首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Invasive species often influence existing biocenoses by altering their environment or facilitating the ecology of other species. Here we combined stable isotope analysis with quantitative benthic community sampling to investigate temporal variation in the influence of biodeposition of organic material (biodeposits) by the zebra mussel (Dreissena polymorpha) on the benthic food web in hard substrate habitats of Lake Constance, Germany. The accumulation of organic material excreted by zebra mussels (faeces and pseudofaeces) is hypothesised to implement a biodeposition based food web. By means of stable isotope analyses, we found that the feeding strategy of amphipods was dependent on the availability of zebra mussel biodeposits. The proportion of pelagic resources contributing to the diet (by ??13C) and trophic position (by ??15N) of amphipods were significantly and positively correlated to the production of zebra mussel biodeposits. Also, the benthic community in Lower Lake Constance showed a shift towards higher densities of the mayfly Caenis spp., Chironominae, and the caddisfly Ecnomus tenellus, which might act as links to higher trophic levels when more zebra mussel biodeposits were available. These results demonstrate that temporal variation in zebra mussel density, and thus in organic biodeposition, have a strong impact on the benthic communities and food web structure associated with hard substrates to the extent that there may be dependence on zebra mussel occurrence in such habitats in Lake Constance.  相似文献   

2.
Fast development of mariculture in the world leads to increasing of the load on natural habitats, especially due to organic enrichment. There are a few investigations concerning the effect of additional organic loading on the Arctic benthic communities. The main goal of our research was to ascertain the impact of mussel farm on the benthic community in the White Sea and its following recovery after mussel farm removal. We performed annual observations from 1988 to 2011. During the mussel farm functioning, two stages of organic enrichment impact on community structure were recorded: in the first 2 years, diversity and proportion of deposit feeders increased but later all studied characteristics of the benthic community decreased significantly. After the mussel farm removal, the benthic community started to restore and we distinguished several stages of recovery succession. Native structure of benthic community began to recover 8 years after organic loading had ceased, when selective deposit feeding bivalves Portlandia arctica Gray appeared in the benthos. 4–6 years later it became the only dominating species in the studied benthic community. Therefore, in the White Sea, native structure recovery of the Arctic benthic community after the severe disturbance took about 15 years.  相似文献   

3.
1. The zebra mussel ( Dreissena polymorpha ) is one of the most successful invasive species; it has colonised many aquatic systems in Europe and North America with strong impacts on various ecosystem processes. The effect of D. polymorpha filtration on pelagic seston concentrations has been quantified in several studies, but the magnitude and stoichiometry of the transfer of sestonic biomass into benthic detritus by D. polymorpha and the accompanying enrichment of the benthic habitat is still under-investigated.
2. We studied biodeposition by zebra mussels in two series of laboratory experiments with the food algae Cryptomonas erosa and Scenedesmus obliquus . We also measured the year-round biodeposition rate under natural conditions in the oligotrophic Lake Constance.
3. In all experiments, zebra mussel biodeposition was linearly related to seston concentration. In the field, the relationship changed with a seasonal shift in algal composition and lower biodeposition rates during the spring algal bloom.
4. For both algal species in laboratory experiments, biodeposited material was depleted in phosphorous at an algal concentration ≤0.6 mg ash-free dry mass L−1, but not at higher concentrations. This effect was not observed in the field, probably because of high variation in C : N : P stoichiometry.
5. By mediating the transfer of pelagic resources into the benthos zebra mussels provide a sufficient amount of detritus for benthic invertebrates, especially during summer. Thus, material biodeposited by the mussels might increase benthic secondary production from pelagic resources, and zebra mussels are important mediators of this flux of organic matter from the pelagic zone into the benthos.  相似文献   

