首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Nanotechnology produces basic structures that show a significant variability in their individual physical properties. This experimental fact may constitute a serious limitation for most applications requiring nominally identical building blocks. On the other hand, biological diversity is found in most natural systems. We show that reliable information processing can be achieved with heterogeneous groups of non-identical nanostructures by using some conceptual schemes characteristic of biological networks (diversity, frequency-based signal processing, rate and rank order coding, and synchronization). To this end, we simulate the integrated response of an ensemble of single-electron transistors (SET) whose individual threshold potentials show a high variability. A particular experimental realization of a SET is a metal nanoparticle-based transistor that mimics biological spiking synapses and can be modeled as an integrate-and-fire oscillator. The different shape and size distributions of nanoparticles inherent to the nanoscale fabrication procedures result in a significant variability in the threshold potentials of the SET. The statistical distributions of the nanoparticle physical parameters are characterized by experimental average and distribution width values. We consider simple but general information processing schemes to draw conclusions that should be of relevance for other threshold-based nanostructures. Monte Carlo simulations show that ensembles of non-identical SET may show some advantages over ensembles of identical nanostructures concerning the processing of weak signals. The results obtained are also relevant for understanding the role of diversity in biophysical networks.  相似文献   

2.
3.
We have developed an array of seven deoxyribozyme-based molecular logic gates that behaves as a full adder in a single solution, with three oligonucleotides as inputs and two independent fluorogenic cleavage reactions as carry and sum outputs. The sum output consisted of four new deoxyribozyme-based logic gates: an ANDAND gate and three ANDNOTANDNOT gates. These gates required the design of a generic three-input deoxyribozyme-based logic gate that can use any three-way combination of activating or inactivating inputs. This generic gate design utilizes an additional inverting element that hybridizes to convert YES logic into NOT logic and vice versa. The system represents the first solution-phase, single test tube, enzymatic full adder and shows the complexity of control over molecular scale events that can be achieved with deoxyribozyme-based logic gates. Similar systems could be applied to control autonomous therapeutic and diagnostic devices.  相似文献   

4.
Using a newly synthesized gibberellin analog containing an acetoxymethyl group (GA(3)-AM) and its binding proteins, we developed an efficient chemically inducible dimerization (CID) system that is completely orthogonal to existing rapamycin-mediated protein dimerization. Combining the two systems should allow applications that have been difficult or impossible with only one CID system. By using both chemical inputs (rapamycin and GA(3)-AM), we designed and synthesized Boolean logic gates in living mammalian cells. These gates produced output signals such as fluorescence and membrane ruffling on a timescale of seconds, substantially faster than earlier intracellular logic gates. The use of two orthogonal dimerization systems in the same cell also allows for finer modulation of protein perturbations than is possible with a single dimerizer.  相似文献   

5.
In this paper we detail experimental methods to implement registers, logic gates and logic circuits using populations of photochromic molecules exposed to sequences of light pulses. Photochromic molecules are molecules with two or more stable states that can be switched reversibly between states by illuminating with appropriate wavelengths of radiation. Registers are implemented by using the concentration of molecules in each state in a given sample to represent an integer value. The register's value can then be read using the intensity of a fluorescence signal from the sample. Logic gates have been implemented using a register with inputs in the form of light pulses to implement 1-input/1-output and 2-input/1-output logic gates. A proof of concept logic circuit is also demonstrated; coupled with the software workflow describe the transition from a circuit design to the corresponding sequence of light pulses.  相似文献   

6.
This paper contains the review of quantum entanglement investigations in living systems, and in the quantum mechanically modelled photoactive prebiotic kernel systems. We define our modelled self-assembled supramolecular photoactive centres, composed of one or more sensitizer molecules, precursors of fatty acids and a number of water molecules, as a photoactive prebiotic kernel systems. We propose that life first emerged in the form of such minimal photoactive prebiotic kernel systems and later in the process of evolution these photoactive prebiotic kernel systems would have produced fatty acids and covered themselves with fatty acid envelopes to become the minimal cells of the Fatty Acid World. Specifically, we model self-assembling of photoactive prebiotic systems with observed quantum entanglement phenomena. We address the idea that quantum entanglement was important in the first stages of origins of life and evolution of the biospheres because simultaneously excite two prebiotic kernels in the system by appearance of two additional quantum entangled excited states, leading to faster growth and self-replication of minimal living cells. The quantum mechanically modelled possibility of synthesizing artificial self-reproducing quantum entangled prebiotic kernel systems and minimal cells also impacts the possibility of the most probable path of emergence of protocells on the Earth or elsewhere. We also examine the quantum entangled logic gates discovered in the modelled systems composed of two prebiotic kernels. Such logic gates may have application in the destruction of cancer cells or becoming building blocks of new forms of artificial cells including magnetically active ones.  相似文献   

