首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background

Obesity is a major health problem. Although heritability is substantial, genetic mechanisms predisposing to obesity are not very well understood. We have performed a genome wide association study (GWA) for early onset (extreme) obesity.

Methodology/Principal Findings

a) GWA (Genome-Wide Human SNP Array 5.0 comprising 440,794 single nucleotide polymorphisms) for early onset extreme obesity based on 487 extremely obese young German individuals and 442 healthy lean German controls; b) confirmatory analyses on 644 independent families with at least one obese offspring and both parents. We aimed to identify and subsequently confirm the 15 SNPs (minor allele frequency ≥10%) with the lowest p-values of the GWA by four genetic models: additive, recessive, dominant and allelic. Six single nucleotide polymorphisms (SNPs) in FTO (fat mass and obesity associated gene) within one linkage disequilibrium (LD) block including the GWA SNP rendering the lowest p-value (rs1121980; log-additive model: nominal p = 1.13×10−7, corrected p = 0.0494; odds ratio (OR)CT 1.67, 95% confidence interval (CI) 1.22–2.27; ORTT 2.76, 95% CI 1.88–4.03) belonged to the 15 SNPs showing the strongest evidence for association with obesity. For confirmation we genotyped 11 of these in the 644 independent families (of the six FTO SNPs we chose only two representing the LD bock). For both FTO SNPs the initial association was confirmed (both Bonferroni corrected p<0.01). However, none of the nine non-FTO SNPs revealed significant transmission disequilibrium.

Conclusions/Significance

Our GWA for extreme early onset obesity substantiates that variation in FTO strongly contributes to early onset obesity. This is a further proof of concept for GWA to detect genes relevant for highly complex phenotypes. We concurrently show that nine additional SNPs with initially low p-values in the GWA were not confirmed in our family study, thus suggesting that of the best 15 SNPs in the GWA only the FTO SNPs represent true positive findings.  相似文献   

2.
Metabotropic glutamate receptor subtype 3 (mGluR3, encoded by GRM3) plays important roles in the pathophysiology of schizophrenia, depression, and drug dependence. GRM3 polymorphisms were reported to be associated with prefrontal activity, cognitive shifting, and memory capability in healthy subjects, as well as susceptibility to schizophrenia and depression. The goal of this study was to replicate the association of GRM3 with schizophrenia and depression and to explore GRM3’s potential association with heroin dependence (HD) in a Chinese population. Seventeen SNPs throughout the GRM3 gene were genotyped using MALDI-TOF within the MassARRAY system, and the allele and genotype distributions were compared between 619 healthy controls and 433 patients with schizophrenia, 409 patients with major depression, and 584 unrelated addicts. We found that GRM3 polymorphisms modulate the susceptibility to HD but do not significantly influence the risk for schizophrenia or depression. An increased risk of HD was significantly associated with the minor alleles of two GRM3 SNPs, including the T allele of rs274618 (Odds ratio (OR) = 1.631, 95% confidence interval (95%CI): 1.317–2.005), the T allele of rs274622 (OR = 1.652, 95% CI: 1.336–2.036), compared with the major alleles. The addicts carrying the minor allele of rs274618 or rs274622 had a shortened duration for transition from first use to dependence (DTFUD) in comparison to homozygote for major allele (P<0.0001 for each SNP using log rank test). Additionally, a 6-SNP haplotype within 5′ region of the GRM3 including the minor alleles of the two aforementioned SNPs was significantly associated with an increased risk of HD (P = 0.00001, OR = 1.668, 95% CI: 1.335–2.084). Our data indicated that GRM3 polymorphisms do not contribute to genetic susceptibility to schizophrenia and depression, but they confer an increased risk of HD in a Chinese population.  相似文献   