4.
Upward nutrient fluxes at the sediment-water interface were studied in a mussel farming zone (Carteau, Gulf of Fos, France) in order to estimate the impact of organic matter input from biodeposition. Nitrate, nitrite, ammonia, silicate, phosphate and oxygen were measured. Fluxes were estimated by means of polyacrylate benthic chambers placed at sites located under (UM) and outside (OM) the rope hanging structures. Transformation of biodeposited organic matter increases phosphate, silicate and ammonia fluxes. No variation in nitrite fluxes could be detected and only minor differences were observed in nitrate and the oxygen production/consumption equilibrium at the two stations. Phosphate and silicate fluxes, which were always higher at the UM than at the OM site, decreased from spring to winter. Ammonia fluxes were very high under mussel cultures in May and September and lower in November. The fact that ammonia flux was always higher at the UM than at the OM sites might be explained by degradation of mussel biodeposit, as well as by benthic macrafauna excretion. Discrepancies between fluxes of the nutrients studied at the UM and OM sites increased as organic particulate matter in the water column decreased. Variations of oxygen flux followed a different pattern, since they were correlated with presence and abundance of photosynthetic microphytes on the bottom and in the water. Bottom respiration exceeded production of oxygen only in May 1988 at the UM station.As it now stands, biodeposit input into the sediment under mussel ropes does not affect the ecosystem, although the flow of nutrients towards the water column is higher than in other areas.  相似文献   

5.
1. We asked whether unionid mussels influence the distribution and abundance of co‐occurring benthic algae and invertebrates. In a yearlong field enclosure experiment in a south‐central U.S. river, we examined the effects of living mussels versus sham mussels (shells filled with sand) on periphyton and invertebrates in both the surrounding sediment and on mussel shells. We also examined differences between two common unionid species, Actinonaias ligamentina (Lamarck 1819) and Amblema plicata (Say 1817). 2. Organic matter concentrations and invertebrate densities in the sediment surrounding mussels were significantly higher in treatments with live mussels than treatments with sham mussels or sediment alone. Organic matter was significantly higher in the sediment surrounding Actinonaias than that surrounding Amblema. Actinonaias was more active than Amblema and may have increased benthic organic matter through bioturbation. 3. Living mussels increased the abundance of periphyton on shells and the abundance and richness of invertebrates on shells, whereas effects of sham mussels were similar to sediment alone. Differences in the amount of periphyton growing on the shells of the two mussel species reflected differences in mussel activity and shell morphology. 4. Differences between living and sham mussel treatments indicate that biological activities of mussels provide ecosystem services to the benthic community beyond the physical habitat provided by shells alone. In treatments containing live mussels we found significant correlations between organic matter and chlorophyll a concentrations in the sediment, organic matter concentrations and invertebrate abundance in the sediment and the amount of chlorophyll a on the sediment and invertebrate abundance. There were no significant correlations among these response variables in control treatments. Thus, in addition to providing biogenic structure as habitat, mussels likely facilitate benthic invertebrates by altering the availability of resources (algae and organic matter) through nutrient excretion and biodeposition. 5. Effects of mussels on sediment and shell periphyton concentrations, organic matter concentrations and invertebrate abundance, varied seasonally, and were strongest in late summer during periods of low water volume, low flow, and high water temperature. 6. Our study demonstrates that freshwater mussels can strongly influence the co‐occurring benthic community, but that effects of mussels are context‐dependent and may vary among species.  相似文献   

6.
The linkages between biological communities and ecosystem function remain poorly understood along gradients of human‐induced stressors. We examined how resource provisioning (nutrient recycling), mediated by native freshwater mussels, influences the structure and function of benthic communities by combining observational data and a field experiment. We compared the following: (1) elemental and community composition (algal pigments and macroinvertebates) on live mussel shells and on nearby rocks across a gradient of catchment agriculture and (2) experimental colonisation of benthic communities on live vs. sham shells controlling for initial community composition and colonisation duration. We show that in near pristine systems, nutrient heterogeneity mediated by mussels relates to greater biodiversity of communities, which supports the notion that resource heterogeneity can foster biological diversity. However, with increased nutrients from the catchment, the relevance of mussel‐provisioned nutrients was nearly eliminated. While species can persist in disturbed systems, their functional relevance may be diminished or lost.  相似文献   

