首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Using multilocus sequence typing (MLST), Candida albicans can be subdivided into 18 different clades. Farnesol, a quorum-sensing molecule secreted by C. albicans, is thought to play an important role in the development of C. albicans biofilms and is also a virulence factor. This study evaluated whether C. albicans bloodstream infection (BSI) strains belonging to different MLST clades secrete different levels of E,E-farnesol (FOH) and whether they have different clinical characteristics. In total, 149 C. albicans BSI isolates from ten Korean hospitals belonging to clades 18 (n = 28), 4 (n = 23), 1 (n = 22), 12 (n = 17), and other clades (n = 59) were assessed. For each isolate, the FOH level in 24-hour biofilms was determined in filtered (0.45 μm) culture supernatant using high-performance liquid chromatography. Marked differences in FOH secretion from biofilms (0.10–6.99 μM) were observed among the 149 BSI isolates. Clade 18 isolates secreted significantly more FOH than did non-clade 18 isolates (mean ± SEM; 2.66 ± 0.22 vs. 1.69 ± 0.10 μM; P < 0.001). Patients with isolates belonging to clade 18 had a lower mean severity of illness than other patients, as measured using the “acute physiology and chronic health evaluation” (APACHE) III score (14.4 ± 1.1 vs. 18.0 ± 0.7; P < 0.05). This study provides evidence that C. albicans BSI isolates belonging to the most prevalent MLST clade (clade 18) in Korea are characterized by increased levels of FOH secretion and less severe illness.  相似文献   

2.
Chronic mucocutaneous candidiasis (CMC) is a primary immunodeficiency disorder characterised by susceptibility to chronic Candida and fungal dermatophyte infections of the skin, nails and mucous membranes. Molecular epidemiology studies of CMC infection are limited in number and scope and it is not clear whether single or multiple strains inducing CMC persist stably or are exchanged and replaced. We subjected 42 C. albicans individual single colony isolates from 6 unrelated CMC patients to multilocus sequence typing (MLST). Multiple colonies were typed from swabs taken from multiple body sites across multiple time points over a 17-month period. Among isolates from each individual patient, our data show clonal and persistent diploid sequence types (DSTs) that were stable over time, identical between multiple infection sites and exhibit azole resistant phenotypes. No shared origin or common source of infection was identified among isolates from these patients. Additionally, we performed C. albicans MLST SNP genotype frequency analysis to identify signatures of past loss of heterozygosity (LOH) events among persistent and azole resistant isolates retrieved from patients with autoimmune disorders including CMC.  相似文献   

3.
The emerging pathogen Cryptococcus gattii causes life-threatening disease in immunocompetent and immunocompromised hosts. Of the four major molecular types (VGI-VGIV), the molecular type VGIII has recently emerged as cause of disease in otherwise healthy individuals, prompting a need to investigate its population genetic structure to understand if there are potential genotype-dependent characteristics in its epidemiology, environmental niche(s), host range and clinical features of disease. Multilocus sequence typing (MLST) of 122 clinical, environmental and veterinary C. gattii VGIII isolates from Australia, Colombia, Guatemala, Mexico, New Zealand, Paraguay, USA and Venezuela, and whole genome sequencing (WGS) of 60 isolates representing all established MLST types identified four divergent sub-populations. The majority of the isolates belong to two main clades, corresponding either to serotype B or C, indicating an ongoing species evolution. Both major clades included clinical, environmental and veterinary isolates. The C. gattii VGIII population was genetically highly diverse, with minor differences between countries, isolation source, serotype and mating type. Little to no recombination was found between the two major groups, serotype B and C, at the whole and mitochondrial genome level. C. gattii VGIII is widespread in the Americas, with sporadic cases occurring elsewhere, WGS revealed Mexico and USA as a likely origin of the serotype B VGIII population and Colombia as a possible origin of the serotype C VGIII population. Serotype B isolates are more virulent than serotype C isolates in a murine model of infection, causing predominantly pulmonary cryptococcosis. No specific link between genotype and virulence was observed. Antifungal susceptibility testing against six antifungal drugs revealed that serotype B isolates are more susceptible to azoles than serotype C isolates, highlighting the importance of strain typing to guide effective treatment to improve the disease outcome.  相似文献   