7.
We introduce an idea of synthesizing a class of genetic registers based on the existing sequential biological circuits, which are composed of fundamental biological gates. In the renowned literature, biological gates and genetic oscillator have been unveiled and experimentally realized in recent years. These biological circuits have formed a basis for realizing a primitive biocomputer. In the traditional computer architecture, there is an intermediate load-store section, i.e. a register, which serves as a part of the digital processor. With which, the processor can load data from a larger memory into it and proceed to conduct necessary arithmetic or logic operations. Then, manipulated data are stored back to the memory by instruction via the register. We propose here a class of bio-registers for the biocomputer. Four types of register structures are presented. In silicon experiments illustrate results of the proposed design.  相似文献   

8.
The concept of microbial consortia is of great attractiveness in synthetic biology. Despite of all its benefits, however, there are still problems remaining for large-scaled multicellular gene circuits, for example, how to reliably design and distribute the circuits in microbial consortia with limited number of well-behaved genetic modules and wiring quorum-sensing molecules. To manage such problem, here we propose a formalized design process: (i) determine the basic logic units (AND, OR and NOT gates) based on mathematical and biological considerations; (ii) establish rules to search and distribute simplest logic design; (iii) assemble assigned basic logic units in each logic operating cell; and (iv) fine-tune the circuiting interface between logic operators. We in silico analyzed gene circuits with inputs ranging from two to four, comparing our method with the pre-existing ones. Results showed that this formalized design process is more feasible concerning numbers of cells required. Furthermore, as a proof of principle, an Escherichia coli consortium that performs XOR function, a typical complex computing operation, was designed. The construction and characterization of logic operators is independent of “wiring” and provides predictive information for fine-tuning. This formalized design process provides guidance for the design of microbial consortia that perform distributed biological computation.  相似文献   

9.
Klein JP  Leete TH  Rubin H 《Bio Systems》1999,52(1-3):15-23
Energy dissipation associated with logic operations imposes a fundamental physical limit on computation and is generated by the entropic cost of information erasure, which is a consequence of irreversible logic elements. We show how to encode information in DNA and use DNA amplification to implement a logically reversible gate that comprises a complete set of operators capable of universal computation. We also propose a method using this design to connect, or 'wire', these gates together in a biochemical fashion to create a logic network, allowing complex parallel computations to be executed. The architecture of the system permits highly parallel operations and has properties that resemble well known genetic regulatory systems.  相似文献   

10.
《New biotechnology》2015,32(5):485-503
Digital microfluidics (DMF) has emerged as a promising liquid handling technology for a variety of applications, demonstrating great potential both in terms of miniaturization and automation. DMF is based on the manipulation of discrete, independently controllable liquid droplets, which makes it highly reconfigurable and reprogrammable. One of its most exclusive advantages, compared to microchannel-based microfluidics, is its ability to precisely handle solid nano- and microsized objects, such as magnetic particles. Magnetic particles have become very popular in the last decade, since their high surface-to-volume ratio and the possibility to magnetically separate them from the matrix make them perfect suitable as a solid support for bio-assay development. The potential of magnetic particles in DMF-based bio-assays has been demonstrated for various applications. In this review we discuss the latest developments of magnetic particle-based DMF bio-assays with the aim to present, identify and analyze the trends in the field. We also discuss the state-of-the art of device integration, current status of commercialization and issues that still need to be addressed. With this paper we intend to stimulate researchers to exploit and unveil the potential of these exciting tools, which will shape the future of modern biochemistry, microbiology and biomedical diagnostics.  相似文献   