3.
Multiple lines of genetic evidence suggest a role for CNTNAP2 in autism. To assess its population impact we studied 2148 common single nucleotide polymorphisms (SNPs) using transmission disequilibrium test (TDT) across the entire ~3.3 Mb CNTNAP2 locus in 186 (408 trios) multiplex and 323 simplex families with autistic spectrum disorder (ASD). This analysis yielded two SNPs with nominal statistical significance (rs17170073, p = 2.0 x 10-4; rs2215798, p = 1.6 x 10-4) that did not survive multiple testing. In a combined analysis of all families, two highly correlated (r 2 = 0.99) SNPs in intron 14 showed significant association with autism (rs2710093, p = 9.0 x 10-6; rs2253031, p = 2.5 x 10-5). To validate these findings and associations at SNPs from previous autism studies (rs7794745, rs2710102 and rs17236239) we genotyped 2051 additional families (572 multiplex and 1479 simplex). None of these variants were significantly associated with ASD after corrections for multiple testing. The analysis of Mendelian errors within each family did not indicate any segregating deletions. Nevertheless, a study of CNTNAP2 gene expression in brains of autistic patients and of normal controls, demonstrated altered expression in a subset of patients (p = 1.9 x10-5). Consequently, this study suggests that although CNTNAP2 dysregulation plays a role in some cases, its population contribution to autism susceptibility is limited.  相似文献   

4.
Current evidence suggests a multifactorial etiology to pelvic organ prolapse (POP), including genetic predisposition. We conducted a genome-wide association study of POP in African American (AA) and Hispanic (HP) women from the Women’s Health Initiative Hormone Therapy study. Cases were defined as any POP (grades 1–3) or moderate/severe POP (grades 2–3), while controls had grade 0 POP. We performed race-specific multiple logistic regression analyses between SNPs imputed to 1000 genomes in relation to POP (grade 0 vs 1–3; grade 0 vs 2–3) adjusting for age at diagnosis, body mass index, parity, and genetic ancestry. There were 1274 controls and 1427 cases of any POP and 317 cases of moderate/severe POP. Although none of the analyses reached genome-wide significance (p<5x10-8), we noted variants in several loci that met p<10−6. In race-specific analysis of grade 0 vs 2–3, intronic SNPs in the CPE gene (rs28573326, OR:2.14; 95% CI 1.62–2.83; p = 1.0x10-7) were associated with POP in AAs, and SNPs in the gene AL132709.5 (rs1950626, OR:2.96; 95% CI 1.96–4.48, p = 2.6x10-7) were associated with POP in HPs. Inverse variance fixed-effect meta-analysis of the race-specific results showed suggestive signals for SNPs in the DPP6 gene (rs11243354, OR:1.36; p = 4.2x10-7) in the grade 0 vs 1–3 analyses and for SNPs around PGBD5 (rs740494, OR:2.17; p = 8.6x10-7) and SHC3 (rs2209875, OR:0.60; p = 9.3x10-7) in the grade 0 vs 2–3 analyses. While we did not identify genome-wide significant findings, we document several SNPs reaching suggestive statistical significance. Further interrogation of POP in larger minority samples is warranted.  相似文献   

5.
Several single nucleotide polymorphisms (SNPs) of the Glutamate metabotrophic receptor 7 gene (GRM7) have recently been identified by the genome-wide association study (GWAS) as potentially playing a role in susceptibility to age-related hearing impairment (ARHI), however this has not been validated in the Han Chinese population. The aim of this study was to determine if these SNPs are also associated with ARHI in an elderly male Han Chinese population. In this case-control candidate genes association study, a total of 982 men with ARHI and 324 normal-hearing controls subjects were studied. Using K-means cluster analysis, four audiogram shape subtypes of ARHI were identified in the case group: ‘‘flat shape (FL)’’, ‘‘sloping shape (SL)’’, ‘‘2-4 kHz abrupt loss (AL) shape’’ and ‘‘8 kHz dip (8D) shape’’. Results suggested that the SNP rs11928865 (A>T) of GRM7 was significantly associated with ARHI after adjusting for non-genetic factors (p= 0.000472, OR= 1.599, 95%CI= 1.229~2.081). Furthermore, frequency of TT genotype (rs11928865) were significant higher in the SL subgroup and AL subgroup with compared to controls group (p= 9.41E-05, OR= 1.945, 95%CI= 1.393~2.715; p= 0.000109, OR= 1.915, 95%CI= 1.378~2.661 adjusted, respectively) after Bonferroni correction. However, there wasn’t significant difference in the frequency of the TT genotype between cases in the FL subgroup or the 8D subgroup with when compared with controls. Results of the current study suggest that, in an elderly male Han Chinese population, GRM7 SNP rs11928865 (TT) occurs more frequently in ARHI patients with SL and AL phenotype patterns.  相似文献   

6.