7.
Seasonal changes in the amount of biodeposit (faeces and pseudofaeces) produced by the mussel Mytilus edulis L., which is one of the representative suspension-feeders in the rocky intertidal and shallow subtidal regions of Mutsu Bay, were studied in the laboratory. The effects of water temperature, light, food concentration, flow rate, body size, age, and spawning on biodeposit production were investigated. More biodeposit was produced in summer than in other seasons. Throughout the year, the amount of biodeposit was positively correlated with body size. Relatively more biodeposit was produced by smaller than by larger individuals. A M. edulis population living in one square meter was estimated to produce 9.20 kg of faeces and 2.71 kg of pseudofaeces per year (dry wt). More biodeposit was produced at water temperatures of 17.6–20.2° C than at 4.5–7.6° C and 25.2–26.0° C. The optimum temperature for biodeposit production was found to be ≈ 20.0 °C. When kept in the dark, M. edulis produced more biodeposit than in the light. When food concentration is increased, more psuedofaeces are produced; the amount of faeces, however, remains constant. With increasing flow rate, the amount o f biodeposit per h increased but the biodeposition rate decreased. Larger amounts of faeces and smaller amounts of pseudofaeces were produced by younger mussels than by older ones of a similar size. Spawning also affected biodeposit production.  相似文献   

8.
The role of mussels in cycling phosphorus in Lake St. Clair during the May–October period was examined by measuring concentrations in the water column and in mussel tissue, and by measuring rates of biodeposition and excretion. Mean rates of biodeposition and excretion for Lampsilis radiata siliquoidea, the most abundant species, were 6.3 µg P (g shell-free dry wt)-1 h-1 and 1.3 µg P (g shell-free dry wt)-1 h-1, respectively; body tissue phosphorus content was 2.7 percent of dry wt. Seasonal changes in excretion rates appeared to be related to the gametogenic cycle of the organism, but seasonal changes in biodeposition rates were not apparent. Phosphorus assimilation efficiency for this species was about 40 percent. Overall, the mussel population in Lake St. Clair filtered about 210 MT of phosphorus, or about 13.5 percent of the total phosphorus load for the May–October study period. Of this amount, about 134 MT was sedimented to the bottom via biodeposition. Mussel biodeposition may be an important source of nutrients to other biotic components in the lake such as macrophytes and invertebrate deposit-feeders.  相似文献   

9.
Fluxes of oxygen, nitrogen and phosphorus were determined in two areas of the Sacca di Goro lagoon, at a site influenced by the farming of the mussel Mytilus galloprovincialis and a control site. Mussel farming induced intense biodeposition of organic matter to the underlying sediments, which stimulated sediment oxygen demand, and inorganic nitrogen and phosphorus regeneration rates compared to the nearby control station. Overall benthic fluxes (–11.4 ± 6.5 mmol O2 m−2 h−1; 1.59 ± 0.47 mmol NH4+ m−2 h−1 and 94 ± 42 μmol PO43− m−2 h−1) at the mussel farm are amongst the highest ever recorded for an aquaculture impacted area and question the belief that farming of filter-feeding bivalves has inherently lower impacts than finfish farming. In situ incubations of intact mussel ropes demonstrated that the mussel rope community was an enormous sink for oxygen and particulate organic matter, and an equally large source of dissolved inorganic nitrogen and phosphate to the water column. Overall, a one meter square area of␣mussel farm (mussel ropes and underlying sediment) was estimated to have an oxygen demand of 46.8 mmol m2 h−1 and to regenerate inorganic nitrogen and phosphorus at rates of 8.5 and 0.3 mmol m2 h−1, with the mussel ropes accounting for between 70 and more than 90% of the overall oxygen and nutrient fluxes. Even taking into account that within the farmed area of the Sacca di Goro lagoon, there are 15–20 m−2 of open water for each one covered with mussel ropes, the mussel ropes would account for a large and often dominant part of overall oxygen and nutrient fluxes. These results demonstrate that it is essential to take into account the activity of the cultivated organisms and their epiphytic community when assessing the impacts of shellfish farming. Overall, whilst grazing by the mussel rope community could act as a top-down control on the phytoplankton, most of the ingested organic matter is rapidly recycled to the water column as inorganic nutrients, which would be expected to stimulate phytoplankton growth. Consequently, the net effect of the mussel farming on phytoplankton dynamics, may be to increase phytoplankton turnover and overall production, rather than to limit phytoplankton biomass.  相似文献   