4.
Genitourinary candidiasis, which is most frequently caused by Candida albicans, is a common problem worldwide. The pathogenesis of the infection, especially recurrence of the infection, remains to be elucidated. This study analyzed 199 independent Chinese C. albicans isolates using multilocus sequence typing (MLST) and microsatellite typing, with the focus on the isolates associated with vulvovaginal candidiasis (VVC) of Chinese women. MLST data of 221 vaginal isolates from other countries available from the consensus MLST database of C. albicans were retrieved for comparison. A total of 124 diploid sequence types (DSTs) were recognized from the Chinese C. albicans isolates, among which, 98 (79.0%) have not been reported in the MLST database of the species. The majority of the VVC (71.6%) and balanitis (92.3%) isolates from China were located in clade 1 of C. albicans; while only 40.6% of the vaginal isolates and 7.8% of the oral isolates from healthy volunteers were found in the same clade. Furthermore, 69.1% of the VVC and 84.5% of the balanitis isolates concentrated in a cluster of clade 1 with DST 79 as the primary founder. The isolates in this cluster possessed microsatellite genotypes CAI 30-45, CAI 32-46 and their close derivatives. Interestingly, a remarkable difference in genotype distribution patterns between Chinese and non-Chinese vaginal isolates of C. albicans was observed. Only 11.3% of the non-Chinese vaginal isolates compared were located in the cluster concentrated with Chinese VVC isolates. The results suggest significant association of specific and genetically similar genotypes with genital infections in China.  相似文献   

5.
Multilocus sequence typing (MLST) based on six loci was used to analyze the relationship of 58 Candida tropicalis isolates from individual patients in a general hospital in Beijing, China. A total of 52 diploid sequence types (DSTs) were generated by the MLST, all of which were new to the central database. Unweighted Pair Group Method with Arithmetic Mean (UPGMA) dendrograms were constructed, which showed that the 58 isolates were distributed robustly and 6 main groups were clustered regardless of the specimen source and medical department. The minimum spanning tree (MST) of the 58 isolates (52 DSTs) and all 401 isolates (268 DSTs) in the C. tropicalis central database (http://pubmlst.org/ctropicalis/) indicated that the isolates in this study clustered in three relative pure clonal complexes, and 2 clustered with isolates from Taiwan, Belgium, Brazil, and the US. This study presents the first MLST analysis of C. tropicalis isolates from Mainland China, which may be useful for further studies on the similarity, genetic relationship, and molecular epidemiology of C. tropicalis strains worldwide.  相似文献   

6.
Candida albicans is a diploid yeast that can undergo mating and a parasexual cycle, but is apparently unable to undergo meiosis. Characterization of the population structure of C. albicans has shown that reproduction is largely clonal and that mating, if it occurs, is rare or limited to genetically related isolates. Because molecular typing has delineated distinct clades in C. albicans, we have tested whether recombination was common within clades, but rare between clades. Two hundred and three C. albicans isolates have been subjected to multilocus sequence typing (MLST) and the haplotypes at heterozygous MLST genotypes characterized. The C. albicans isolates were distributed among nine clades, of which five corresponded to those previously identified by Ca3 fingerprinting. In each of these clades with more than 10 isolates, polymorphic nucleotide positions located on between 3 and 4 of the six loci were in Hardy-Weinberg disequilibrium. Moreover, each of these polymorphic sites contained excess heterozygotes. This was confirmed by an expanded analysis performed on a recently published MLST dataset for 1044 isolates. On average, 66% of polymorphic positions in the individual clades were in significant excess of heterozygotes over the five clades. These data indicate that mating within clades as well as self-fertilization are both limited and that C. albicans clades do not represent a collection of cryptic species. The study of haplotypes at heterozygous loci performed on our dataset indicates that loss of heterozygosity events due to mitotic recombination is moderately common in natural populations of C. albicans. The maintenance of substantial heterozygosity despite relatively frequent loss of heterozygosity could result from a selective advantage conferred by heterozygosity.  相似文献   