Background

Autism spectrum disorder (ASD) is a neurodevelopmental disorder with strong genetic components. Several recent genome-wide association (GWA) studies in Caucasian samples have reported a number of gene regions and loci correlated with the risk of ASD—albeit with very little consensus across studies.

Methods

A two-stage GWA study was employed to identify common genetic variants for ASD in the Taiwanese Han population. The discovery stage included 315 patients with ASD and 1,115 healthy controls, using the Affymetrix SNP array 6.0 platform for genotyping. Several gene regions were then selected for fine-mapping and top markers were examined in extended samples. Single marker, haplotype, gene-based, and pathway analyses were conducted for associations.

Results

Seven SNPs had p-values ranging from 3.4~9.9*10−6, but none reached the genome-wide significant level. Five of them were mapped to three known genes (OR2M4, STYK1, and MNT) with significant empirical gene-based p-values in OR2M4 (p = 3.4*10−5) and MNT (p = 0.0008). Results of the fine-mapping study showed single-marker associations in the GLIS1 (rs12082358 and rs12080993) and NAALADL2 (rs3914502 and rs2222447) genes, and gene-based associations for the OR2M3-OR2T5 (olfactory receptor genes, p = 0.02), and GLIPR1/KRR1 gene regions (p = 0.015). Pathway analyses revealed important pathways for ASD, such as olfactory and G protein–coupled receptors signaling pathways.

Conclusions

We reported Taiwanese Han specific susceptibility genes and variants for ASD. However, further replication in other Asian populations is warranted to validate our findings. Investigation in the biological functions of our reported genetic variants might also allow for better understanding on the underlying pathogenesis of autism.  相似文献   

7.
Fifty percent of variability in HIV-1 susceptibility is attributable to host genetics. Thus identifying genetic associations is essential to understanding pathogenesis of HIV-1 and important for targeting drug development. To date, however, CCR5 remains the only gene conclusively associated with HIV acquisition. To identify novel host genetic determinants of HIV-1 acquisition, we conducted a genome-wide association study among a high-risk sample of 3,136 injection drug users (IDUs) from the Urban Health Study (UHS). In addition to being IDUs, HIV- controls were frequency-matched to cases on environmental exposures to enhance detection of genetic effects. We tested independent replication in the Women’s Interagency HIV Study (N=2,533). We also examined publicly available gene expression data to link SNPs associated with HIV acquisition to known mechanisms affecting HIV replication/infectivity. Analysis of the UHS nominated eight genetic regions for replication testing. SNP rs4878712 in FRMPD1 met multiple testing correction for independent replication (P=1.38x10-4), although the UHS-WIHS meta-analysis p-value did not reach genome-wide significance (P=4.47x10-7 vs. P<5.0x10-8) Gene expression analyses provided promising biological support for the protective G allele at rs4878712 lowering risk of HIV: (1) the G allele was associated with reduced expression of FBXO10 (r=-0.49, P=6.9x10-5); (2) FBXO10 is a component of the Skp1-Cul1-F-box protein E3 ubiquitin ligase complex that targets Bcl-2 protein for degradation; (3) lower FBXO10 expression was associated with higher BCL2 expression (r=-0.49, P=8x10-5); (4) higher basal levels of Bcl-2 are known to reduce HIV replication and infectivity in human and animal in vitro studies. These results suggest new potential biological pathways by which host genetics affect susceptibility to HIV upon exposure for follow-up in subsequent studies.  相似文献   

