首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Identification of fragile sites is a way to investigate the genetic abnormalities that are the hallmark of cancer and play an important role in carcinogenesis. Manifestation of nonrandom breakage at a chromosome band is an essential criterion for determination of the fragility of the band. In this article, a new detection procedure is proposed. This new procedure takes the relationship of one site with the others into consideration and can be applied to tests of the randomness of breakpoints under either the proportional probability model (PPM) or the equiprobability model (EPM). The procedure can form a grouping structure that classifies all sites into several clusters. It is applied to identification of fragile sites for a real data set for Chinese patients with colorectal carcinoma for illustration of the proposed method.  相似文献   

2.
To ascertain a leading or lagging strand preference for duplication mutations, several short DNA sequences, i.e. mutation inserts, were designed that should demonstrate an asymmetric propensity for duplication mutations in the two complementary DNA strands during replication. The design of the mutation insert involved a 7-bp quasi inverted repeat that forms a remarkably stable hairpin in one DNA strand, but not the other. The inverted repeat is asymmetrically placed between flanking direct repeats. This sequence was cloned into a modified chloramphenicol acetyltransferase (CAT) gene containing a −1 frameshift mutation. Duplication of the mutation insert restores the reading frame of the CAT gene resulting in a chloramphenicol resistant phenotype. The mutation insert showed greater than a 200-fold preference for duplication mutations during leading strand, compared with lagging strand, replication. This result suggests that misalignment stabilized by DNA secondary structure, leading to duplication between direct repeats, occurred preferentially during leading strand synthesis.  相似文献   

3.
人染色体脆性部位3P14扫描电镜的初步观察   总被引:1,自引:0,他引:1  
曹来蓉  邹国祥 《遗传学报》1989,16(6):483-485
本文对人外周血淋巴细胞染色体最常见的脆性部位3P14进行了扫描电镜的初步观察。发现电镜下fra(3P14)的单体断裂或裂隙可能为DNA纤维的包装不全图象,并表现出不同形态特征。  相似文献   

4.
采用显微分光光度法,对染色体脆性位点的部位进行了显微光谱学研究。实验证明,带有脆点的染色体其DNA含量大多数趋向减少,少数略有增加,推测染色体脆性部位的产生是由于染色质DNA在高度凝缩形成中期染色体过程中超旋结构改变的结果。 The position of fragile sites in human chromosome was studied by means of the microspectroscopy. The results show that the amount DNA in chromosome with fragile sites decreases in most condition. We can suppose that the fragile sites of chromosome is caused by the superhelix structure changes of chromosome DNA during the formation of metaphase chromosome which is formed in high condensation.  相似文献   

5.
While primordial life is thought to have been RNA-based (Cech, Cold Spring Harbor Perspect. Biol. 4 (2012) a006742), all living organisms store genetic information in DNA, which is chemically more stable. Distinctions between the RNA and DNA worlds and our views of “DNA” synthesis continue to evolve as new details emerge on the incorporation, repair and biological effects of ribonucleotides in DNA genomes of organisms from bacteria through humans.  相似文献   

6.
7.
DNA instability at chromosomal fragile sites in cancer   总被引:3,自引:0,他引:3  
Human chromosomal fragile sites are specific genomic regions which exhibit gaps or breaks on metaphase chromosomes following conditions of partial replication stress. Fragile sites often coincide with genes that are frequently rearranged or deleted in human cancers, with over half of cancer-specific translocations containing breakpoints within fragile sites. But until recently, little direct evidence existed linking fragile site breakage to the formation of cancer-causing chromosomal aberrations. Studies have revealed that DNA breakage at fragile sites can induce formation of RET/PTC rearrangements, and deletions within the FHIT gene, resembling those observed in human tumors. These findings demonstrate the important role of fragile sites in cancer development, suggesting that a better understanding of the molecular basis of fragile site instability is crucial to insights in carcinogenesis. It is hypothesized that under conditions of replication stress, stable secondary structures form at fragile sites and stall replication fork progress, ultimately resulting in DNA breaks. A recent study examining an FRA16B fragment confirmed the formation of secondary structure and DNA polymerase stalling within this sequence in vitro, as well as reduced replication efficiency and increased instability in human cells. Polymerase stalling during synthesis of FRA16D has also been demonstrated. The ATR DNA damage checkpoint pathway plays a critical role in maintaining stability at fragile sites. Recent findings have confirmed binding of the ATR protein to three regions of FRA3B under conditions of mild replication stress. This review will discuss recent advances made in understanding the role and mechanism of fragile sites in cancer development.  相似文献   