7.
Candida albicans is a diploid yeast that can undergo mating and a parasexual cycle, but is apparently unable to undergo meiosis. Characterization of the population structure of C. albicans has shown that reproduction is largely clonal and that mating, if it occurs, is rare or limited to genetically related isolates. Because molecular typing has delineated distinct clades in C. albicans, we have tested whether recombination was common within clades, but rare between clades. Two hundred and three C. albicans isolates have been subjected to multilocus sequence typing (MLST) and the haplotypes at heterozygous MLST genotypes characterized. The C. albicans isolates were distributed among nine clades, of which five corresponded to those previously identified by Ca3 fingerprinting. In each of these clades with more than 10 isolates, polymorphic nucleotide positions located on between 3 and 4 of the six loci were in Hardy-Weinberg disequilibrium. Moreover, each of these polymorphic sites contained excess heterozygotes. This was confirmed by an expanded analysis performed on a recently published MLST dataset for 1044 isolates. On average, 66% of polymorphic positions in the individual clades were in significant excess of heterozygotes over the five clades. These data indicate that mating within clades as well as self-fertilization are both limited and that C. albicans clades do not represent a collection of cryptic species. The study of haplotypes at heterozygous loci performed on our dataset indicates that loss of heterozygosity events due to mitotic recombination is moderately common in natural populations of C. albicans. The maintenance of substantial heterozygosity despite relatively frequent loss of heterozygosity could result from a selective advantage conferred by heterozygosity.  相似文献   

8.
The accurate sub-typing of Salmonella enterica isolates is essential for epidemiological investigations and surveillance of Salmonella infections. Salmonella isolates are currently identified using the Kauffman-White serotyping scheme. Multilocus sequence typing (MLST) schemes have been developed for the major bacterial pathogens including Salmonella and have assisted in understanding the molecular epidemiology and population biology of these organisms. Recently, the DiversiLab rep-PCR system has been developed using micro-fluidic chips to provide standardized, semi-automated fingerprinting for pathogens including S. enterica. In the current study, 71 isolates of S. enterica, representing 21 serovars, were analyzed using MLST and the DiversiLab rep-PCR system. MLST was able to identify 31 sequence types (STs), while the DiversiLab system revealed 38 DiversiLab types (DTs). The rep-PCR distinguished isolates of different serovars and showed greater discriminatory power (0.95) than MLST typing (0.89). Rep-PCR exhibited 92% concordance with MLST and 90% with serotyping, while the concordance level of MLST typing with serotyping was 96%, representing a strong association. Comparison of rep-PCR profiles with those held in an online library database led to the accurate prediction of serovar in 63% of cases and resulted in inaccurate predictions for 10% of profiles. MLST and the rep-PCR system may provide useful additional informative techniques for the molecular identification of S. enterica. We conclude that the DiversiLab rep-PCR system may provide a rapid (less than 4 h) and standardized method for sub-typing isolates of S. enterica.  相似文献   

9.
Outbreaks of mucohemorrhagic diarrhea in pigs caused by Brachyspira hyodysenteriae in the late 2000s indicated the re-emergence of Swine Dysentery (SD) in the U.S. Although the clinical disease was absent in the U.S. since the early 1990s, it continued to cause significant economic losses to other swine rearing countries worldwide. This study aims to fill the gap in knowledge pertaining to the re-emergence and epidemiology of B. hyodysenteriae in the U.S. and its global relationships using a multi-locus sequence typing (MLST) approach. Fifty-nine post re-emergent isolates originating from a variety of sources in the U.S. were characterized by MLST, analyzed for epidemiological relationships (within and between multiple sites of swine systems), and were compared with pre re-emergent isolates from the U.S. Information for an additional 272 global isolates from the MLST database was utilized for international comparisons. Thirteen nucleotide sequence types (STs) including a predominant genotype (ST93) were identified in the post re-emergent U.S. isolates; some of which showed genetic similarity to the pre re-emergent STs thereby suggesting its likely role in the re-emergence of SD. In the U.S., in general, no more than one ST was found on a site; multiple sites of a common system shared a ST; and STs found in the U.S. were distinct from those identified globally. Of the 110 STs characterized from ten countries, only two were found in more than one country. The U.S. and global populations, identified as clonal and heterogeneous based on STs, showed close relatedness based on amino acid types (AATs). One predicted founder type (AAT9) and multiple predicted subgroup founder types identified for both the U.S. and the global population indicate the potential microevolution of this pathogen. This study elucidates the strain diversity and microevolution of B. hyodysenteriae, and highlights the utility of MLST for epidemiological and surveillance studies.  相似文献   