8.
Creutzfeldt-Jakob disease (CJD), included in the human transmissible spongiform encephalopathies (TSE), is widely known to be caused by an abnormal accumulation of misfolding prion protein in the brain. Human prion protein gene (PRNP) is mapped in chromosome 20p13 and many single nucleotide polymorphisms (SNPs) in PRNP have been discovered. However, the functionality of SNPs in PRNP is yet unclear, though several SNPs have been known as important mutation related with susceptibility human prion diseases. Our aim is to identify specific genotype patterns and characteristics in the PRNP genomic region and to understand susceptibility among Korean discriminated prion disease patients, suspected CJD patients and the KARE data group. Here, we have researched genotypes and SNPs allele frequencies in PRNP in discriminated prion disease patients group (n = 22), suspected prion diseases patients group (n = 163) and the Korea Association REsource (KARE) data group (n = 296) in Korea. The sequencing regions were promoter region, exon1 and exon2 with their junction parts among 481 samples. A total of 25 SNPs were shown in this study. Nucleotide frequencies of all SNPs are exceedingly tended to bias toward dominant homozygote types except in rs2756271. Genotype frequencies at codon 129 and 219 coding region were similar with previous studies in Korea and Japan. Pathogenic mutations such as 102P/L, 200E/K and 203V/I were observed in discriminated CJD patients group, and 180V/I and 232M/R were shown in suspected prion disease patients group and the KARE data group. A total of 10 SNPs were newly identified, six in the promoter region, one in exon 2 and three in the 3′ UTR. The strong and unique linkage disequilibrium (D' = 0.94, r2 = 0.89) was observed between rs57633656 and rs1800014 which is located in codon 219 coding region. We expect that these data can be provided to determine specific susceptibility and a protective factor of prion diseases not only in Koreans but also in East Asians.  相似文献   

9.

Background & Aims

Altered extrahepatic bile ducts, gut, and cardiovascular anomalies constitute the variable phenotype of biliary atresia (BA).

Methods

To identify potential susceptibility loci, Caucasian children, normal (controls) and with BA (cases) at two US centers were compared at >550000 SNP loci. Systems biology analysis was carried out on the data. In order to validate a key gene identified in the analysis, biliary morphogenesis was evaluated in 2-5-day post-fertilization zebrafish embryos after morpholino-antisense oligonucleotide knockdown of the candidate gene ADP ribosylation factor-6 (ARF6, Mo-arf6).

Results

Among 39 and 24 cases at centers 1 and 2, respectively, and 1907 controls, which clustered together on principal component analysis, the SNPs rs3126184 and rs10140366 in a 3’ flanking enhancer region for ARF6 demonstrated higher minor allele frequencies (MAF) in each cohort, and 63 combined cases, compared with controls (0.286 vs. 0.131, P = 5.94x10-7, OR 2.66; 0.286 vs. 0.13, P = 5.57x10-7, OR 2.66). Significance was enhanced in 77 total cases, which included 14 additional BA genotyped at rs3126184 only (p = 1.58x10-2, OR = 2.66). Pathway analysis of the 1000 top-ranked SNPs in CHP cases revealed enrichment of genes for EGF regulators (p<1 x10-7), ERK/MAPK and CREB canonical pathways (p<1 x10-34), and functional networks for cellular development and proliferation (p<1 x10-45), further supporting the role of EGFR-ARF6 signaling in BA. In zebrafish embryos, Mo-arf6 injection resulted in a sparse intrahepatic biliary network, several biliary epithelial cell defects, and poor bile excretion to the gall bladder compared with uninjected embryos. Biliary defects were reproduced with the EGFR-blocker AG1478 alone or with Mo-arf6 at lower doses of each agent and rescued with arf6 mRNA.

Conclusions

The BA-associated SNPs identify a chromosome 14q21.3 susceptibility locus encompassing the ARF6 gene. arf6 knockdown in zebrafish implicates early biliary dysgenesis as a basis for BA, and also suggests a role for EGFR signaling in BA pathogenesis.  相似文献   

10.
Vascular endothelial growth factor (VEGF) is an angiogenic and neurotrophic factor, secreted by endothelial cells, known to impact various physiological and disease processes from cancer to cardiovascular disease and to be pharmacologically modifiable. We sought to identify novel loci associated with circulating VEGF levels through a genome-wide association meta-analysis combining data from European-ancestry individuals and using a dense variant map from 1000 genomes imputation panel. Six discovery cohorts including 13,312 samples were analyzed, followed by in-silico and de-novo replication studies including an additional 2,800 individuals. A total of 10 genome-wide significant variants were identified at 7 loci. Four were novel loci (5q14.3, 10q21.3, 16q24.2 and 18q22.3) and the leading variants at these loci were rs114694170 (MEF2C, P = 6.79x10-13), rs74506613 (JMJD1C, P = 1.17x10-19), rs4782371 (ZFPM1, P = 1.59x10-9) and rs2639990 (ZADH2, P = 1.72x10-8), respectively. We also identified two new independent variants (rs34528081, VEGFA, P = 1.52x10-18; rs7043199, VLDLR-AS1, P = 5.12x10-14) at the 3 previously identified loci and strengthened the evidence for the four previously identified SNPs (rs6921438, LOC100132354, P = 7.39x10-1467; rs1740073, C6orf223, P = 2.34x10-17; rs6993770, ZFPM2, P = 2.44x10-60; rs2375981, KCNV2, P = 1.48x10-100). These variants collectively explained up to 52% of the VEGF phenotypic variance. We explored biological links between genes in the associated loci using Ingenuity Pathway Analysis that emphasized their roles in embryonic development and function. Gene set enrichment analysis identified the ERK5 pathway as enriched in genes containing VEGF associated variants. eQTL analysis showed, in three of the identified regions, variants acting as both cis and trans eQTLs for multiple genes. Most of these genes, as well as some of those in the associated loci, were involved in platelet biogenesis and functionality, suggesting the importance of this process in regulation of VEGF levels. This work also provided new insights into the involvement of genes implicated in various angiogenesis related pathologies in determining circulating VEGF levels. The understanding of the molecular mechanisms by which the identified genes affect circulating VEGF levels could be important in the development of novel VEGF-related therapies for such diseases.  相似文献   

