共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Fe(Ⅲ)的微生物异化还原 总被引:7,自引:0,他引:7
异化Fe(Ⅲ)还原微生物是厌氧环境中广泛存在的一类主要微生物类群,它们的共同特征是可以利用Fe(Ⅲ)作为末端电子受体而获能。异化Fe(Ⅲ)还原微生物具有强大的代谢功能,可还原许多有毒重金属包括一些放射性核素,还可降解利用许多有机污染物,在污染环境的生物修复中具有重要的应用价值。本文对异化Fe(Ⅲ)还原微生物的分布、分类,代谢功能多样性以及异化Fe(Ⅲ)还原的意义做了评述,旨在加强相关领域的研究人员对此的了解和重视,通过学科的交叉和合作加快我国在这一领域的研究。 相似文献
3.
采用平板分离法和柠檬酸铁还原实验法相结合,从城市污水处理厂活性污泥中分离获得Fe(Ⅲ)还原菌F7,经形态观察、生理生化和16S rDNA序列分析及同源性比对鉴定为恶臭假单胞菌(Pseudomonas putida).在不同柠檬酸铁浓度和不同pH条件下的实验表明,柠檬酸铁浓度为0.32g/L时,菌株生长情况较好,柠檬酸铁浓度为0.16g/L时,Fe(Ⅲ)异化还原比例较高;pH6.5时,菌株生长情况较好,Fe(Ⅲ)异化还原量较多. 相似文献
4.
5.
土壤Fe(Ⅲ)异化还原机理及影响因素研究进展 总被引:3,自引:0,他引:3
微生物的异化Fe(Ⅲ)还原指以Fe(Ⅲ)为末端电子受体在厌氧条件下氧化有机物的产能过程,在生物地球化学循环中起着重要的作用,异化还原的产物为Fe(Ⅱ)。目前对Fe(Ⅲ)微生物还原的物理、生物化学特性的认识还十分有限。本文系统介绍了异化Fe(Ⅲ)还原的机理及影响因素,包括还原不溶性Fe(Ⅲ)氧化物的机制及与Fe(Ⅲ)还原相关的分子生物学的研究进展。分析了目前研究中存在的问题,并从分子生物学及生物地球化学角度对异化Fe(Ⅲ)还原研究方向进行了评述与展望。旨在加强相关领域研究人员对该科学问题的了解和重视,通过学科交叉和合作加快我国在这一领域的研究。 相似文献
6.
7.
8.
异化Fe(Ⅲ)还原酶促反应及调控机制的研究进展 总被引:2,自引:0,他引:2
异化Fe(Ⅲ)还原菌不是分类学上的概念,它具有系统发育及环境来源多样性的特点。与其他大多数的电子受体不同,在近中性pH值条件下,Fe(Ⅲ)的溶解度很低,通常以不溶性的Fe(Ⅲ)氧化物的形式存在。目前,对微生物如何获得和还原不溶性Fe(Ⅲ)的机理仍缺乏系统的了解。以希瓦氏菌和地杆菌为例,本文综述了3种异化Fe(Ⅲ)还原的酶促反应机制及其分子调控机理:异化Fe(Ⅲ)还原菌与Fe(Ⅲ)氧化物直接接触机制、电子穿梭体的作用机制、铁载体作用机制,多种膜蛋白特别是多血红素的细胞色素蛋白参与微生物的异化Fe(Ⅲ)还原过程,并形成复杂的调控网络。此外,本文也对异化Fe(Ⅲ)还原酶促反应及其分子调控机理将来的研究方向进行了展望,以期对这一重要的生化过程有更为全面的认识。 相似文献
9.
