首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Shih SI  Reeves A 《Spatial Vision》2007,20(4):301-315
We examined whether attentional capture can occur during an attentional blink (AB). If attention were 'locked up' during an AB, capture should not occur. To test for capture, we varied the salience of the two targets (T1 and T2) or of a distractor. Salience was controlled by adjusting chromaticity at equiluminance to equate simple reaction times. Experiment 1 demonstrated that the extent of AB varied almost entirely with T2 salience, not with T1 salience. In Experiment 2, a salient distractor between T1 and T2 reduced the AB without affecting its temporal profile; a salient distractor after T2 had no effect on AB. We conclude that attentional capture can occur during the AB, and stimulus salience modulates, rather than overriding, the AB. Independent of the post-attentional (consolidation) mechanism primarily responsible for the AB, stimulus salience affects how an attention gate is triggered (Shih, 2000).  相似文献   

2.

Background

Attention is restricted for the second of two targets when it is presented within 200–500 ms of the first target. This attentional blink (AB) phenomenon allows one to study the dynamics of temporal selective attention by varying the interval between the two targets (T1 and T2). Whereas the AB has long been considered as a robust and universal cognitive limitation, several studies have demonstrated that AB task performance greatly differs between individuals, with some individuals showing no AB whatsoever.

Methodology/Principal Findings

Here, we studied these individual differences in AB task performance in relation to differences in attentional timing. Furthermore, we investigated whether AB magnitude is predictive for the amount of attention allocated to T1. For both these purposes pupil dilation was measured, and analyzed with our recently developed deconvolution method. We found that the dynamics of temporal attention in small versus large blinkers differ in a number of ways. Individuals with a relatively small AB magnitude seem better able to preserve temporal order information. In addition, they are quicker to allocate attention to both T1 and T2 than large blinkers. Although a popular explanation of the AB is that it is caused by an unnecessary overinvestment of attention allocated to T1, a more complex picture emerged from our data, suggesting that this may depend on whether one is a small or a large blinker.

Conclusion

The use of pupil dilation deconvolution seems to be a powerful approach to study the temporal dynamics of attention, bringing us a step closer to understanding the elusive nature of the AB. We conclude that the timing of attention to targets may be more important than the amount of allocated attention in accounting for individual differences.  相似文献   

3.
Neural correlates of the attentional blink   总被引:17,自引:0,他引:17  
Marois R  Chun MM  Gore JC 《Neuron》2000,28(1):299-308
Attending to a visual event can lead to functional blindness for other events in the visual field. This limit in our attentional capacities is exemplified by the attentional blink (AB), which refers to the transient but severe impairment in perceiving the second of two temporally neighboring targets. Using functional magnetic resonance imaging (fMRI), we observed predominantly right intraparietal and frontal cortex activations associated with the AB. We further demonstrate that an AB can be elicited by both temporal and spatial distractor interference on an attended target and that both of these interference mechanisms activate the same neural circuit. These results suggest that a (right) parietofrontal network previously implicated in attentional control and enhancement is also a locus of capacity-limited processing of visual information.  相似文献   

4.
It is well known that we continuously filter incoming sensory information, selectively allocating attention to what is important while suppressing distracting or irrelevant information. Yet questions remain about spatiotemporal patterns of neural processes underlying attentional biases toward emotionally significant aspects of the world. One index of affectively biased attention is an emotional variant of an attentional blink (AB) paradigm, which reveals enhanced perceptual encoding for emotionally salient over neutral stimuli under conditions of limited executive attention. The present study took advantage of the high spatial and temporal resolution of magnetoencephalography (MEG) to investigate neural activation related to emotional and neutral targets in an AB task. MEG data were collected while participants performed a rapid stimulus visual presentation task in which two target stimuli were embedded in a stream of distractor words. The first target (T1) was a number and the second (T2) either an emotionally salient or neutral word. Behavioural results replicated previous findings of greater accuracy for emotionally salient than neutral T2 words. MEG source analyses showed that activation in orbitofrontal cortex, characterized by greater power in the theta and alpha bands, and dorsolateral prefrontal activation were associated with successful perceptual encoding of emotionally salient relative to neutral words. These effects were observed between 250 and 550 ms, latencies associated with discrimination of perceived from unperceived stimuli. These data suggest that important nodes of both emotional salience and frontoparietal executive systems are associated with the emotional modulation of the attentional blink.  相似文献   

5.