11.
Following reports of an increased incidence of amyotrophic lateral sclerosis (ALS) in U.S. veterans, we have conducted a high-density genome-wide association study (GWAS) of ALS outcome and survival time in a sample of U.S. veterans. We tested ∼1.3 million single nucleotide polymorphisms (SNPs) for association with ALS outcome in 442 incident Caucasian veteran cases diagnosed with definite or probable ALS and 348 Caucasian veteran controls. To increase power, we also included genotypes from 5909 publicly-available non-veteran controls in the analysis. In the survival analysis, we tested for association between SNPs and post-diagnosis survival time in 639 Caucasian veteran cases with definite or probable ALS. After this discovery phase, we performed follow-up genotyping of 299 SNPs in an independent replication sample of Caucasian veterans and non-veterans (ALS outcome: 183 cases and 961 controls; survival: 118 cases). Although no SNPs reached genome-wide significance in the discovery phase for either phenotype, three SNPs were statistically significant in the replication analysis of ALS outcome: rs6080539 (177 kb from PCSK2), rs7000234 (4 kb from ZNF704), and rs3113494 (13 kb from LOC100506746). Two SNPs located in genes that were implicated by previous GWA studies of ALS were marginally significant in the pooled analysis of discovery and replication samples: rs17174381 in DPP6 (p = 4.4×10−4) and rs6985069 near ELP3 (p = 4.8×10−4). Our results underscore the difficulty of identifying and convincingly replicating genetic associations with a rare and genetically heterogeneous disorder such as ALS, and suggest that common SNPs are unlikely to account for a substantial proportion of patients affected by this devastating disorder.  相似文献   

12.

Background

Human genetic factors influence the outcome of pegylated interferon and ribavirin hepatitis C therapy. We explored the role of IL28B, APOH and ITPA SNPs on the outcomes of triple therapy including telaprevir or boceprevir in patients with compensated cirrhosis chronically infected with HCV-1.

Patients and Methods

A total of 256 HCV-1 Caucasian treatment-experienced patients with compensated cirrhosis from the ANRS CO20-CUPIC cohort were genotyped for a total of 10 candidate SNPs in IL28B (rs12979860 and rs368234815), APOH (rs8178822, rs12944940, rs10048158, rs52797880, rs1801689 and rs1801690) and ITPA (rs1127354 and rs7270101). We tested the association of IL28B and APOH SNPs with sustained virological response and of ITPA SNPs with anemia related phenotypes by means of logistic regression assuming an additive genetic model.

Results

None of the six APOH SNPs were associated with sustained virological response. The favorable alleles of the IL28B SNPs rs12979860 and rs368234815 were associated with sustained virological response (rs12979860: OR = 2.35[1.50–3.70], P = 2x10-4). Refined analysis showed that the effect of IL28B SNPs on sustained virological response was restricted to prior PegIFN/RBV relapse (OR = 3.80[1.82–8.92], P = 8x10-4). We also confirmed the association between ITPA low activity alleles and protection against early hemoglobin decline in triple therapy (P = 2x10-5).

