首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
CagA is a major virulence factor of Helicobacter pylori involved in host cell modulation. The C-terminal part of CagA containing the EPIYA motifs is highly variable and is important for the biological activity of the protein. The aim of this study was consideration of the changes in cagA tyrosine phosphorylation motifs (TPMs) of H. pylori. A set of 302 H. pylori DNA samples from the Iranian population from 2006 to 2011 was selected for the proposed study. The cagA gene and its TPMs were assessed by using polymerase chain reaction (PCR) and specific primers. The prevalence of the cagA gene in our study ranged from 91.43 % to 97.06 % (with an average of 95.03 %). Out of the cagA-positive samples, the prevalence of TPMs A and B increased from 12.5 % and 23.44 % to 71.2 % and 63.63 %, respectively. Also, the prevalence of samples infected with Western and East Asian types of H. pylori ranged from 64.06 % to 5.73 % for the Western type and 17.19 % to 51.59 % for the East Asian type. Overall, our results showed a high prevalence of the cagA gene. Also, it seems that cagA TPMs of H. pylori is undergoing a change from the Western type to the East Asian type in Iran.  相似文献   

2.
CagA is transported into host target cells and subsequently phosphorylated. Clearly this is a mechanism by which Helicobacter pylori could take control of one or more host cell signal transduction pathways. Presumably the end result of this interaction favors survival of H. pylori, irrespective of eventual damage to the host cell. CagA is noted for its amino acid (AA) sequence diversity, both within and outside the variable region of the molecule. The primary purpose of this review is to examine how variation in the type and number of CagA phosphorylation sites might determine the outcome of infection by different strains of H. pylori. The answer to this question could help to explain the widely disparate results obtained when H. pylori CagA status has been compared to type and severity of disease outcome in different populations, that is in different countries. Analysis of all available CagA sequences revealed that CagA contains both tyrosine phosphorylation motifs (TPMs) and cyclic-AMP-dependent phosphorylation motifs (CPMs). There are two potential CPMs near the N-terminus of CagA and at least two in the repeat region; these are not all equally well conserved. We also defined a 48-residue AA sequence, which includes the N-terminal TPM at tyrosine (Y)-122, which distinguishes between Eastern (Hong Kong-Taiwan-Japan-Thailand) H. pylori isolates and those from the West (Europe-Africa-the Americas-Australia). All 28 of the Eastern type CagA proteins have a functional N-terminal TPM whereas 11 of 47 (23.4%) of the Western type contain an inactive motif, with threonine (T) replacing the critical aspartic acid (D) residue. Only 13 of 24 (54%) known CagA sequences have an active TPM in the repeat region and only one has two TPMs in this region. The potential TPM near the C-terminus of CagA is not likely to be important since only 3 of 24 (12.5%) sequences were found to be intact. Protein database searches revealed that the AA sequence immediately following the TPM at Y-122 in CagA is homologous with a pair of PDZ domains which are common in signal transducing proteins, particularly tyrosine phosphatases. This provides a theoretical link between CagA and many of the observed responses of host cells to H. pylori. In summary, not all CagA proteins are equal in their potential for initiating host cell responses via signal transduction pathways. The degree of functional diversity of this protein depends upon which phosphorylation motifs are critical to the biological activity of CagA.  相似文献   