Background

When a second target (T2) is presented in close succession of a first target (T1), people often fail to identify T2, a phenomenon known as the attentional blink (AB). However, the AB can be reduced substantially when participants are distracted during the task, for instance by a concurrent task, without a cost for T1 performance. The goal of the current study was to investigate the electrophysiological correlates of this paradoxical effect.

Methodology/Principal Findings

Participants successively performed three tasks, while EEG was recorded. The first task (standard AB) consisted of identifying two target letters in a sequential stream of distractor digits. The second task (grey dots task) was similar to the first task with the addition of an irrelevant grey dot moving in the periphery, concurrent with the central stimulus stream. The third task (red dot task) was similar to the second task, except that detection of an occasional brief color change in the moving grey dot was required. AB magnitude in the latter task was significantly smaller, whereas behavioral performance in the standard and grey dots tasks did not differ. Using mixed effects models, electrophysiological activity was compared during trials in the grey dots and red dot tasks that differed in task instruction but not in perceptual input. In the red dot task, both target-related parietal brain activity associated with working memory updating (P3) as well as distractor-related occipital activity was significantly reduced.

Conclusions/Significance

The results support the idea that the AB might (at least partly) arise from an overinvestment of attentional resources or an overexertion of attentional control, which is reduced when a distracting secondary task is carried out. The present findings bring us a step closer in understanding why and how an AB occurs, and how these temporal restrictions in selective attention can be overcome.  相似文献   

6.

Background

Attentional blink (AB) is a phenomenon that describes the difficulty individuals have in reporting the second of two masked targets if the second target (T2) arrives 200–500 ms after the first target (T1). Recent studies explain the AB from cognitive resources limitation to distractors interference. For example, the temporary loss of control (TLC) hypothesis suggests that the AB is conduced by distractors disrupting the input filter for target processing. The inhibition models suggest that the T1+1 distractor triggers a suppression mechanism which could be beneficial for T1 processing but would suppress T2 at short T1–T2 lags. These models consider that the AB is caused by the appearance of distractors. However, in the present study, two methods were taken to help individuals to detect the distractors more effectively. An attenuated AB deficit was found when the distractors could be excluded or suppressed in time. We consider that under an appropriate condition the distractors detection and suppression have a beneficial effect on attentional blink.

Methodology/Principal Findings

Two methods were employed to help individuals to detect the distractors more effectively: enlarging the low-level-physical characteristic difference between targets and distractors (Experiment 1) and restricting the sets of distractors (Experiment 2). Attenuated AB deficits were found as using the above manipulations.

Conclusions/Significance

The present study found when the distractors are detected or identified quickly, they could be effectively suppressed, in order to reduce the interference from the targets and result in a smaller AB deficit. We suggest that the suppression mechanism for distractors have a beneficial effect on AB.  相似文献   

7.
Previous research has shown that loading information on working memory affects selective attention. However, whether the load effect on selective attention is domain-general or domain-specific remains unresolved. The domain-general effect refers to the findings that load in one content (e.g. phonological) domain in working memory influences processing in another content (e.g., visuospatial) domain. Attentional control supervises selection regardless of information domain. The domain-specific effect refers to the constraint of influence only when maintenance and processing operate in the same domain. Selective attention operates in a specific content domain. This study is designed to resolve this controversy. Across three experiments, we manipulated the type of representation maintained in working memory and the type of representation upon which the participants must exert control to resolve conflict and select a target into the focus of attention. In Experiments 1a and 1b, participants maintained digits and nonverbalized objects, respectively, in working memory while selecting a target in a letter array. In Experiment 2, we presented auditory digits with a letter flanker task to exclude the involvement of resource competition within the same input modality. In Experiments 3a and 3b, we replaced the letter flanker task with an object flanker task while manipulating the memory load on object and digit representation, respectively. The results consistently showed that memory load modulated distractibility only when the stimuli of the two tasks were represented in the same domain. The magnitude of distractor interference was larger under high load than under low load, reflecting a lower efficacy of information prioritization. When the stimuli of the two tasks were represented in different domains, memory load did not modulate distractibility. Control of processing priority in selective attention demands domain-specific resources.  相似文献   