Conclusion

Our results suggest that the screening of rs12979860 may remain interesting for decision making in prior relapse HCV-1 Caucasian patients with compensated cirrhosis eligible for a telaprevir- or boceprevir-based therapy.  相似文献   

13.
Set‐shifting and maintenance are complex cognitive processes, which are often impaired in schizophrenia. The genetic basis of these processes is poorly understood. We aimed to investigate the association between genetic variants of the metabotropic glutamate receptor 3 (GRM3) and cognitive set‐shifting in healthy individuals. The relationship between 14 selected single nucleotide polymorphisms (SNPs) of the GRM3 gene and cognitive set‐shifting as measured by perseverative errors using the modified card sorting test (MCST) was analysed in a sample of N = 98 young healthy individuals (mean age in years: 22.7 ± 0.19). Results show that SNP rs17676277 is related to the performance on the MCST. Subjects with the TT genotype showed significantly less perseverative errors as compared with the AA (P = 0.025) and AT (P = 0.0005) and combined AA/AT genotypes (P = 0.0005). Haplotype analyses suggest the involvement of various SNPs of the GRM3 gene in perseverative error processing in a dominant model of inheritance. The findings strongly suggest that the genetic variation (rs17676277 and three haplotypes) in the metabotropic GRM3 is related to cognitive set‐shifting in healthy individuals independent of working memory. However, because of a relatively small sample size for a genetic association study, the present results are tentative and require replication.  相似文献   

14.
《PloS one》2016,11(3)

Background

Data are limited on genome-wide association studies (GWAS) for incident coronary heart disease (CHD). Moreover, it is not known whether genetic variants identified to date also associate with risk of CHD in a prospective setting.

Methods

We performed a two-stage GWAS analysis of incident myocardial infarction (MI) and CHD in a total of 64,297 individuals (including 3898 MI cases, 5465 CHD cases). SNPs that passed an arbitrary threshold of 5×10−6 in Stage I were taken to Stage II for further discovery. Furthermore, in an analysis of prognosis, we studied whether known SNPs from former GWAS were associated with total mortality in individuals who experienced MI during follow-up.

Results

In Stage I 15 loci passed the threshold of 5×10−6; 8 loci for MI and 8 loci for CHD, for which one locus overlapped and none were reported in previous GWAS meta-analyses. We took 60 SNPs representing these 15 loci to Stage II of discovery. Four SNPs near QKI showed nominally significant association with MI (p-value<8.8×10−3) and three exceeded the genome-wide significance threshold when Stage I and Stage II results were combined (top SNP rs6941513: p = 6.2×10−9). Despite excellent power, the 9p21 locus SNP (rs1333049) was only modestly associated with MI (HR = 1.09, p-value = 0.02) and marginally with CHD (HR = 1.06, p-value = 0.08). Among an inception cohort of those who experienced MI during follow-up, the risk allele of rs1333049 was associated with a decreased risk of subsequent mortality (HR = 0.90, p-value = 3.2×10−3).

Conclusions

QKI represents a novel locus that may serve as a predictor of incident CHD in prospective studies. The association of the 9p21 locus both with increased risk of first myocardial infarction and longer survival after MI highlights the importance of study design in investigating genetic determinants of complex disorders.  相似文献   

15.

Background

Attention deficit hyperactivity disorder (ADHD) is a highly heritable neuropsychiatric condition, but it has been difficult to identify genes underlying this disorder. This study aimed to explore genetics of ADHD in an ethnically homogeneous Norwegian population by means of a genome-wide association (GWA) analysis followed by examination of candidate loci.

Materials and Methods

Participants were recruited through Norwegian medical and birth registries as well as the general population. Presence of ADHD was defined according to DSM-IV criteria. Genotyping was performed using Illumina Human OmniExpress-12v1 microarrays. Statistical analyses were divided into several steps: (1) genome-wide association in the form of logistic regression in PLINK and follow-up pathway analyses performed in DAPPLE and INRICH softwares, (2) SNP-heritability calculated using genome-wide complex trait analysis (GCTA) tool, (3) gene-based association tests carried out in JAG software, and (4) evaluation of previously reported genome-wide signals and candidate genes of ADHD.

