA)-sensitive subclass of brain excitatory amino acid receptors, but not by those for the other subclasses. Inclusion of sodium acetate reduced the potencies of NMDA agonists to displace the binding without virtually affecting those of NMDA antagonists. Moreover, sodium ions inhibited the ability of Glu to potentiate the binding of N-[3H] [1-(2-thienyl)cyclohexyl]piperidine to open NMDA channels in Triton-treated membranes. These results suggest that sodium ions may play an additional modulatory role in the termination process of neurotransmission mediated by excitatory amino acids via facilitating a transformation of the NMDA recognition site from a state with high affinity for agonists to a state with low affinity.  相似文献   

19.
Neuronal circuits are formed according to a genetically predetermined program and then reconstructed in an experience-dependent manner. While the existence of experience-dependent plasticity has been demonstrated for the visual and other sensory systems, it remains unknown whether this is also the case for motor systems. Here we examined the effects of eliminating sensory inputs on the development of peristaltic movements in Drosophila embryos and larvae. The peristalsis is initially slow and uncoordinated, but gradually develops into a mature pattern during late embryonic stages. We tested whether inhibiting the transmission of specific sensory neurons during this period would have lasting effects on the properties of the sensorimotor circuits. We applied Shibire-mediated inhibition for six hours during embryonic development (15–21 h after egg laying [AEL]) and studied its effects on peristalsis in the mature second- and third-instar larvae. We found that inhibition of chordotonal organs, but not multidendritic neurons, led to a lasting decrease in the speed of larval locomotion. To narrow down the sensitive period, we applied shorter inhibition at various embryonic and larval stages and found that two-hour inhibition during 16–20 h AEL, but not at earlier or later stages, was sufficient to cause the effect. These results suggest that neural activity mediated by specific sensory neurons is involved in the maturation of sensorimotor circuits in Drosophila and that there is a critical period for this plastic change. Consistent with a role of chordotonal neurons in sensory feedback, these neurons were activated during larval peristalsis and acute inhibition of their activity decreased the speed of larval locomotion.  相似文献   

20.
ES cells can propagate indefinitely, maintain self-renewal, and differentiate into almost any cell type of the body. These properties make them valuable in the research of embryonic development, regenerative medicine, and organ transplantation. MicroRNAs (miRNAs) are considered to have essential functions in the maintenance and differentiation of embryonic stem cells (ES cells). It was reported that, strong external stimuli, such as a transient low-pH and hypoxia stress, were conducive to the formation of induced pluripotent stem cells (iPS cells). AICA ribonucleotide (AICAR) is an AMP-activated protein kinase activator, which can let cells in the state of energy stress. We have demonstrated that AICAR can maintain the pluripotency of J1 mouse ES cells through modulating protein expression in our previous research, but its effects on ES cell miRNA expression remain unknown. In this study, we conducted small RNA high-throughput sequencing to investigate AICAR influence on J1 mouse ES cells by comparing the miRNA expression patterns of the AICAR-treated cells and those without treatment. The result showed that AICAR can significantly modulate the expression of multiple miRNAs, including those have crucial functions in ES cell development. Some differentially expressed miRNAs were selected and confirmed by real-time PCR. For the differently expressed miRNAs identified, further study was conducted regarding the pluripotency and differentiation associated miRNAs with their targets. Moreover, miR-134 was significantly down-regulated after AICAR treatment, and this was suggested to be directly associated with the up-regulated pluripotency markers, Nanog and Sox2. Lastly, Myc was significantly down-regulated after AICAR treatment; therefore, we predicted miRNAs that may target Myc and identified that AICAR induced up-regulation of miR-34a, 34b, and 34c can repress Myc expression in J1 mouse ES cells. Taken together, our study provide a new mechanism for AICAR in ES cells pluripotency maintenance and give insight for its usage in iPS cells generation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号