11.
Computational functions in biochemical reaction networks.   总被引:6,自引:1,他引:5  
In prior work we demonstrated the implementation of logic gates, sequential computers (universal Turing machines), and parallel computers by means of the kinetics of chemical reaction mechanisms. In the present article we develop this subject further by first investigating the computational properties of several enzymatic (single and multiple) reaction mechanisms: we show their steady states are analogous to either Boolean or fuzzy logic gates. Nearly perfect digital function is obtained only in the regime in which the enzymes are saturated with their substrates. With these enzymatic gates, we construct combinational chemical networks that execute a given truth-table. The dynamic range of a network's output is strongly affected by "input/output matching" conditions among the internal gate elements. We find a simple mechanism, similar to the interconversion of fructose-6-phosphate between its two bisphosphate forms (fructose-1,6-bisphosphate and fructose-2,6-bisphosphate), that functions analogously to an AND gate. When the simple model is supplanted with one in which the enzyme rate laws are derived from experimental data, the steady state of the mechanism functions as an asymmetric fuzzy aggregation operator with properties akin to a fuzzy AND gate. The qualitative behavior of the mechanism does not change when situated within a large model of glycolysis/gluconeogenesis and the TCA cycle. The mechanism, in this case, switches the pathway's mode from glycolysis to gluconeogenesis in response to chemical signals of low blood glucose (cAMP) and abundant fuel for the TCA cycle (acetyl coenzyme A).  相似文献   

12.
SET and hnRNPK are proteins involved in gene expression and regulation of cellular signaling. We previously demonstrated that SET accumulates in head and neck squamous cell carcinoma (HNSCC); hnRNPK is a prognostic marker in cancer. Here, we postulate that SET and hnRNPK proteins interact to promote tumorigenesis. We performed studies in HEK293 and HNSCC (HN6, HN12, and HN13) cell lines with SET/hnRNPK overexpression and knockdown, respectively. We found that SET and/or hnRNPK protein accumulation increased cellular proliferation. SET accumulation up-regulated hnRNPK mRNA and total/phosphorylated protein, promoted hnRNPK nuclear location, and reduced Bcl-x mRNA levels. SET protein directly interacted with hnRNPK, increasing both its binding to nucleic acids and Bcl-xS repression. We propose that hnRNPK should be a new target of SET and that SET–hnRNPK interaction, in turn, has potential implications in cell survival and malignant transformation.  相似文献   

13.
This study characterized the magnetic materials found within Daphnia resting eggs by measuring static magnetization with a superconducting quantum interference device (SQUID) magnetometer, after forming two types of conditions, each of which consists of zero-field cooling (ZFC) and field cooling (FC). Magnetic ions, such as Fe(3+), contained in Daphnia resting eggs existed as (1) paramagnetic and superparamagnetic particles, demonstrated by a magnetization and temperature dependence of the magnetic moments under an applied magnetic field after ZFC and FC, and (2) ferromagnetic particles with definite magnetic moments, the content of which was estimated to be very low, demonstrated by the Moskowitz test. Conventionally, biomagnets have been directly detected by transmission electron microscopes (TEM). As demonstrated in this study, it is possible to nondestructively detect small biomagnets by magnetization measurement, especially after two types of ZFC and FC. This nondestructive method can be applied in detecting biomagnets in complex biological organisms.  相似文献   

14.
Most of the DNA logic gates employ fluorescent or colorometric signals as their outputs, which were limited by the cumbersome handling procedures, lack of portability and lower sensitivity. To the best of our knowledge, the logic gates with electrochemiluminescent (ECL) signal as their outputs have not been reported. In response, we report here the construction of DNA molecular logic gates that produce ECL signals as their outputs, having the advantages of versatility, low background and simplified optical setup. The logic gates are based on the T-rich or C-rich oligonucleotides for the selective analysis of Hg(2+) and Ag(+) ions using energy or electron transfer-quenching path. Efficient and stable quenching of ECL of Ru bis(2,2'-bipyridine) (2,2'-bipyridine-4,4'-dicarboxylic acid) N-hydroxysuccinimide ester by oxidizing ferrocene at the Au electrode enabled us to use Hg(2+) and Ag(+) ions as inputs that activate logic gates, and to execute ECL of Ru(II) as readout signals for logic gate operations.  相似文献   