10.
Burkholderia pseudomallei soil isolates from northeast Thailand were genotyped using multiple-locus variable-number tandem repeat (VNTR) analysis (MLVA) and multilocus sequence typing (MLST). MLVA identified 19 genotypes within three clades, while MLST revealed two genotypes. These close genetic relationships imply a recent colonization followed by localized expansion, similar to what occurs in an outbreak situation.  相似文献   

11.
There are only two reports in the literature demonstrating the presence of Campylobacter spp. in marine mammals. One report describes the isolation of a new species, Campylobacter insulaenigrae sp. nov., from three harbor seals (Phoca vitulina) and a harbor porpoise (Phocoena phocoena) in Scotland, and the other describes the isolation of Campylobacter jejuni, Campylobacter lari, and an unknown Campylobacter species from northern elephant seals (Mirounga angustirostris) in California. In this study, 72 presumptive C. lari and unknown Campylobacter species strains were characterized using standard phenotypic methods, 16S rRNA PCR, and multilocus sequence typing (MLST). Phenotypic characterization of these isolates showed them to be variable in their ability to grow either at 42°C or on agar containing 1% glycine and in their sensitivity to nalidixic acid and cephalothin. Based on both 16S rRNA PCR and MLST, all but 1 of the 72 isolates were C. insulaenigrae, with one isolate being similar to but distinct from both Campylobacter upsaliensis and Campylobacter helveticus. Phylogenetic analysis identified two C. insulaenigrae clades: the primary clade, containing exclusively California strains, and a secondary clade, containing some California strains and all of the original Scottish strains. This study demonstrates the inability of phenotypic characterization to correctly identify all Campylobacter species and emphasizes the importance of molecular characterization via 16S rRNA sequence analysis or MLST for the identification of Campylobacter isolates from marine mammals.  相似文献   

12.
Clostridium difficile infection (CDI) is a leading cause of healthcare-associated morbidity and mortality worldwide. In Thailand, CDI exhibits low recurrence and mortality and its molecular epidemiology is unknown. CDI surveillance was conducted in a tertiary facility (Siriraj Hospital, Bangkok). A total of 53 toxigenic C. difficile strains from Thai patients were analyzed by multi-locus sequence typing (MLST), PCR ribotyping, and pulse-field gel electrophoresis (PFGE). The mean age of the cohort was 64 years and 62.3% were female; 37.7% of patients were exposed to > two antibiotics prior to a diagnosis of CDI, with beta-lactams the most commonly used drug (56.3%). Metronidazole was used most commonly (77.5%; success rate 83.9%), and non-responders were treated with vancomycin (success rate 100%). None of the isolates carried binary toxin genes. Most isolates (98.2–100%) were susceptible to metronidazole, vancomycin, tigecycline and daptomycin. There were 11 sequence types (STs), 13 ribotypes (RTs) and four PFGE types. Six previously identified STs (ST12, ST13, ST14, ST33, ST41 and ST45) and five novel STs unique to Thailand (ST66, ST67, ST68, ST69 and ST70) were identified. PCR RTs UK 017 (ST45) (45.3%) and UK 014/020 (ST33) (24.5%) were the most common. High concordance was observed between the MLST and ribotyping results (p<0.001). C. difficile isolates from Thai patients were highly susceptible to standard antimicrobial agents. In conclusion, the five STs indicate the high genetic diversity and unique polymorphisms in Thailand. Moreover, the emergence of antimicrobial resistance to vancomycin warranted continuous surveillance to prevent further spread of the toxigenic C. difficile isolates.  相似文献   