[背景] 异化铁还原细菌能够在还原Fe (III)的同时将毒性较大的Cr (VI)还原成毒性较小的Cr (III),解决铬污染的问题。[目的] 基于丁酸梭菌(Clostridium butyricum) LQ25异化铁还原过程制备生物磁铁矿,开展异化铁还原细菌还原Cr (VI)的特性研究。[方法] 构建以氢氧化铁为电子受体和葡萄糖为电子供体的异化铁培养体系。菌株LQ25培养结束时制备生物磁铁矿。设置不同初始Cr (VI)浓度(5、10、15、25和30 mg/L),分别测定菌株LQ25对Cr (VI)还原效率以及生物磁铁矿对Cr (VI)的还原效率。[结果] 菌株LQ25在设置的Cr (VI)浓度范围内都能良好生长。当Cr (VI)浓度为15 mg/L时,在异化铁培养条件下,菌株LQ25对Cr (VI)的还原率为63.45%±5.13%,生物磁铁矿对Cr (VI)的还原率为87.73%±9.12%,相比菌株还原Cr (VI)的效率提高38%。pH变化能影响生物磁铁矿对Cr (VI)的还原率,当pH 2.0时,生物磁铁矿对Cr (VI)的还原率最高,几乎达到100%。电子显微镜观察发现生物磁铁矿表面有许多孔隙,X-射线衍射图谱显示生物磁铁矿中Fe (II)的存在形式是Fe (OH)2。[结论] 基于异化铁还原细菌制备生物磁铁矿可用于还原Cr (VI),这是一种有效去除Cr (VI)的途径。 相似文献
10.
一株嗜酸化能异养菌Acidiphilium sp.的分离鉴定及其对Fe(Ⅲ)代谢的研究 总被引:2,自引:0,他引:2
从云南省腾冲热泉酸性泥土样品中分离得到一株好氧嗜酸异养细菌Teng-A。菌株Teng-A细胞大小0.6~0.8μm×1.0~1.5μm,单生或成链状排列,革兰氏染色反应为阴性,有周生鞭毛,不产芽孢,该菌适宜的生长温度为29~33℃、pH为3.0~4.0,可以利用许多有机物生长,但不能利用Fe(Ⅱ)、S、Na2S2O3、K2S4O6等为能源生长。菌株Teng-A基因组DNA的(G C)mol%为69.6mol%,其16S rRNA基因与Acidiphilium属菌种的16S rRNA基因的最高相似性大于99%。根据形态学、生理生化特点及系统发育分析表明,菌株Teng-A是Acidiphilium属的一个新成员,崭定名为Acidiphilium sp.strainTeng-A。厌氧条件下,菌株Teng-A可以葡萄糖或H2为电子供体,将Fe(Ⅲ)还原为Fe(Ⅱ),还原速率分别为11.56mg/L.day与15.34mg/L.day。菌株Teng-A与Acidithiobacillus ferrooxidansLJ-1和Leptospirilum ferriphilum LJ-2共同培养,前3dFe2 氧化速度分别为0.44g/L.day和0.41g/L.day,比LJ-1(0.64g/L.day)和LJ-2(0.60g/L.day)单独培养时氧化Fe(Ⅱ)的速率稍慢,但当培养时间超过5d时,Fe(Ⅱ)最终被全部氧化,并且发现在共培养时,Fe(Ⅱ)氧化生成的沉淀物的形态不同于At.ferrooxidans和L.ferriphilum单独培养时产生的沉淀物的形态。最后讨论了Acidiphilium对生物浸矿和生物成矿作用的影响。 相似文献
11.