10.
As global change spurs shifts in benthic community composition on coral reefs globally, a better understanding of the defining taxonomic and functional features that differentiate proliferating benthic taxa is needed to predict functional trajectories of reef degradation better. This is especially critical for algal groups, which feature dramatically on changing reefs. Limited attention has been given to characterizing the features that differentiate tufting epilithic cyanobacterial communities from ubiquitous turf algal assemblages. Here, we integrated an in situ assessment of photosynthetic yield with metabarcoding and shotgun metagenomic sequencing to explore photophysiology and prokaryotic assemblage structure within epilithic tufting benthic cyanobacterial communities and epilithic algal turf communities. Significant differences were not detected in the average quantum yield. However, variability in yield was significantly higher in cyanobacterial tufts. Neither prokaryotic assemblage diversity nor structure significantly differed between these functional groups. The sampled cyanobacterial tufts, predominantly built by Okeania sp., were co-dominated by members of the Proteobacteria, Firmicutes, and Bacteroidota, as were turf algal communities. Few detected ASVs were significantly differentially abundant between functional groups and consisted exclusively of taxa belonging to the phyla Proteobacteria and Firmicutes. Assessment of the distribution of recovered cyanobacterial amplicons demonstrated that alongside sample-specific cyanobacterial diversification, the dominant cyanobacterial members were conserved across tufting cyanobacterial and turf algal communities. Overall, these data suggest a convergence in taxonomic identity and mean photosynthetic potential between tufting epilithic cyanobacterial communities and algal turf communities, with numerous implications for consumer-resource dynamics on future reefs and trajectories of reef functional ecology.  相似文献   

11.
Our study focuses on the impact of the biosedimentary system mussel bed (Mytilus edulis) on the spatial variability of benthic microbial biomass and activity in relation to organic deposits. We sampled a transect of six stations from the muddy mussel bed towards a reference station in the sandflat in monthly intervals for 1 year. The sediment grain size fraction <63 μm and the total organic carbon (TOC) concentration decreased significantly towards the sandflat. Bacterial numbers and total microbial biomass (total adenylates) showed a high spatial variability and were not correlated to increasing distance from the mussel bed. However, a significant relationship with the TOC concentration was found. In contrast, the energetic status (adenylate energy charge) of the microbial community in the mussel bed was significantly lower than in the sandflat. A principal component analysis of the substrate-utilization pattern revealed clear differences between the microbial communities in the mussel bed and in the sandflat. Our results indicate that the sandflat may be dominated by a relatively specialized benthic microbial community with an increased efficiency in utilizing organic carbon sources. As a disadvantage, however, such r-strategists are only able to meet environmental changes within a comparatively narrow range. Benthic microbial communities in the vicinity of an M. edulis mussel bed, in contrast, are dominated by relative generalists with a greater physiological capacity to buffer discrete environmental changes. Such K-strategists show a lack of specialization which generally means a reduced efficiency in utilizing a particular resource. Received: 2 May 1999 / Received in revised form: 22 November 1999 / Accepted: 6 December 1999  相似文献   

12.
Prokaryote diversity has been found to be surprisingly high in cold marine sediments with numerous clades detected spread throughout many phyla. Marine benthic sediment clades are largely ecotypically distinct and autochthonous. Since almost all marine sediment prokaryotic taxa have yet to be cultivated, functionality is currently overwhelmingly cryptic for most benthic prokaryotic taxa except those falling into specific lineages for which there is cultivation or detailed biogeochemical data. Multivariate statistical comparisons of 16S rRNA gene sequence and denaturing gradient gel electrophoresis (DGGE) data show distinct distribution patterns of prokaryotic communities in sediment layers. By comparison geographical differences and differences related to the physical texture and organic content seem to result in generally smaller differences.  相似文献   