Results

In total, 1.358 individuals (478 cases and 880 controls) and 598.384 autosomal SNPs were subjected to GWA analysis. No single polymorphism reached genome-wide significance. The strongest signal was observed at rs9949006 in the ENSG00000263745 gene (OR=1.51, 95% CI 1.28–1.79, p=1.38E-06). Pathway analyses of the top SNPs implicated genes involved in the regulation of gene expression, cell adhesion and inflammation. Among previously identified ADHD candidate genes, prominent association signals were observed for SLC9A9 (rs1393072, OR=1.46, 95% CI = 1.21–1.77, p=9.95E-05) and TPH2 (rs17110690, OR = 1.38, 95% CI = 1.14–1.66, p=8.31E-04).

Conclusion

This study confirms the complexity and heterogeneity of ADHD etiology. Taken together with previous findings, our results point to a spectrum of biological mechanisms underlying the symptoms of ADHD, providing targets for further genetic exploration of this complex disorder.  相似文献   

16.
Multiple loss-of-function (LOF) alleles at the same gene may influence a phenotype not only in the homozygote state when alleles are considered individually, but also in the compound heterozygote (CH) state. Such LOF alleles typically have low frequencies and moderate to large effects. Detecting such variants is of interest to the genetics community, and relevant statistical methods for detecting and quantifying their effects are sorely needed. We present a collapsed double heterozygosity (CDH) test to detect the presence of multiple LOF alleles at a gene. When causal SNPs are available, which may be the case in next generation genome sequencing studies, this CDH test has overwhelmingly higher power than single SNP analysis. When causal SNPs are not directly available such as in current GWA settings, we show the CDH test has higher power than standard single SNP analysis if tagging SNPs are in linkage disequilibrium with the underlying causal SNPs to at least a moderate degree (r2>0.1). The test is implemented for genome-wide analysis in the publically available software package GenABEL which is based on a sliding window approach. We provide the proof of principle by conducting a genome-wide CDH analysis of red hair color, a trait known to be influenced by multiple loss-of-function alleles, in a total of 7,732 Dutch individuals with hair color ascertained. The association signals at the MC1R gene locus from CDH were uniformly more significant than traditional GWA analyses (the most significant P for CDH = 3.11×10−142 vs. P for rs258322 = 1.33×10−66). The CDH test will contribute towards finding rare LOF variants in GWAS and sequencing studies.  相似文献   

17.
Genome-wide association (GWA) studies have identified many candidate genes that are associated with blood lipid and lipoprotein concentrations. In this study, we want to know whether the results from European for lipid-related single-nucleotide polymorphisms (SNPs) are generalizable to Chinese children. We genotyped seven SNPs in Chinese school-age children (n = 3,503) and assessed the associations of these SNPs with lipids profiles and dyslipidemia. After false discovery rate correction, of the seven SNPs, six (rs2144300, p ~ 9.30 × 10?3; rs1260333, p ~ 6.20 × 10?11; rs1260326, p ~ 8.73 × 10?11; rs10105606, p ~ 0.010; rs1748195, p ~ 0.016 and rs964184, p ~ 2.33 × 10?13) showed strong association with triglycerides. Three SNPs (rs1260333, p ~ 3.30 × 10?3; rs1260326, p ~ 4.39 × 10?3 and rs2954029, p ~ 6.36 × 10?4) showed strong association with total cholesterol. Two SNPs (rs10105606, p ~ 6.66 × 10?4 and rs1748195, p ~ 2.55 × 10?3) showed strong association with high density lipoprotein cholesterol. Four SNPs (rs1260333, p ~ 0.017; rs1260326, p ~ 0.013; rs2954029, p ~ 1.09 × 10?3 and rs964184, p ~ 5.51 × 10?3) showed strong association with low density lipoprotein cholesterol. There were significant associations between rs1260333 (OR is 0.82, 95 % CI 0.74–0.92, p ~ 3.96 × 10?4), rs1260326 (OR is 0.82, 95 % CI 0.74–0.92, p ~ 5.31 × 10?4), and rs964184 (OR is 1.36, 95 % CI 1.20–1.55, p ~ 1.89 × 10?6) and dyslipidemia. These SNPs generated strong combined effects on lipid profiles and dyslipidemia. Our study demonstrates that SNPs associated with lipids from European GWA studies also play roles in Chinese children, which broadened the understanding of lipids metabolism.  相似文献   