Bacterial crystalline Fe(III) oxide reduction has the potential to significantly influence the biogeochemistry of anaerobic sedimentary environments where crystalline Fe(III) oxides are abundant relative to poorly crystalline (amorphous) phases. A review of published data on solid-phase Fe(III) abundance and speciation indicates that crystalline Fe(III) oxides are frequently 2- to S 10-fold more abundant than amorphous Fe(III) oxides in shallow subsurface sediments not yet subjected to microbial Fe(III) oxide reduction activity. Incubation experiments with coastal plain aquifer sediments demonstrated that crystalline Fe(III) oxide reduction can contribute substantially to Fe(II) production in the presence of added electron donors and nutrients. Controls on crystalline Fe(III) oxide reduction are therefore an important consideration in relation to the biogeochemical impacts of bacterial Fe(III) oxide reduction in subsurface environments. In this paper, the influence of biogenic Fe(II) on bacterial reduction of crystalline Fe(III) oxides is reviewed and analyzed in light of new experiments conducted with the acetate-oxidizing, Fe(III)-reducing bacterium (FeRB) Geobacter metallireducens . Previous experiments with Shewanella algae strain BrY indicated that adsorption and/or surface precipitation of Fe(II) on Fe(III) oxide and FeRB cell surfaces is primarily responsible for cessation of goethite ( f -FeOOH) reduction activity after only a relatively small fraction (generally < 10%) of the oxide is reduced. Similar conclusions are drawn from analogous studies with G. metallireducens . Although accumulation of aqueous Fe(II) has the potential to impose thermodynamic constraints on the extent of crystalline Fe(III) oxide reduction, our data on bacterial goethite reduction suggest that this phenomenon cannot universally explain the low microbial reducibility of this mineral. Experiments examining the influence of exogenous Fe(II) (20 mM FeCl 2 ) on soluble Fe(III)-citrate reduction by G. metallireducens and S. algae showed that high concentrations of Fe(II) did not inhibit Fe(III)-citrate reduction by freshly grown cells, which indicates that surface-bound Fe(II) does not inhibit Fe(III) reduction through a classical end-product enzyme inhibition mechanism. However, prolonged exposure of G. metallireducens and S. algae cells to high concentrations of soluble Fe(II) did cause inhibition of soluble Fe(III) reduction. These findings, together with recent documentation of the formation of Fe(II) surface precipitates on FeRB in Fe(III)-citrate medium, provide further evidence for the impact of Fe(II) sorption by FeRB on enzymatic Fe(III) reduction. Two different, but not mutually exclusive, mechanisms whereby accumulation of Fe(II) coatings on Fe(III) oxide and FeRB surfaces may lead to inhibition of enzymatic Fe(III) oxide reduction activity (in the absence of soluble electron shuttles and/or Fe(III) chelators) are identified and discussed in relation to recent experimental work and theoretical considerations. 相似文献
12.
A new bis-(N-tridentate) Fe(II) complex [Fe(dpop′)2](PF6)2 (dpop′=dipyrido(2,3-a:3′,2′-j)phenazine) was prepared and studied. The magnetic moment of the solid was determined as μ=5.2-4.9 BM and in CH3CN solution as μ=4.9 BM and indicate the high spin Fe(II) state. The electronic absorption spectrum displays a broad weak absorption MLCT transition at 602 nm (ε=3.8×103 M−1 cm−1), consistent with CT absorptions of other Fe(II) HS complexes. The cyclic voltammogram of the complex shows an irreversible Fe2+/3+ oxidation at +1.55 V and two dpop′0/−1 centered reductions at −0.20 and −0.59 V versus Ag/AgCl. 相似文献
13.
Jun Feng Su Chun Yu Gao Ting Lin Huang Xue Chen Bai Hai Rong Zhu 《Geomicrobiology journal》2019,36(5):396-404
In this study, the denitrification performance of the mixotrophic biological reactor was investigated under varying Fe(II)/Mn(II) molar ratio conditions. Results indicate that the optimal nitrate removal ratio occurred at an Fe(II)/Mn(II) molar ratio of 9:1, pH of 7, with an HRT of 10?h. When the reactor was performing under optimal conditions, the nitrate removal reached 100.00% at a rate of 0.116?mmol·L?1·h?1. The proportion of oxidized Fe(II) and Mn(II) reached 99.29% and 21.88%, respectively. High-throughput sequencing results show that Pseudomonas was the dominant species in the mixotrophic biological reactor. Furthermore, the relative abundance of Pseudomonas and denitrification performance was significantly influenced by variation in the Fe(II)/Mn(II) molar ratio. 相似文献
14.
[背景] 一些异化铁还原细菌兼具铁还原和发酵产氢能力,可作为发酵型异化铁还原细菌还原机制研究的对象。[目的] 筛选出一株发酵型异化铁还原细菌。在异化铁还原细菌培养体系中,设置不同电子供体并分析电子供体。[方法] 通过三层平板法从海洋沉积物中筛选纯菌株,基于16S rRNA基因序列进行菌株鉴定。通过测定细菌培养液Fe (II)浓度及发酵产氢量分析菌株异化铁还原和产氢性质。[结果] 菌株LQ25与Clostridium butyricum的16S rRNA基因序列相似性达到100%,结合电镜形态观察,菌株命名为Clostridium sp.LQ25。在氢氧化铁为电子受体培养条件下,菌株生长较对照组(未添加氢氧化铁)显著提高。菌株LQ25能够利用丙酮酸钠、葡萄糖和乳酸钠进行生长。丙酮酸钠为电子供体时,菌株LQ25细胞生长和异化铁还原效率最高,菌体蛋白质含量是(78.88±3.40) mg/L,累积产生Fe (II)浓度为(8.27±0.23) mg/L。以葡萄糖为电子供体时,菌株LQ25发酵产氢量最高,达(475.2±14.4) mL/L,相比对照组(未添加氢氧化铁)产氢量提高87.7%。[结论] 筛选到一株具有异化铁还原和发酵产氢能力的菌株Clostridium sp.LQ25,为探究发酵型异化铁还原细菌胞外电子传递机制提供了新的实验材料。 相似文献
15.