13.
This paper discusses prokaryotic and eukaryotic components of the Lakhanda Microbiota, which provides data on communities of organisms at the Meso-Neoproterozoic boundary (1010–1025 Ma). Communities of ancient organisms are fixed in mats and biofilms of various architecture. The significance of cyanobacteria in the development of highly differentiated communities of ancient organisms, found in the shallow-water terrigenous rocks of the Lakhanda Group at the Maya River (Uchuro-Maiskii District, southeastern Siberia), is discussed. The paper discusses the significance of clayey minerals for benthic organic life in the Late Precambrian and their effect on the preservation and taphonomy of fossil remains.  相似文献   

14.
The ability of predators to control the abundance of non-native species has been little explored in marine systems. Native predators may be used to control non-native species or may confer invasion resistance to communities if predation rates on invaders are density-dependent. We studied the response of southern California native predators to the density of Musculista senhousia (Benson in Cantor, 1842), a small, fast growing mussel that has been introduced from Japan to several coastlines worldwide. We performed field experiments to determine if M. senhousia proportional mortality is density-dependent and if eelgrass Zostera marina L. habitat structure influenced mussel density-dependent mortality. We also evaluated the effect of seagrass habitat structure on the aggregative and functional responses of the predatory gastropod Pteropurpura festiva (Hinds, 1844) to Asian mussel density. In the summer of 2002, P. festiva aggregated in plots with high mussel density and was responsible for nearly all predation on M. senhousia. However, M. senhousia proportional mortality was inversely density-dependent at all levels of eelgrass above-ground and below-ground habitat structure. Asian mussel proportional mortality also was inversely density-dependent and was not influenced by eelgrass habitat structure in the spring of 2004 when wading birds were the chief predator of mussels. In contrast to results for mussel proportional mortality, the aggregative and functional responses of P. festiva varied with seagrass habitat structure. P. festiva density increased with Asian mussel density in plots with low simulated habitat structure, but the relationship between P. festiva density and Asian mussel density was parabolic at zero, intermediate and high levels of habitat structure. In field enclosures, P. festiva exhibited a Type I (linear) functional response to Asian mussel density at low levels of eelgrass structure, and a Type II (hyperbolic) functional response to mussel density at high levels of eelgrass structure. Our results and those of others suggest that the degree to which local benthic communities in southern California are resistant to Asian mussel invasion depends on habitat structure, mussel settlement rates, and the density and diversity of predators.  相似文献   

15.
Ecological engineers have important effects on biodiversity because they often increase habitat complexity and moderate environmental conditions, implying that their influence on associated fauna will vary across gradients of environmental stress. To test this, we quantified the positive effects of mussel beds on associated benthic communities around the entire South African coastline (~3500 km). We hypothesised that molluscan assemblages would show stronger affinities to the presence of mussel beds with increasing levels of heat-stress. Biomimetic loggers used to characterise thermal properties within and outside mussel beds found that solitary mussels experienced significantly greater daily maximum temperatures than mussels within beds across all locations. However, the magnitude of such differences did not appear to vary with latitude or time of year but rather was strongly influenced by biogeographic region. Differences in the abundance, diversity and community structure of molluscs within and outside mussel beds showed similar biogeographic variability, with differences in total molluscan abundances being most pronounced along the cool temperate west coast during summer and least pronounced along the warm temperate south coast during winter. Greater affinity of molluscan assemblages for mussel beds within cooler biogeographic regions suggests that evolutionary history and/or other abiotic factors may be the primary cause for the stronger influence of mussel beds on the west coast. This highlights the complex, context-dependant nature of ecosystem engineering and the varying degrees to which associated organisms affiliate with these biogenic structures. Such findings have important implications for the use of ecosystem engineers as umbrella species in ecological conservation.  相似文献   