13.
Candida tropicalis is an important pathogen. Here we developed and evaluated a polymorphic multilocus microsatellite scheme employing novel genetic markers for genotyping of C. tropicalis. Using 10 isolates from 10 unique (separate) patients to screen over 4000 tandem repeats from the C. tropicalis genome (strain MYA-3404), six new candidate microsatellite loci (ctm1, ctm3, ctm8, ctm18, ctm24 and ctm26) were selected according to amplification success, observed polymorphisms and stability of flanking regions by preliminary testing. Two known microsatellite loci CT14 and URA3 were also studied. The 6-locus scheme was then tested against a set of 82 different isolates from 32 patients. Microsatellite genotypes of isolates from the same patient (two to five isolates per patient) were identical. The six loci produced eight to 17 allele types and identified 11 to 24 genotypes amongst 32 patients’ isolates, achieving a discriminatory power (DP) of 0.76 to 0.97 (versus 0.78 for both CT14 and URA3 loci, respectively). Testing of a combination of only three loci, ctm1, ctm3 and ctm24, also achieved maximum typing efficiency (DP = 0.99, 29 genotypes). The microsatellite typing scheme had good correlation compared with pulsed-field gel electrophoresis, although was slightly less discriminatory. The new six-locus microsatellite typing scheme is a potentially valuable tool for genotyping and investigating microevolution of C. tropicalis.  相似文献   

14.
We used multi-locus sequence typing (MLST) to investigate 35 yeast isolates representing the two genome-sequenced strains plus the type strain of Candida albicans, four isolates originally identified as Candida stellatoidea type I and 28 representing type strains of other species now regarded as synonymous with C. albicans. DNA from all 32 C. albicans synonyms readily formed PCR products with the C. albicans MLST primer sets. Their sequences placed all of them within the existing C. albicans clade structure, represented by 1516 isolates. One isolate, originally received as Mycotorula sinensis, was resistant to flucytosine, but no other unusual susceptibilities were found to polyene, azole or echinocandin antifungal agents. The four isolates of C. stellatoidea type I coclustered with two other sucrose-negative isolates, originally identified as examples of Candida africana, in a group of strains highly distinct from the majority of C. albicans. Our results not only confirm the synonymity of all the isolates with C. albicans but also confirm an obvious genotypic difference in the case of C. stellatoidea type I.  相似文献   

15.
Effective surveillance and management of pathogenic Escherichia coli relies on robust and reproducible typing methods such as multilocus sequence typing (MLST). Typing of E. coli by MLST enables tracking of pathogenic clones that are known to carry virulence factors or spread resistance, such as the globally-prevalent ST131 lineage. Standard MLST for E. coli requires sequencing of seven alleles, or a whole genome, and can take several days. Here, we have developed and validated a nucleic-acid-based MALDI-TOF mass spectrometry (MS) method for MLST as a rapid alternative to sequencing that requires minimal operator expertise. Identification of alleles was 99.6% concordant with sequencing. We employed MLST by MALDI-TOF MS to investigate diversity among 62 E. coli isolates from Sydney, Australia, carrying a bla CMY-2-like gene on an IncI1 plasmid to determine whether any dominant clonal lineages are associated with the spread of this globally-disseminated resistance gene. Thirty-four known sequence types were identified, including lineages associated with human disease, animal and environmental sources. This suggests that the dissemination of bla CMY-2-like-genes is more complex than the simple spread of successful pathogenic clones. E. coli MLST by MALDI-TOF MS, employed here for the first time, can be utilised as an automated tool for large-scale population analyses or for targeted screening for known high-risk clones in a diagnostic setting.  相似文献   