16.
Mehmet Esref Alkis Kenan Buldurun Yusuf Alan Nevin Turan Ayhan Altun 《化学与生物多样性》2023,20(2):e202200710
Schiff base ligand (L) was obtained by condensation reaction between 4-aminopyrimidin-2(1H)-one (cytosine) with 2-hydroxybenzaldehyde. The synthesized Schiff base was used for complexation with Cu(II) and Fe(II) ions used by a molar (2 : 1 mmol ration) in methanol solvent. The structural features of ligand, Cu(II), and Fe(II) metal complexes were determined by standard spectroscopic methods (FT-IR, elemental analysis, proton and carbon NMR spectra, UV/VIS, and mass spectroscopy, magnetic susceptibility, thermal analysis, and powder X-ray diffraction). The synthesized compounds (Schiff base and its metal complexes) were screened in terms of their anti-proliferative activities in U118 and T98G human glioblastoma cell lines alone or in combination with electroporation (EP). Moreover, the human HDF (human dermal fibroblast) cell lines was used to check the bio-compatibility of the compounds. Anti-proliferative activities of all compounds were ascertained using an MTT assay. The complexes exhibited a good anti-proliferative effect on U118 and T98G glioblastoma cell lines. In addition, these compounds had a negligible cytotoxic effect on the fibroblast HDF cell lines. The use of compounds in combination with EP significantly decreased the IC50 values compared to the use of compounds alone (p<0.05). These results show that newly synthesized Cu(II) and Fe(II) complexes can be developed for use in the treatment of chemotherapy-resistant U118 and T98G glioblastoma cells and that treatment with lower doses can be provided when used in combination with EP. 相似文献
17.
Enumeration of Fe(II)-oxidizing and Fe(III)-reducing bacteria in the root zone of wetland plants: Implications for a rhizosphere iron cycle 总被引:2,自引:2,他引:0
Johanna V. Weiss David Emerson Stephanie M. Backer J. Patrick Megonigal 《Biogeochemistry》2003,64(1):77-96
Iron plaque occurs on the roots of most wetland and submersed aquatic plant species and is a large pool of oxidized Fe(III) in some environments. Because plaque formation in wetlands with circumneutral pH has been largely assumed to be an abiotic process, no systematic effort has been made to describe plaque-associated microbial communities or their role in plaque deposition. We hypothesized that Fe(II)-oxidizing bacteria (FeOB) and Fe(III)-reducing bacteria (FeRB) are abundant in the rhizosphere of wetland plants across a wide range of biogeochemical environments. In a survey of 13 wetland and aquatic habitats in the Mid-Atlantic region, FeOB were present in the rhizosphere of 92% of the plant specimens collected (n = 37), representing 25 plant species. In a subsequent study at six of these sites, bacterial abundances were determined in the rhizosphere and bulk soil using the most probable number technique. The soil had significantly more total bacteria than the roots on a dry mass basis (1.4 × 109 cells/g soil vs. 8.6 × 107 cells/g root; p < 0.05). The absolute abundance of aerobic, lithotrophic FeOB was higher in the soil than in the rhizosphere (3.7 × 106/g soil vs. 5.9 × 105/g root; p < 0.05), but there was no statistical difference between these habitats in terms of relative abundance (1% of the total cell number). In the rhizosphere, FeRB accounted for an average of 12% of all bacterial cells while in the soil they accounted for < 1% of the total bacteria. We concluded that FeOB are ubiquitous and abundant in wetland ecosystems, and that FeRB are dominant members of the rhizosphere microbial community. These observations provide a strong rationale for quantifying the contribution of FeOB to rhizosphere Fe(II) oxidation rates, and investigating the combined role of FeOB and FeRB in a rhizosphere iron cycle. 相似文献
18.