8.
Martens S  Kandula M  Duncan J 《PloS one》2010,5(12):e15280

Background

Most people show a remarkable deficit to report the second of two targets when presented in close temporal succession, reflecting an attentional blink (AB). An aspect of the AB that is often ignored is that there are large individual differences in the magnitude of the effect. Here we exploit these individual differences to address a long-standing question: does attention to a visual target come at a cost for attention to an auditory target (and vice versa)? More specifically, the goal of the current study was to investigate a) whether individuals with a large within-modality AB also show a large cross-modal AB, and b) whether individual differences in AB magnitude within different modalities correlate or are completely separate.

Methodology/Principal Findings

While minimizing differential task difficulty and chances for a task-switch to occur, a significant AB was observed when targets were both presented within the auditory or visual modality, and a positive correlation was found between individual within-modality AB magnitudes. However, neither a cross-modal AB nor a correlation between cross-modal and within-modality AB magnitudes was found.

Conclusion/Significance

The results provide strong evidence that a major source of attentional restriction must lie in modality-specific sensory systems rather than a central amodal system, effectively settling a long-standing debate. Individuals with a large within-modality AB may be especially committed or focused in their processing of the first target, and to some extent that tendency to focus could cross modalities, reflected in the within-modality correlation. However, what they are focusing (resource allocation, blocking of processing) is strictly within-modality as it only affects the second target on within-modality trials. The findings show that individual differences in AB magnitude can provide important information about the modular structure of human cognition.  相似文献   

9.
The present report reviews behavioural, electroencephalographic, and especially magnetoencephalographic findings on the cortical mechanisms underlying attentional processes that separate targets from distractors and that ensure durable target representations for goal-directed action. A common way of investigation is to observe the system's overt and covert behaviour when capacity limitations are reached. Here we focus on the aspect of temporally enhanced processing load, namely on performance deficits occurring under rapid-serial-visual-presentation (RSVP) conditions. The most prominent of these deficits is the so-called "attentional blink" (AB) effect. We first report MEG findings with respect to the time course of activation that shows modulations around 300 ms after target onset which reflect demands and success of target consolidation. Then, findings regarding long-range inter-area phase synchronization are reported that are hypothesized to mediate communication within the attentional network. Changes in synchronization reflect changes in the attentional demands of the task and are directly related to behavioural performance. Furthermore, enhanced vigilance of the system elicits systematically increased synchronization indices. A hypothetical framework is sketched out that aims at explaining limitations in multiple target consolidation under RSVP conditions.  相似文献   

10.
What role does attention play in ensuring the temporal precision of visual perception? Behavioural studies have investigated feature selection and binding in time using fleeting sequences of stimuli in the Rapid Serial Visual Presentation (RSVP) paradigm, and found that temporal accuracy is reduced when attentional control is diminished. To reduce the efficacy of attentional deployment, these studies have employed the Attentional Blink (AB) phenomenon. In this article, we use electroencephalography (EEG) to directly investigate the temporal dynamics of conscious perception. Specifically, employing a combination of experimental analysis and neural network modelling, we test the hypothesis that the availability of attention reduces temporal jitter in the latency between a target''s visual onset and its consolidation into working memory. We perform time-frequency analysis on data from an AB study to compare the EEG trials underlying the P3 ERPs (Event-related Potential) evoked by targets seen outside vs. inside the AB time window. We find visual differences in phase-sorted ERPimages and statistical differences in the variance of the P3 phase distributions. These results argue for increased variation in the latency of conscious perception during the AB. This experimental analysis is complemented by a theoretical exploration of temporal attention and target processing. Using activation traces from the Neural-ST2 model, we generate virtual ERPs and virtual ERPimages. These are compared to their human counterparts to propose an explanation of how target consolidation in the context of the AB influences the temporal variability of selective attention. The AB provides us with a suitable phenomenon with which to investigate the interplay between attention and perception. The combination of experimental and theoretical elucidation in this article contributes to converging evidence for the notion that the AB reflects a reduction in the temporal acuity of selective attention and the timeliness of perception.  相似文献   

11.