16.
Poultry and poultry products are commonly considered as the major vehicle of Campylobacter infection in humans worldwide. To reduce the number of human cases, the epidemiology of Campylobacter in poultry must be better understood. Therefore, the objective of the present study was to determine the distribution and genetic relatedness of Campylobacter in the Thai chicken production industry. During June to October 2012, entire broiler production processes (i.e., breeder flock, hatchery, broiler farm and slaughterhouse) of five broiler production chains were investigated chronologically. Representative isolates of C. jejuni from each production stage were characterized by flaA SVR sequencing and multilocus sequence typing (MLST). Amongst 311 selected isolates, 29 flaA SVR alleles and 17 sequence types (STs) were identified. The common clonal complexes (CCs) found in this study were CC-45, CC-353, CC-354 and CC-574. C. jejuni isolated from breeders were distantly related to those isolated from broilers and chicken carcasses, while C. jejuni isolates from the slaughterhouse environment and meat products were similar to those isolated from broiler flocks. Genotypic identification of C. jejuni in slaughterhouses indicated that broilers were the main source of Campylobacter contamination of chicken meat during processing. To effectively reduce Campylobacter in poultry meat products, control and prevention strategies should be aimed at both farm and slaughterhouse levels.  相似文献   

17.
Waterways should be considered in the migration routes of Campylobacter, and the genus has been isolated from several water sources. Inferences on migration routes can be made from tracking genetic types in populations found in specific habitats and testing how they are linked to other types. Water samples were taken over a 4-year period from waterways in the Upper Oconee River Watershed, Georgia, to recover isolates of thermophilic Campylobacter. The isolates were typed by multilocus sequence typing (MLST) and analyzed to determine the overall diversity of Campylobacter in that environment. Forty-seven independent isolates were recovered from 560 samples (8.4 %). Two (~4 %) isolates were Campylobacter coli, three (~6 %) isolates were putatively identified as Campylobacter lari, and the remaining 42 (~90 %) were Campylobacter jejuni. The C. jejuni and C. coli isolates were typed by the Oxford MLST scheme. Thirty sequence types (STs) were identified including 13 STs that were not found before in the MLST database, including 24 novel alleles. Of the 17 previously described STs, 10 have been isolated from humans, 6 from environmental water, and 6 from wild birds (five types from multiple sources). Seven sites had multiple positive samples, and on two occasions, the same ST was isolated at the same site. The most common type was STST61 with four isolates, and the most common clonal complex was CC179 with nine isolates. CC179 has been commonly associated with environmental water. Although some Campylobacter STs that were found in the Oconee River engage in widespread migration, most are tightly associated with or unique to environmental water sources.  相似文献   

18.
Clostridium difficile infection (CDI) is an important cause of mortality and morbidity in healthcare settings. The major virulence determinants are large clostridial toxins, toxin A (tcdA) and toxin B (tcdB), encoded within the pathogenicity locus (PaLoc). Isolates vary in pathogenicity from hypervirulent PCR-ribotypes 027 and 078 with high mortality, to benign non-toxigenic strains carried asymptomatically. The relative pathogenicity of most toxigenic genotypes is still unclear, but may be influenced by PaLoc genetic variant. This is the largest study of C. difficile molecular epidemiology performed to date, in which a representative collection of recent isolates (n = 1290) from patients with CDI in Oxfordshire, UK, was genotyped by multilocus sequence typing. The population structure was described using NeighborNet and ClonalFrame. Sequence variation within toxin B (tcdB) and its negative regulator (tcdC), was mapped onto the population structure. The 69 Sequence Types (ST) showed evidence for homologous recombination with an effect on genetic diversification four times lower than mutation. Five previously recognised genetic groups or clades persisted, designated 1 to 5, each having a strikingly congruent association with tcdB and tcdC variants. Hypervirulent ST-11 (078) was the only member of clade 5, which was divergent from the other four clades within the MLST loci. However, it was closely related to the other clades within the tcdB and tcdC loci. ST-11 (078) may represent a divergent formerly non-toxigenic strain that acquired the PaLoc (at least) by genetic recombination. This study focused on human clinical isolates collected from a single geographic location, to achieve a uniquely high density of sampling. It sets a baseline of MLST data for future comparative studies investigating genotype virulence potential (using clinical severity data for these isolates), possible reservoirs of human CDI, and the evolutionary origins of hypervirulent strains.  相似文献   