18.
CD6 has recently been identified and validated as risk gene for multiple sclerosis (MS), based on the association of a single nucleotide polymorphism (SNP), rs17824933, located in intron 1. CD6 is a cell surface scavenger receptor involved in T-cell activation and proliferation, as well as in thymocyte differentiation. In this study, we performed a haptag SNP screen of the CD6 gene locus using a total of thirteen tagging SNPs, of which three were non-synonymous SNPs, and replicated the recently reported GWAS SNP rs650258 in a Spanish-Basque collection of 814 controls and 823 cases. Validation of the six most strongly associated SNPs was performed in an independent collection of 2265 MS patients and 2600 healthy controls. We identified association of haplotypes composed of two non-synonymous SNPs [rs11230563 (R225W) and rs2074225 (A257V)] in the 2nd SRCR domain with susceptibility to MS (P max(T) permutation = 1×10−4). The effect of these haplotypes on CD6 surface expression and cytokine secretion was also tested. The analysis showed significantly different CD6 expression patterns in the distinct cell subsets, i.e. – CD4+ naïve cells, P = 0.0001; CD8+ naïve cells, P<0.0001; CD4+ and CD8+ central memory cells, P = 0.01 and 0.05, respectively; and natural killer T (NKT) cells, P = 0.02; with the protective haplotype (RA) showing higher expression of CD6. However, no significant changes were observed in natural killer (NK) cells, effector memory and terminally differentiated effector memory T cells. Our findings reveal that this new MS-associated CD6 risk haplotype significantly modifies expression of CD6 on CD4+ and CD8+ T cells.  相似文献   

19.

Background

The genetic and molecular basis of glutamatergic dysfunction is one key to understand schizophrenia, with the identification of an intermediate phenotype being an essential step. Mismatch negativity (MMN) or its magnetic counterpart, magnetic mismatch field (MMF) is an index of preattentive change detection processes in the auditory cortex and is generated through glutamatergic neurotransmission. We have previously shown that MMN/MMF in response to phoneme change is markedly reduced in schizophrenia. Variations in metabotropic glutamate receptor (GRM3) may be associated with schizophrenia, and has been shown to affect cortical function. Here we investigated the effect of GRM3 genotypes on phonetic MMF in healthy men.

Methods

MMF in response to phoneme change was recorded using magnetoencephalography in 41 right-handed healthy Japanese men. Based on previous genetic association studies in schizophrenia, 4 candidate SNPs (rs6465084, rs2299225, rs1468412, rs274622) were genotyped.

Results

GRM3 rs274622 genotype variations significantly predicted MMF strengths (p = 0.009), with C carriers exhibiting significantly larger MMF strengths in both hemispheres compared to the TT subjects.

Conclusions

These results suggest that variations in GRM3 genotype modulate the auditory cortical response to phoneme change in humans. MMN/MMF, particularly those in response to speech sounds, may be a promising and sensitive intermediate phenotype for clarifying glutamatergic dysfunction in schizophrenia.  相似文献   

20.
Kawasaki disease (KD) is a systemic vasculitis primarily affecting children < 5 years old. Genes significantly associated with KD mostly involve cardiovascular, immune, and inflammatory responses. Recent studies have observed stronger associations for KD risk with multiple genes compared to individual genes. Therefore, we investigated whether gene combinations influenced KD susceptibility or coronary artery lesion (CAL) formation. We examined 384 single-nucleotide polymorphisms (SNPs) for 159 immune-related candidate genes in DNA samples from KD patients with CAL (n = 73), KD patients without CAL (n = 153), and cohort controls (n = 575). Individual SNPs were first assessed by univariate analysis (UVA) and multivariate analysis (MVA). We used multifactor dimensionality reduction (MDR) to examine individual SNPs in one-, two-, and three-locus best fit models. UVA identified 53 individual SNPs that were significantly associated with KD risk or CAL formation (p < 0.10), while 35 individual SNPs were significantly associated using MVA (p ≤ 0.05). Significant associations in MDR analysis were only observed for the two-locus models after permutation testing (p ≤ 0.05). In logistic regression, combined possession of PDE2A (rs341058) and CYFIP2 (rs767007) significantly increased KD susceptibility (OR = 3.54; p = 4.14 x 10−7), while combinations of LOC100133214 (rs2517892) and IL2RA (rs3118470) significantly increased the risk of CAL in KD patients (OR = 5.35; p = 7.46 x 10−5). Our results suggest varying gene-gene associations respectively predispose individuals to KD risk or its complications of CAL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号