首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 656 毫秒
1.
2.
In all domains of life, proper regulation of the cell cycle is critical to coordinate genome replication, segregation and cell division. In some groups of bacteria, e.g. Alphaproteobacteria, tight regulation of the cell cycle is also necessary for the morphological and functional differentiation of cells. Sinorhizobium meliloti is an alphaproteobacterium that forms an economically and ecologically important nitrogen-fixing symbiosis with specific legume hosts. During this symbiosis S. meliloti undergoes an elaborate cellular differentiation within host root cells. The differentiation of S. meliloti results in massive amplification of the genome, cell branching and/or elongation, and loss of reproductive capacity. In Caulobacter crescentus, cellular differentiation is tightly linked to the cell cycle via the activity of the master regulator CtrA, and recent research in S. meliloti suggests that CtrA might also be key to cellular differentiation during symbiosis. However, the regulatory circuit driving cell cycle progression in S. meliloti is not well characterized in both the free-living and symbiotic state. Here, we investigated the regulation and function of CtrA in S. meliloti. We demonstrated that depletion of CtrA cause cell elongation, branching and genome amplification, similar to that observed in nitrogen-fixing bacteroids. We also showed that the cell cycle regulated proteolytic degradation of CtrA is essential in S. meliloti, suggesting a possible mechanism of CtrA depletion in differentiated bacteroids. Using a combination of ChIP-Seq and gene expression microarray analysis we found that although S. meliloti CtrA regulates similar processes as C. crescentus CtrA, it does so through different target genes. For example, our data suggest that CtrA does not control the expression of the Fts complex to control the timing of cell division during the cell cycle, but instead it negatively regulates the septum-inhibiting Min system. Our findings provide valuable insight into how highly conserved genetic networks can evolve, possibly to fit the diverse lifestyles of different bacteria.  相似文献   

3.
4.
5.
6.
7.
8.
9.
Isolates of the symbiotic nitrogen-fixing species Sinorhizobium meliloti usually contain a chromosome and two large megaplasmids encoding functions that are absolutely required for the specific interaction of the microsymbiont with corresponding host plants leading to an effective symbiosis. The complete genome sequence, including the megaplasmids pSmeSM11c (related to pSymA) and pSmeSM11d (related to pSymB), was established for the dominant, indigenous S. meliloti strain SM11 that had been isolated during a long-term field release experiment with genetically modified S. meliloti strains. The chromosome, the largest replicon of S. meliloti SM11, is 3,908,022 bp in size and codes for 3785 predicted protein coding sequences. The size of megaplasmid pSmeSM11c is 1,633,319 bp and it contains 1760 predicted protein coding sequences whereas megaplasmid pSmeSM11d is 1,632,395 bp in size and comprises 1548 predicted coding sequences. The gene content of the SM11 chromosome is quite similar to that of the reference strain S. meliloti Rm1021. Comparison of pSmeSM11c to pSymA of the reference strain revealed that many gene regions of these replicons are variable, supporting the assessment that pSymA is a major hot-spot for intra-specific differentiation. Plasmids pSymA and pSmeSM11c both encode unique genes. Large gene regions of pSmeSM11c are closely related to corresponding parts of Sinorhizobium medicae WSM419 plasmids. Moreover, pSmeSM11c encodes further novel gene regions, e.g. additional plasmid survival genes (partition, mobilisation and conjugative transfer genes), acdS encoding 1-aminocyclopropane-1-carboxylate deaminase involved in modulation of the phytohormone ethylene level and genes having predicted functions in degradative capabilities, stress response, amino acid metabolism and associated pathways. In contrast to Rm1021 pSymA and pSmeSM11c, megaplasmid pSymB of strain Rm1021 and pSmeSM11d are highly conserved showing extensive synteny with only few rearrangements. Most remarkably, pSmeSM11b contains a new gene cluster predicted to be involved in polysaccharide biosynthesis. Compilation of the S. meliloti SM11 genome sequence contributes to an extension of the S. meliloti pan-genome.  相似文献   

10.
The symbiotic nitrogen fixing species Sinorhizobium meliloti represents a remarkable model system for the class Alphaproteobacteria, which includes genera such as Caulobacter, Agrobacterium and Brucella. It is capable of living free in the soil, and is also able to establish a complex symbiosis with leguminous plants, during which its cell cycle program is completely rewired presumably due, at least in part, to the action of peptides secreted by the plant. Here we will discuss how the cell cycle regulation works in S. meliloti and the kinds of molecular mechanisms that take place during the infection. We will focus on the complex regulation of the master regulator of the S. meliloti cell cycle, the response regulator CtrA, discussing its implication in symbiosis.  相似文献   

11.
Rhizobia are symbiotic soil bacteria able to intracellularly colonize legume nodule cells and form nitrogen-fixing symbiosomes therein. How the plant cell cytoskeleton reorganizes in response to rhizobium colonization has remained poorly understood especially because of the lack of an in vitro infection assay. Here, we report on the use of the heterologous HeLa cell model to experimentally tackle this question. We observed that the model rhizobium Sinorhizobium meliloti, and other rhizobia as well, were able to trigger a major reorganization of actin cytoskeleton of cultured HeLa cells in vitro. Cell deformation was associated with an inhibition of the three major small RhoGTPases Cdc42, RhoA and Rac1. Bacterial entry, cytoskeleton rearrangements and modulation of RhoGTPase activity required an intact S. meliloti biosynthetic pathway for queuosine, a hypermodifed nucleoside regulating protein translation through tRNA, and possibly mRNA, modification. We showed that an intact bacterial queuosine biosynthetic pathway was also required for effective nitrogen-fixing symbiosis of S. meliloti with its host plant Medicago truncatula, thus indicating that one or several key symbiotic functions of S. meliloti are under queuosine control. We discuss whether the symbiotic defect of que mutants may originate, at least in part, from an altered capacity to modify plant cell actin cytoskeleton.  相似文献   

12.