Background

It is well known that facial expressions represent important social cues. In humans expressing facial emotion, fear may be configured to maximize sensory exposure (e.g., increases visual input) whereas disgust can reduce sensory exposure (e.g., decreases visual input). To investigate whether such effects also extend to the attentional system, we used the “attentional blink” (AB) paradigm. Many studies have documented that the second target (T2) of a pair is typically missed when presented within a time window of about 200–500 ms from the first to-be-detected target (T1; i.e., the AB effect). It has recently been proposed that the AB effect depends on the efficiency of a gating system which facilitates the entrance of relevant input into working memory, while inhibiting irrelevant input. Following the inhibitory response on post T1 distractors, prolonged inhibition of the subsequent T2 is observed. In the present study, we hypothesized that processing facial expressions of emotion would influence this attentional gating. Fearful faces would increase but disgust faces would decrease inhibition of the second target.

Methodology/Principal Findings

We showed that processing fearful versus disgust faces has different effects on these attentional processes. We found that processing fear faces impaired the detection of T2 to a greater extent than did the processing disgust faces. This finding implies emotion-specific modulation of attention.

Conclusions/Significance

Based on the recent literature on attention, our finding suggests that processing fear-related stimuli exerts greater inhibitory responses on distractors relative to processing disgust-related stimuli. This finding is of particular interest for researchers examining the influence of emotional processing on attention and memory in both clinical and normal populations. For example, future research could extend upon the current study to examine whether inhibitory processes invoked by fear-related stimuli may be the mechanism underlying the enhanced learning of fear-related stimuli.  相似文献   

12.
It is well known that emotion can modulate attentional processes. Previous studies have shown that even under restricted awareness, emotional facial expressions (especially threat-related) can guide the direction of spatial attention. However, it remains unclear whether emotional facial expressions under restricted awareness can affect temporal attention. To address this issue, we used a modified attentional blink (AB) paradigm in which masked (Experiment 1) or unmasked (Experiment 2) emotional faces (fearful or neutral) were presented before the AB sequence. We found that, in comparison with neutral faces, masked fearful faces significantly decreased the AB magnitude (Experiment 1), whereas unmasked fearful faces significantly increased the AB magnitude (Experiment 2). These results indicate that effects of emotional expression on the AB are modulated by the level of awareness.  相似文献   

13.
Attention is a core cognitive mechanism that allows the brain to allocate limited resources depending on current task demands. A number of frontal and posterior parietal cortical areas, referred to collectively as the fronto-parietal attentional control network, are engaged during attentional allocation in both humans and non-human primates. Numerous studies have examined this network in the human brain using various neuroimaging and scalp electrophysiological techniques. However, little is known about how these frontal and parietal areas interact dynamically to produce behavior on a fine temporal (sub-second) and spatial (sub-centimeter) scale. We addressed how human fronto-parietal regions control visuospatial attention on a fine spatiotemporal scale by recording electrocorticography (ECoG) signals measured directly from subdural electrode arrays that were implanted in patients undergoing intracranial monitoring for localization of epileptic foci. Subjects (n = 8) performed a spatial-cuing task, in which they allocated visuospatial attention to either the right or left visual field and detected the appearance of a target. We found increases in high gamma (HG) power (70–250 Hz) time-locked to trial onset that remained elevated throughout the attentional allocation period over frontal, parietal, and visual areas. These HG power increases were modulated by the phase of the ongoing delta/theta (2–5 Hz) oscillation during attentional allocation. Critically, we found that the strength of this delta/theta phase-HG amplitude coupling predicted reaction times to detected targets on a trial-by-trial basis. These results highlight the role of delta/theta phase-HG amplitude coupling as a mechanism for sub-second facilitation and coordination within human fronto-parietal cortex that is guided by momentary attentional demands.  相似文献   