19.
Candidemia is a growing problem in hospitals all over the world. Despite advances in the medical support of critically ill patients, candidiasis leads to prolonged hospitalization, and has a crude mortality rate around 50%. We conducted a multicenter surveillance study in 16 hospitals distributed across five regions of Brazil to assess the incidence, species distribution, antifungal susceptibility, and risk factors for bloodstream infections due to Candida species. From June 2007 to March 2010, we studied a total of 2,563 nosocomial bloodstream infection (nBSI) episodes. Candida spp. was the 7th most prevalent agent. Most of the patients were male, with a median age of 56 years. A total of 64 patients (46.7%) were in the ICU when candidemia occurred. Malignancies were the most common underlying condition (32%). The crude mortality rate of candidemia during the hospital admission was 72.2%. Non-albicans species of Candida accounted for 65.7% of the 137 yeast isolates. C. albicans (34.3%), Candida parapsilosis (24.1%), Candida tropicalis (15.3%) and Candida glabrata (10.2%) were the most prevalent species. Only 47 out of 137 Candida isolates were sent to the reference laboratory for antifungal susceptibility testing. All C. albicans, C. tropicalis and C. parapsilosis isolates were susceptible to the 5 antifungal drugs tested. Among 11 C. glabrata isolates, 36% were resistant to fluconazole, and 64% SDD. All of them were susceptible to anidulafungin and amphotericin B. We observed that C. glabrata is emerging as a major player among non-albicans Candida spp. and fluconazole resistance was primarily confined to C. glabrata and C. krusei strains. Candida resistance to echinocandins and amphotericin B remains rare in Brazil.Mortality rates remain increasingly higher than that observed in the Northern Hemisphere countries, emphasizing the need for improving local practices of clinical management of candidemia, including early diagnosis, source control and precise antifungal therapy.  相似文献   

20.

Background

While the pneumococcal protein conjugate vaccines reduce the incidence in invasive pneumococcal disease (IPD), serotype replacement remains a major concern. Thus, serotype-independent protection with vaccines targeting virulence genes, such as PspA, have been pursued. PspA is comprised of diverse clades that arose through recombination. Therefore, multi-locus sequence typing (MLST)-defined clones could conceivably include strains from multiple PspA clades. As a result, a method is needed which can both monitor the long-term epidemiology of the pneumococcus among a large number of isolates, and analyze vaccine-candidate genes, such as pspA, for mutations and recombination events that could result in ‘vaccine escape’ strains.

Methodology

We developed a resequencing array consisting of five conserved and six variable genes to characterize 72 pneumococcal strains. The phylogenetic analysis of the 11 concatenated genes was performed with the MrBayes program, the single nucleotide polymorphism (SNP) analysis with the DNA Sequence Polymorphism program (DnaSP), and the recombination event analysis with the recombination detection package (RDP).

Results

The phylogenetic analysis correlated with MLST, and identified clonal strains with unique PspA clades. The DnaSP analysis correlated with the serotype-specific diversity detected using MLST. Serotypes associated with more than one ST complex had a larger degree of sequence polymorphism than a serotype associated with one ST complex. The RDP analysis confirmed the high frequency of recombination events in the pspA gene.

Conclusions

The phylogenetic tree correlated with MLST, and detected multiple PspA clades among clonal strains. The genetic diversity of the strains and the frequency of recombination events in the mosaic gene, pspA were accurately assessed using the DnaSP and RDP programs, respectively. These data provide proof-of-concept that resequencing arrays could play an important role within research and clinical laboratories in both monitoring the molecular epidemiology of the pneumococcus and detecting ‘vaccine escape’ strains among vaccine-candidate genes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号