Humic substances can mediate electron transfer between microorganisms and Fe(III) minerals. Because it is unknown which microorganisms reduce humics in anoxic aquifers, we analyzed the diversity and physiological flexibility of Fe(III)-, humics-, and AQDS-reducers, which were present at up to 106 cells g?1. No significant differences in 16S rRNA gene based diversity were found between enrichment cultures reducing ferrihydrite, humics or AQDS. Even after repeated transfers many of the enrichments retained the ability to switch to other electron acceptors. This suggests that humics- and Fe(III)-reducing microorganisms in anoxic aquifers are rather versatile and able to reduce different extracellular electron acceptors. 相似文献
19.
Fe(II)-tris(2-pyridylmethyl)amine complexes, Fe(II)-tpa, having different co-existing anions, [Fe(tpa)(MeCN)2](ClO4)2 (1), [Fe(tpa)(MeCN)2](CF3SO3)2 (2) and [Fe(tpa)Cl2] (3), were prepared. Effective magnetic moments (evaluated by the Evans method) revealed that while 1-3 in acetone and 3 in acetonitrile (MeCN) have a high-spin Fe(II) ion at 298 K, the Fe(II) ions of 1 and 2 are in the low-spin state in MeCN. The aerobic oxidation of 1-3 was monitored by UV-Vis spectral changes in acetone or MeCN under air at 298 K. Only the high-spin Fe(II)-tpa complexes were oxidized with rate constants of kobs = 0.1-1.3 h−1, while 1 and 2 were stable in MeCN. The aerobic oxidation of 1 or 2 in acetone was greatly accelerated in the presence of pure, peroxide-free cyclohexene (1000 equiv.) and yielded a large amount of oxidized products; 2-cyclohexe-1-ol (A) and 2-cyclohexene-1-one (K) (A + K: 23 940% yield based on Fe; A/K = 0.3), and cyclohexene oxide (810%). Besides cyclohexene, aerobic oxidation of norbornene, cyclooctene, ethylbenzene, and cumene proceeded in the presence of 1 in acetone at 348 K without any reductant. Essential factors in the reaction are high-spin Fe(II) ion and labile coordination sites, both of which are required to generate Fe(II)-superoxo species as active species for the H-atom abstraction of hydrocarbons. 相似文献
20.
This study has analyzed the role of several serum constituents, that have been proposed to effect the following reactionin situ: {fx1-1} {fx1-2} These reactions were monitored by measuring the rate of Fe(II) oxidation in the presence of apo-transferrin
(reaction A) and Fe(III)-transferrin formation (reaction B) at 465 nm. Reactions A and B were found to be kinetically equivalent.
The results show that, singly or in combination, bicarbonate, orthophosphate, citrate, apo-transferrin, and/or albumin have
less than one-tenth of the ability to enhance the oxidation of Fe(II) compared to the serum enzyme, ceruloplasmin. It was
also found that the rate of Fe(II) oxidation by serum Fe-ligands was influenced by the efficiency of oxygen utilization. Whereas
ceruloplasmin produces a 4∶1 ratio of Fe(II) oxidized to oxygen utilized, the non-enzymic components yield a 2∶1 or 3.09∶1
ratio. These data support the role of ceruloplasmin as an antioxidant that prevents the formation of the intermediate active
oxygen species O
2
−
· and H2O
2
·
through the Fe(II) auto-oxidation reaction.
A hitherto unrecognized factor in the control of nonenzymic oxidation of Fe(II) was serum albumin. This protein, at >25 μM, was found to sharply dampen the rate of Fe(II) oxidation in the presence of a physiological concentration of bicarbonate,
citrate, and transferrin Albumin did not appear to affect the ceruloplasmin catalyzed oxidation of Fe(II) at pH 7.0. The addition
of ceruloplasmin effected up to a 44 × increase in the rate of Fe(II) oxidation and Fe(III)-transferrin formation even in
the presence of 0.60 mM albumin. 相似文献