14.
The word superiority effect (WSE) in visual information processing was described more than a century ago. However, the ambiguity remains regarding the interaction between WSE and attention. An attempt was made to investigate this issue using a number of experimental paradigms, including the attentional blink, motion-induced blindness, perceptual latency priming, and visual search. The data obtained agree with the previous findings and demonstrate that full attention is not required for the WSE to occur, but only when attention is directed toward or diverted from the word as a whole rather than toward or from word components.  相似文献   

15.
Salient distractors draw our attention spontaneously, even when we intentionally want to ignore them. When this occurs, the real targets close to or overlapping with the distractors benefit from attention capture and thus are detected and discriminated more quickly. However, a puzzling opposite effect was observed in a search display with a column of vertical collinear bars presented as a task-irrelevant distractor [6]. In this case, it was harder to discriminate the targets overlapping with the salient distractor. Here we examined whether this effect originated from factors known to modulate attentional capture: (a) low probability—the probability occurrence of target location at the collinear column was much less (14%) than the rest of the display (86%), and observers might strategically direct their attention away from the collinear distractor; (b) attentional control setting—the distractor and target task interfered with each other because they shared the same continuity set in attentional task; and/or (c) lack of time to establish the optional strategy. We tested these hypotheses by (a) increasing to 60% the trials in which targets overlapped with the same collinear distractor columns, (b) replacing the target task to be connectivity-irrelevant (i.e., luminance discrimination), and (c) having our observers practice the same search task for 10 days. Our results speak against all these hypotheses and lead us to conclude that a collinear distractor impairs search at a level that is unaffected by probabilistic information, attentional setting, and learning.  相似文献   

16.
When viewers search for targets in a rapid serial visual presentation (RSVP) stream, if two targets are presented within about 500 msec of each other, the first target may be easy to spot but the second is likely to be missed. This phenomenon of attentional blink (AB) has been widely studied to probe the temporal capacity of attention for detecting visual targets. However, with the typical procedure of AB experiments, it is not possible to examine how the processing of non-target items in RSVP may be affected by attention. This paper describes a novel dual task procedure combined with RSVP to test effects of AB for nontargets at varied stimulus onset asynchronies (SOAs). In an exemplar experiment, a target category was first displayed, followed by a sequence of 8 nouns. If one of the nouns belonged to the target category, participants would respond ‘yes’ at the end of the sequence, otherwise participants would respond ‘no’. Two 2-alternative forced choice memory tasks followed the response to determine if participants remembered the words immediately before or after the target, as well as a random word from another part of the sequence. In a second exemplar experiment, the same design was used, except that 1) the memory task was counterbalanced into two groups with SOAs of either 120 or 240 msec and 2) three memory tasks followed the sequence and tested remembrance for nontarget nouns in the sequence that could be anywhere from 3 items prior the target noun position to 3 items following the target noun position. Representative results from a previously published study demonstrate that our procedure can be used to examine divergent effects of attention that not only enhance targets but also suppress nontargets. Here we show results from a representative participant that replicated the previous finding.   相似文献   

17.
Shen D  Alain C 《PloS one》2012,7(4):e36031
Attentional blink (AB) describes a phenomenon whereby correct identification of a first target impairs the processing of a second target (i.e., probe) nearby in time. Evidence suggests that explicit attention orienting in the time domain can attenuate the AB. Here, we used scalp-recorded, event-related potentials to examine whether auditory AB is also sensitive to implicit temporal attention orienting. Expectations were set up implicitly by varying the probability (i.e., 80% or 20%) that the probe would occur at the +2 or +8 position following target presentation. Participants showed a significant AB, which was reduced with the increased probe probability at the +2 position. The probe probability effect was paralleled by an increase in P3b amplitude elicited by the probe. The results suggest that implicit temporal attention orienting can facilitate short-term consolidation of the probe and attenuate auditory AB.  相似文献   

18.
Visser TA  Ohan JL 《PloS one》2012,7(3):e33265

Background

When observers are asked to identify two targets in rapid sequence, they often suffer profound performance deficits for the second target, even when the spatial location of the targets is known. This attentional blink (AB) is usually attributed to the time required to process a previous target, implying that a link should exist between individual differences in information processing speed and the AB.