Background

There is increasing evidence of a pivotal role for regulated mRNA translation in control of developmental cell fate transitions. Physiological and pathological stem and progenitor cell self-renewal is maintained by the mRNA-binding protein, Musashi1 through repression of translation of key mRNAs encoding cell cycle inhibitory proteins. The mechanism by which Musashi1 function is modified to allow translation of these target mRNAs under conditions that require inhibition of cell cycle progression, is unknown.

Results

In this study, we demonstrate that differentiation of primary embryonic rat neural stem/progenitor cells (NSPCs) or human neuroblastoma SH-SY5Y cells results in the rapid phosphorylation of Musashi1 on the evolutionarily conserved site serine 337 (S337). Phosphorylation of this site has been shown to be required for cell cycle control during the maturation of Xenopus oocytes. S337 phosphorylation in mammalian NSPCs and human SH-SY5Y cells correlates with the de-repression and translation of a Musashi reporter mRNA and with accumulation of protein from the endogenous Musashi target mRNA, p21WAF1/CIP1. Inhibition of Musashi regulatory phosphorylation, through expression of a phospho-inhibitory mutant Musashi1 S337A or over-expression of the wild-type Musashi, blocked differentiation of both NSPCs and SH-SY5Y cells. Musashi1 was similarly phosphorylated in NSPCs and SH-SY5Y cells under conditions of nutrient deprivation-induced cell cycle arrest. Expression of the Musashi1 S337A mutant protein attenuated nutrient deprivation-induced NSPC and SH-SY5Y cell death.

Conclusions

Our data suggest that in response to environmental cues that oppose cell cycle progression, regulation of Musashi function is required to promote target mRNA translation and cell fate transition. Forced modulation of Musashi1 function may present a novel therapeutic strategy to oppose pathological stem cell self-renewal.
  相似文献   

13.
14.
15.
16.
Role of Baculovirus IE2 and Its RING Finger in Cell Cycle Arrest   总被引:2,自引:0,他引:2  
The ie2 gene of Autographa californica nuclear polyhedrosis virus (AcMNPV) is known to transactivate transient expression from viral promoters in a host cell-specific manner. We report that transfection of Spodoptera frugiperda (SF-21) cells with ie2 was sufficient to arrest the cell cycle, resulting in the accumulation of enlarged cells with abnormally high DNA contents. By 72 h posttransfection, more than 50% of ie2-transfected cells had DNA contents greater than 4N. There was no evidence of mitotic spindle formation in these cells, and expression of ie2 appeared to block cell cycle progression in S phase. Several ie2 mutants were analyzed to further define the region of IE2 responsible for arresting the cell cycle. Analysis of these mutants showed that deletion of the RING finger motif eliminated the ability of IE2 to arrest the cell cycle but did not affect its ability to transactivate the ie1 promoter. Moreover, mutation of a single conserved cysteine (C251) of the RING finger motif abolished the ability of IE2 to block cell cycle progression but had no apparent effect on its trans-regulatory activity. In contrast, a mutant of IE2 containing a deletion of residues 94 to 173 was able to block cell division but lacked trans-regulatory activity. Thus, the ability of IE2 to arrest the cell cycle depended on the integrity of the RING finger motif and was distinct from and independent of its ability to trans-activate the ie1 promoter. IE2 also arrested the division of cells derived from other insect species, Trichoplusia ni (TN-368 and BTI-TN-5B1-4) and Helicoverpa zea (Hz-AM1).  相似文献   

17.
18.
19.
In order to study DNA replication control elements in cyanobacteria we cloned and sequenced the dnaA gene from the marine cyanobacterium Prochlorococcus marinus. The dnaA gene is ubiquitous among bacteria and encodes the DNA replication initiation factor DnaA. The deduced amino acid sequence of the P. marinus DnaA protein shows highest similarity to the DnaA protein from the freshwater cyanobacterium Synechocystis sp. PCC6803. Using a solid-phase DNA binding assay we demonstrated that both cyanobacterial DnaA proteins specifically recognize chromosomal origins, oriC, of Escherichia coli and Bacillus subtilis in vitro. The genetic environment of dnaA is not conserved between the two cyanobacteria. Upstream of the P. marinusdnaA gene we identified a gene encoding a putative ATP-binding cassette (ABC) transport protein. The gor gene encoding glutathione reductase lies downstream of dnaA. Comparison of the genetic structure of dnaA regions from 15 representative bacteria shows that the pattern of genes flanking dnaA is not universally conserved among them.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号