8.
9.
Ribonucleotide monophosphates (rNMPs) are among the most frequent form of DNA aberration, as high ratios of ribonucleotide triphosphate:deoxyribonucleotide triphosphate pools result in approximately two misincorporated rNMPs/kb of DNA. The main pathway for the removal of rNMPs is by RNase H2. However, in a RNase H2 knock-out yeast strain, a topoisomerase I (Top1)-dependent mutator effect develops with accumulation of short deletions within tandem repeats. Proposed models for these deletions implicated processing of Top1-generated nicks at rNMP sites and/or sequential Top1 binding, but experimental support has been lacking thus far. Here, we investigated the biochemical mechanism of the Top1-induced short deletions at the rNMP sites by generating nicked DNA substrates bearing 2′,3′-cyclic phosphates at the nick sites, mimicking the Top1-induced nicks. We demonstrate that a second Top1 cleavage complex adjacent to the nick and subsequent faulty Top1 religation led to the short deletions. Moreover, when acting on the nicked DNA substrates containing 2′,3′-cyclic phosphates, Top1 generated not only the short deletion, but also a full-length religated DNA product. A catalytically inactive Top1 mutant (Top1-Y723F) also induced the full-length products, indicating that Top1 binding independent of its enzymatic activity promotes the sealing of DNA backbones via nucleophilic attacks by the 5′-hydroxyl on the 2′,3′-cyclic phosphate. The resealed DNA would allow renewed attempt for repair by the error-free RNase H2-dependent pathway in vivo. Our results provide direct evidence for the generation of short deletions by sequential Top1 cleavage events and for the promotion of nick religation at rNMP sites by Top1.  相似文献   

10.
11.
i-Motifs are four-stranded DNA secondary structures which can form in sequences rich in cytosine. Stabilised by acidic conditions, they are comprised of two parallel-stranded DNA duplexes held together in an antiparallel orientation by intercalated, cytosine–cytosine+ base pairs. By virtue of their pH dependent folding, i-motif forming DNA sequences have been used extensively as pH switches for applications in nanotechnology. Initially, i-motifs were thought to be unstable at physiological pH, which precluded substantial biological investigation. However, recent advances have shown that this is not always the case and that i-motif stability is highly dependent on factors such as sequence and environmental conditions. In this review, we discuss some of the different i-motif structures investigated to date and the factors which affect their topology, stability and dynamics. Ligands which can interact with these structures are necessary to aid investigations into the potential biological functions of i-motif DNA and herein we review the existing i-motif ligands and give our perspective on the associated challenges with targeting this structure.  相似文献   

12.
潘学峰 《遗传学报》2006,33(1):1-11
与三核苷酸重复序列CAG.CTG、CGG·CCG和GAA·TTC扩增和缺失有关的分子机制尚不能得到清楚的阐释.体外研究表明,上述疾病相关的重复序列可以在体外形成non-B二级结构,并介导重复序列扩增.然而,迄今为止,类似的观察尚未在体内研究过程中得以实现.利用模型生物大肠杆菌和酵母等进行的有关研究并不能模拟三核苷酸重复序列的扩增,这暗示三核苷酸重复序列的体内扩增可能与重复序列形成non-B二级结构关联性并不大.尽管理论上较长的三核苷酸重复序列可以在复制和后复制过程中较易形成non-B DNA二级结构,但这样的二级结构倾向于导致重复序列出现"脆性",而不是扩增.事实上,患者所具有的三核苷酸重复序列扩增并非一定需要通过non-B二级结构的介导,这些重复序列的扩增是可以通过一种RNA转录诱导的局部DNA重复序列的复制和其后的DNA重排得以发生.  相似文献   

13.
14.
Expansion of triplex-forming GAA/TTC repeats in the first intron of FXN gene results in Friedreich's ataxia. Besides FXN, there are a number of other polymorphic GAA/TTC loci in the human genome where the size variations thus far have been considered to be a neutral event. Using yeast as a model system, we demonstrate that expanded GAA/TTC repeats represent a threat to eukaryotic genome integrity by triggering double-strand breaks and gross chromosomal rearrangements. The fragility potential strongly depends on the length of the tracts and orientation of the repeats relative to the replication origin, which correlates with their propensity to adopt triplex structure and to block replication progression. We show that fragility is mediated by mismatch repair machinery and requires the MutSbeta and endonuclease activity of MutLalpha. We suggest that the mechanism of GAA/TTC-induced chromosomal aberrations defined in yeast can also operate in human carriers with expanded tracts.  相似文献   