15.
We have presented all-optical XOR, XNOR, and NOT gates using metal-insulator-metal (MIM)-coupled ring resonator. The performance of the device is evaluated by finite difference in time-domain (FDTD) method. The proposed gate utilizes a unique phenomenon of Fano resonance to excite logic OFF/ON state. Fano resonance has quite asymmetric resonance profile and the transmission spectrum of Fano profile abruptly drops to a minimum value at the resonance condition. Due to this unique resonance phenomenon, a large value of contrast ratio is obtained. The proposed XNOR gate offers a contrast ratio (C.R.) of 20.66 dB while XOR and NOT gates offer C.R. 12.8 and 18.8 dB respectively. The variation of contrast ratio is also studied against different input wavelength and it is reported that the obtained value of contrast ratio is an optimum value for the proposed structure. The device is compact sized with small dimension 0.31 λ02, where λ0?=?1.55 μm. The proposed device opens up the avenues for designing on-chip optical gates in the field of high-speed optical communication networks.  相似文献   

16.
SET domain proteins are histone lysine methyltransferases (HMTs) that play essential roles in development. Here we show for the first time that histone methylation occurs in both the germ cells and somatic cells of the Drosophila ovary, and demonstrate in vivo that an HMT, the product of the eggless (egg) gene, is required for oogenesis. Egg is a SET domain protein that is similar to the human protein SETDB1 and its mouse ortholog ESET. These proteins are members of a small family of HMTs that contain bifurcated SET domains. Because depletion of SETDB1 in tissue culture cells is cell-lethal, and an ESET mutation causes very early periimplantation embryonic arrest, the role of SETDB1/ESET in development has proven difficult to address. We show that egg is required in the Drosophila ovary for trimethylation of histone H3 at its K9 residue. In females bearing an egg allele that deletes the SET domain, oogenesis arrests at early stages. This arrest is accompanied by reduced proliferation of somatic cells required for egg chamber formation, and by apoptosis in both germ and somatic cell populations. We propose that other closely related SET domain proteins may function similarly in gametogenesis in other species.  相似文献   

17.
Structure and catalytic mechanism of a SET domain protein methyltransferase   总被引:9,自引:0,他引:9  
Trievel RC  Beach BM  Dirk LM  Houtz RL  Hurley JH 《Cell》2002,111(1):91-103
  相似文献   

18.
19.
In this paper we propose a new bottom-up approach to cellular computing, in which computational chemical processes are encapsulated within liposomes. This “liposome logic” approach (also called vesicle computing) makes use of supra-molecular chemistry constructs, e.g. protocells, chells, etc. as minimal cellular platforms to which logical functionality can be added. Modeling and simulations feature prominently in “top-down” synthetic biology, particularly in the specification, design and implementation of logic circuits through bacterial genome reengineering. The second contribution in this paper is the demonstration of a novel set of tools for the specification, modelling and analysis of “bottom-up” liposome logic. In particular, simulation and modelling techniques are used to analyse some example liposome logic designs, ranging from relatively simple NOT gates and NAND gates to SR-Latches, D Flip-Flops all the way to 3 bit ripple counters. The approach we propose consists of specifying, by means of P systems, gene regulatory network-like systems operating inside proto-membranes. This P systems specification can be automatically translated and executed through a multiscaled pipeline composed of dissipative particle dynamics (DPD) simulator and Gillespie’s stochastic simulation algorithm (SSA). Finally, model selection and analysis can be performed through a model checking phase. This is the first paper we are aware of that brings to bear formal specifications, DPD, SSA and model checking to the problem of modeling target computational functionality in protocells. Potential chemical routes for the laboratory implementation of these simulations are also discussed thus for the first time suggesting a potentially realistic physiochemical implementation for membrane computing from the bottom-up.  相似文献   

20.
Design of elementary molecular logic gates is the key and the fundamental of performing complicated Boolean calculations. Herein, we report a strategy for constructing a DNA-based OR gate by using the mechanism of sequence recognition and the principle of fluorescence resonance energy transfer (FRET). In this system, the gate is entirely composed of a single strand of DNA (A, B and C) and the inputs are the molecular beacon probes (MB1 and MB2). Changes in fluorescence intensity confirm the realization of the OR logic operation and electrophoresis experiments verify these results. Our successful application of DNA to perform the binary operation represents that DNA can serve as an efficient biomaterial for designing molecular logic gates and devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号