16.
Increased water clarity associated with zebra mussel (Dreissena polymorpha) populations may favor benthic algal primary production in freshwater systems previously dominated by pelagic phytoplankton production. While zebra mussel-mediated water clarity effects on benthic primary production have been implicated in published reports, few production estimates are available. This study estimates benthic primary production in Oneida Lake, NY before and after zebra mussel invasion (1992), using measured photosynthetic parameters ( , αB and β) from sampled benthic algal communities. In the summers of 2003 and 2004, primary production was measured as O2 evolution from algal communities on hard (cobble) and soft (sediment) substrate from several depths. We also backcast estimates of benthic primary production from measurements of light penetration since 1975. Estimates of whole-lake epipelic and epilithic algal primary production showed a significant (4%) increase and exhibited significantly less interannual variability subsequent to the establishment of zebra mussels. We applied our model to two lakes of differing trophic status; the model significantly overestimated benthic primary production in a hypereutrophic lake, but there was no significant difference between the actual and predicted primary production values in the oligotrophic lake. The hypereutrophic lake had higher zebra mussel densities than Oneida (224 vs. 41 per sample respectively). Though total community respiration (measured in total darkness) was factored into our model predictions of production, our model may need modification when heterotrophic respiration is a large portion of total community metabolism.  相似文献   

17.
The functional role of burrowing bivalves in freshwater ecosystems   总被引:13,自引:0,他引:13  
1. Freshwater systems are losing biodiversity at a rapid rate, yet we know little about the functional role of most of this biodiversity. The ecosystem roles of freshwater burrowing bivalves have been particularly understudied. Here we summarize what is known about the functional role of burrowing bivalves in the orders Unionoida and Veneroida in lakes and streams globally. 2. Bivalves filter phytoplankton, bacteria and particulate organic matter from the water column. Corbicula and sphaeriids also remove organic matter from the sediment by deposit feeding, as may some unionids. Filtration rate varies with bivalve species and size, temperature, particle size and concentration, and flow regime. 3. Bivalves affect nutrient dynamics in freshwater systems, through excretion as well as biodeposition of faeces and pseudofaeces. Excretion rates are both size and species dependent, are influenced by reproductive stage, and vary greatly with temperature and food availability. 4. Bioturbation of sediments through bivalve movements increases sediment water and oxygen content and releases nutrients from the sediment to the water column. The physical presence of bivalve shells creates habitat for epiphytic and epizoic organisms, and stabilizes sediment and provides refugia for benthic fauna. Biodeposition of faeces and pseudofaeces can alter the composition of benthic communities. 5. There is conflicting evidence concerning the role of resource limitation in structuring bivalve communities. Control by bivalves of primary production is most likely when their biomass is large relative to the water volume and where hydrologic residence time is long. Future studies should consider exactly what bivalves feed upon, whether feeding varies seasonally and with habitat, and whether significant overlap in diet occurs. In particular, we need a clearer picture of the importance of suspension versus deposit feeding and the potential advantages and tradeoffs between these two feeding modes. 6. In North America, native burrowing bivalves (Unionidae) are declining at a catastrophic rate. This significant loss of benthic biomass, coupled with the invasion of an exotic burrowing bivalve (Corbicula), may result in large alterations of ecosystem processes and functions.  相似文献   

18.
皱瘤海鞘是亚热带海域分布最广和数量最多的附着生物种类之一.2012年1月-7月在典型的亚热带养殖海湾-大亚湾大鹏澳海域,利用沉积物捕集器现场测定了皱瘤海鞘(Styela plicata)的生物沉积速率,并测定了生物沉积物中有机物(OM)、总碳(TC)、总氮(TN)、有机碳(OC)和有机氮(ON)含量.结果显示:皱瘤海鞘的生物沉积速率变化范围为每天145.5-1011.8m/个,平均每天516.0mg/个,海鞘的生物沉积速率变化范围为每天154.8-1065.8 mg/g干重,平均每大463.3 mg/g干重.海鞘生物沉积物中OM、TC、OC、TN和ON含量分别为14.38%、10.80%、2.87%、3.06%和0.86%,高于自然沉积物中的含量,分别为13.39%、7.36%、2.32%、2.29%和0.67%.其中TC和ON含量要显著高于自然沉积物(P<0.05).皱瘤海鞘的OM、TC、OC、TN和ON的生物沉积速率分别为每天74.20,55.73,14.80,15.79和4.43 mg/个.实验期间附着在浮筏养殖设施和养殖牡蛎壳上的海鞘密度变化范围为54.9-222.1个/m2,平均147.5个/m2,养殖海域单位面积的海鞘生物沉积速率平均为每天76.1 g/m2,是自然沉积速率(平均每天62.7 g/m2)的1.21倍,其中OM、TC、OC、TN和ON的平均沉积速率分别为每天10.94,8.21,2.18,2.32和0.65 g/m2.据此可推算,大鹏澳筏式牡蛎养殖海区(约103 hm2)皱瘤海鞘的年生物沉积物负荷为29000 t,其中OM,TC,OC,TN和ON分别4100,3100,820,870和240 t.研究结果说明,海鞘等附着生物在大规模浅海贝类养殖中对养殖生态环境的影响也不容忽视.  相似文献   