Methodology/Principal Findings

The present work investigated this question by examining the relationship between a rapid automatized naming task typically used to assess information-processing speed and the magnitude of the AB. The results indicated that faster processing actually resulted in a greater AB, but only when targets were presented amongst high similarity distractors. When target-distractor similarity was minimal, processing speed was unrelated to the AB.

Conclusions/Significance

Our findings indicate that information-processing speed is unrelated to target processing efficiency per se, but rather to individual differences in observers'' ability to suppress distractors. This is consistent with evidence that individuals who are able to avoid distraction are more efficient at deploying temporal attention, but argues against a direct link between general processing speed and efficient information selection.  相似文献   

19.
The limited capacity of the human brain to process the full extent of visual information reaching the visual cortex requires the recruitment of mechanisms of information selection through attention. Neurofibromatosis type-1 (NF1) is a neurodevelopmental disease often exhibiting attentional deficits and learning disabilities, and is considered to model similar impairments common in other neurodevelopmental disorders such as autism. In a previous study, we found that patients with NF1 are more prone to miss targets under overt attention conditions. This finding was interpreted as a result of increased occipito-parietal alpha oscillations. In the present study, we used electroencephalography (EEG) to study alpha power modulations and the performance of patients with NF1 in a covert attention task. Covert attention was required in order to perceive changes (target offset) of a peripherally presented stimulus. Interestingly, alpha oscillations were found to undergo greater desynchronization under this task in the NF1 group compared with control subjects. A similar pattern of desynchronization was found for beta frequencies while no changes in gamma oscillations could be identified. These results are consistent with the notion that different attentional states and task demands generate different patterns of abnormal modulation of alpha oscillatory processes in NF1. Under covert attention conditions and while target offset was reported with relatively high accuracy (over 90% correct responses), excessive desynchronization was found. These findings suggest an abnormal modulation of oscillatory activity and attentional processes in NF1. Given the known role of alpha in modulating attention, we suggest that alpha patterns can show both abnormal increases and decreases that are task and performance dependent, in a way that enhanced alpha desynchronization may reflect a compensatory mechanism to keep performance at normal levels. These results suggest that dysregulation of alpha oscillations may occur in NF1 both in terms of excessive or diminished activation patterns.  相似文献   

20.

Background

When two targets are presented in close temporal proximity amongst a rapid serial visual stream of distractors, a period of disrupted attention and attenuated awareness lasting 200–500 ms follows identification of the first target (T1). This phenomenon is known as the “attentional blink” (AB) and is generally attributed to a failure to consolidate information in visual short-term memory due to depleted or disrupted attentional resources. Previous research has shown that items presented during the AB that fail to reach conscious awareness are still processed to relatively high levels, including the level of meaning. For example, missed word stimuli have been shown to prime later targets that are closely associated words. Although these findings have been interpreted as evidence for semantic processing during the AB, closely associated words (e.g., day-night) may also rely on specific, well-worn, lexical associative links which enhance attention to the relevant target.

Methodology/Principal Findings

We used a measure of semantic distance to create prime-target pairs that are conceptually close, but have low word associations (e.g., wagon and van) and investigated priming from a distractor stimulus presented during the AB to a subsequent target (T2). The stimuli were words (concrete nouns) in Experiment 1 and the corresponding pictures of objects in Experiment 2. In both experiments, report of T2 was facilitated when this item was preceded by a semantically-related distractor.

Conclusions/Significance

This study is the first to show conclusively that conceptual information is extracted from distractor stimuli presented during a period of attenuated awareness and that this information spreads to neighbouring concepts within a semantic network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号