15.
The removal of initiating primers from the 5′-ends of each Okazaki fragment, required for the generation of contiguous daughter strands, can be catalyzed by the combined action of DNA polymerase δ and Fen1. When the flaps generated by displacement of DNA synthesis activity of polymerase δ become long enough to bind replication protein A or form hairpin structures, the helicase/endonuclease enzyme, Dna2, becomes critical because of its ability to remove replication protein A-coated or secondary structure flaps. In this study, we show that the N-terminal 45-kDa domain of Dna2 binds hairpin structures, allowing the enzyme to target secondary structure flap DNA. We found that this activity was essential for the efficient removal of hairpin flaps by the endonuclease activity of Dna2 with the aid of its helicase activity. Thus, the efficient removal of hairpin structure flaps requires the coordinated action of all three functional domains of Dna2. We also found that deletion of the N-terminal 45-kDa domain of Dna2 led to a partial loss of the intra-S-phase checkpoint function and an increased rate of homologous recombination in yeast. We discuss the potential roles of the N-terminal domain of Dna2 in the maintenance of genomic stability.  相似文献   

16.
丁酰胆碱酯酶结构研究新进展   总被引:1,自引:0,他引:1  
丁酰胆碱酯酶(butyrylcholinesterase, BChE, EC 3.1.1.8),能与有机磷毒剂或杀虫剂结合,并能水解许多酯类、肽类及酰胺类化合物,对这些化合物的中毒具有防治作用.近年来通过计算机模拟技术及定点突变技术对其结构研究取得了重要进展,对人BChE外周阴离子部位的结构有了新的认识, 并通过氨基酸替换使BChE获得了水解有机磷酸酐的新功能.  相似文献   

17.
Fanconi anemia is a genetically heterogeneous disorder associated with chromosome instability and a highly elevated risk for developing cancer. The mutated genes encode proteins involved in the cellular response to DNA replication stress. Fanconi anemia proteins are extensively connected with DNA caretaker proteins, and appear to function as a hub for the coordination of DNA repair with DNA replication and cell cycle progression. At a molecular level, however, the raison d’être of Fanconi anemia proteins still remains largely elusive. The thirteen Fanconi anemia proteins identified to date have not been embraced into a single and defined biological process. To help put the Fanconi anemia puzzle into perspective, we begin this review with a summary of the strategies employed by prokaryotes and eukaryotes to tolerate obstacles to the progression of replication forks. We then summarize what we know about Fanconi anemia with an emphasis on biochemical aspects, and discuss how the Fanconi anemia network, a late acquisition in evolution, may function to permit the faithful and complete duplication of our very large vertebrate chromosomes.  相似文献   

18.
Abstract

In this paper, we propose a nongraphical representation for protein secondary structures. By counting the frequency of occurrence of all possible four-tuples (i.e., four-letter words) of a protein secondary structure sequence, we construct a set of 3 × 3 matrices for the corresponding protein secondary structure sequence. Furthermore, the leading eigenvalues of these matrices are computed and considered as invariants for the protein secondary structure sequences. To illustrate the utility of our approach, we apply it to a set of real data to distinguish protein structural classes. The result indicates that it can be used to complement the classification of protein secondary structures.  相似文献   

19.
John A. Reidy 《Mutation research》1988,200(1-2):215-220
This paper is a discussion of the possible roles of deoxyuridine incorporation into DNA and DNA-repair processes in the expression of the folate-sensitive, common chromosomal fragile sites. Expression of aberrations at these sites increases under conditions expected to increase deoxyuridine incorporation into the chromosome. It is likely that this abnormal base is removed by an excision-repair process that results in transient chromosome breaks; these breaks are seen as chromosome aberrations if repair is not completed before metaphase. Analogous events may account for other types of chromosome aberrations including the so-called “spontaneous” aberrations, the rare folate-sensitive fragile sites, and fragile sites induced by other means.  相似文献   

20.
Structure-prone DNA repeats are common components of genomic DNA in all kingdoms of life. In humans, these repeats are linked to genomic instabilities that result in various hereditary disorders, including many cancers. It has long been known that DNA repeats are not only highly polymorphic in length but can also cause chromosomal fragility and stimulate gross chromosomal rearrangements, i.e., deletions, duplications, inversions, translocations and more complex shuffles. More recently, it has become clear that inherently unstable DNA repeats dramatically elevate mutation rates in surrounding DNA segments and that these mutations can occur up to ten kilobases away from the repetitive tract, a phenomenon we call repeat-induced mutagenesis (RIM). This review describes experimental data that led to the discovery and characterization of RIM and discusses the molecular mechanisms that could account for this phenomenon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号