19.
Effects of two presumably dominant competitors, the blue mussel Mytilus edulis and the barnacle Balanus improvisus on recruitment, population dynamics and community structure on hard substrata were experimentally investigated in the subtidal Kiel Fjord, Western Baltic. The hypothesis that blue mussels and/or barnacles are local dominants and strongly influence succession and community structure was tested by monitoring succession in the presence and absence of simulated predation on either or both species. Manipulations included blue mussel removal, barnacle removal, combined blue mussel and barnacle removal, as well as a control treatment for natural (non-manipulated) succession. In the second part of the experiment, recovery from the treatments was monitored over 1 year.During the manipulative phase of the experiment, blue mussels had a negative effect on recruitment of species, whereas barnacles had no significant effect. Even so, a negative synergistic effect of blue mussels and barnacles was detected. Calculation of species richness and diversity H′ (Shannon Index) showed a negative synergistic effect of blue mussels and barnacles on community structure. Additionally, diversity H′ was negatively affected by the dominant competitor M. edulis. These effects were also detectable in the ANOSIM-Analysis. The non-manipulative phase of the experiment brought about a drastic loss of diversity and species richness. Blue mussels dominated all four communities. Barnacles were the only other species still being able to coexist with mussels. Effects of simulated predation disappeared fast.Thus, in the absence of predation on blue mussels, M. edulis within a few months dominates available space, and diversity of the benthic community is low. In contrast, when mussel dominance is controlled by specific predators, more species may persist and diversity remains high.  相似文献   

20.
Beekey MA  McCabe DJ  Marsden JE 《Oecologia》2004,141(1):164-170
The introduction of zebra mussels (Dreissena spp.) to North America has resulted in dramatic changes to the complexity of benthic habitats. Changes in habitat complexity may have profound effects on predator-prey interactions in aquatic communities. Increased habitat complexity may affect prey and predator dynamics by reducing encounter rates and foraging success. Zebra mussels form thick contiguous colonies on both hard and soft substrates. While the colonization of substrata by zebra mussels has generally resulted in an increase in both the abundance and diversity of benthic invertebrate communities, it is not well known how these changes affect the foraging efficiencies of predators that prey on benthic invertebrates. We examined the effect of zebra mussels on the foraging success of four benthic predators with diverse prey-detection modalities that commonly forage in soft substrates: slimy sculpin (Cottus cognatus), brown bullhead (Ameirus nebulosus), log perch (Percina caprodes), and crayfish (Orconectes propinquus). We conducted laboratory experiments to assess the impact of zebra mussels on the foraging success of predators using a variety of prey species. We also examined habitat use by each predator over different time periods. Zebra mussel colonization of soft sediments significantly reduced the foraging efficiencies of all predators. However, the effect was dependent upon prey type. All four predators spent more time in zebra mussel habitat than in either gravel or bare sand. The overall effect of zebra mussels on benthic-feeding fishes is likely to involve a trade-off between the advantages of increased density of some prey types balanced against the reduction in foraging success resulting from potential refugia offered in the complex habitat created by zebra mussels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号