3.
Nam YH  Ryu E  Lee D  Shim HJ  Lee YC  Lee ST 《Helicobacter》2011,16(4):276-283
Background: Infection of cagA‐positive Helicobacter pylori is associated with increased expression of MMPs in gastric epithelial cells. The role of phosphorylated CagA in the induction of MMP‐9, a protease‐degrading basement membrane, in gastric epithelial cells has not been clearly defined yet. The aim of this study is to analyze whether the presence of CagA and its phosphorylation status play a role in increased expression of MMP‐9 in gastric epithelial cells. Materials and Methods: Induction of MMP‐9 secretion was analyzed in gastric epithelial AGS cells harboring CagA with or without EPIYA motif, which is injected by H. pylori or ectopically expressed. In addition, signaling pathways involved in the CagA‐dependent MMP‐9 production have been studied. Results: The 147C strain of H. pylori expressing tyrosine‐phosphorylated CagA (EPIYA present) induced higher MMP‐9 secretion by AGS cells than the 147A strain expressing non‐tyrosine‐phosphorylated CagA (EPIYA absent). In addition, in bacteria‐free CagA‐inducible AGS cells, expression of wild‐type CagA induced more MMP‐9 secretion than phosphorylation‐resistant CagA. Inhibition of CagA phosphorylation by the Src family kinase inhibitor PP1 downregulated CagA‐mediated MMP‐9 secretion. Knockdown of SHP‐2 phosphatase dramatically reduced MMP‐9 secretion. ERK inhibitors, PD98059 and U0126, and NF‐κB pathway inhibitors, sulfasalazine and N‐acetyl‐l ‐cysteine, also inhibited MMP‐9 expression. Conclusion: These results support a model whereby the EPIYA motif of CagA is phosphorylated by Src family kinases in gastric epithelial cells, which initiates activation of SHP‐2. In addition, they suggest that the resultant activation of ERK pathway along with CagA‐dependent NF‐κB activation is critical for the induction of MMP‐9 secretion.  相似文献   

4.

Background  

Helicobacter pylori infection is one of the most common infections worldwide and is associated with gastric cancer and peptic ulcer. Bacterial virulence factors such as CagA have been shown to increase the risk of both diseases. Studies have suggested a causal role for CagA EPIYA polymorphisms in gastric carcinogenesis, and it has been shown to be geographically diverse. We studied associations between H. pylori CagA EPIYA patterns and gastric cancer and duodenal ulcer, in an ethnically admixed Western population from Brazil. CagA EPIYA was determined by PCR and confirmed by sequencing. A total of 436 patients were included, being 188 with gastric cancer, 112 with duodenal ulcer and 136 with gastritis.  相似文献   

5.
CagA protein is the most assessed effecter molecule of Helicobacter pylori. In this report, we demonstrate how CagA protein regulates the functions of dendritic cells (DC) against H. pylori infection. In addition, we found that CagA protein was tyrosine-phosphorylated in DC. The responses to cagA-positive H. pylori in DC were reduced in comparison to those induced by cagA-negative H. pylori. CagA-overexpressing DC also exhibited a decline in the responses against LPS stimulation and the differentiation of CD4+ T cells toward Th1 type cells compared to wild type DC. In addition, the level of phosphorylated IRF3 decreased in CagA-overexpressing DC stimulated with LPS, indicating that activated SHP-2 suppressed the enzymatic activity of TBK1 and consequently IRF3 phosphorylation. These data suggest that CagA protein negatively regulates the functions of DC via CagA phosphorylation and that cagA-positive H. pylori strains suppress host immune responses resulting in their chronic colonization of the stomach.  相似文献   

6.
Background. Helicobacter pylori CagA is injected into the host cell and tyrosine‐phosphorylated. We examined tyrosine‐phosphorylation sites of CagA, as well as the function of CagA proteins in vivo and in vitro. Methods. After proteolytic digestion of CagA with lysyl endopeptidase, CagA tyrosine‐phosphorylation sites were determined using quadropolar time‐of‐flight (Q‐TOF) mass spectrometry analysis. Specific anti‐pY CagA polyclonal and anti‐CagA monoclonal antibodies were used to examine gastric mucosal biopsy specimens from H. pylori infected patients. Results. Mass spectrometry identified five crucial tyrosine‐phosphorylation sites of CagA at Tyr893, Tyr912, Tyr965, Tyr999, and Tyr1033 within the five repeated EPIYA sequences of H. pylori (NCTC11637)‐infected AGS cells. CagA protein also had an immuno‐receptor tyrosine‐based activation motif (ITAM)‐like amino acid sequences in the 3′ region of the cagA, E PIY ATI x27EIY ATI , which closely resembled the ITAM. CagA proteins: (i) were localized to the 1% TritonX‐100 resistant membrane fraction (lipid rafts); (ii) formed a cluster of phosphorylated CagA protein complexes; (iii) associated with tyrosine‐phosphorylated GIT1/Cat1 (G protein‐coupled receptor kinase‐interactor 1/Cool‐associated tyrosine‐phosphorylated 1), substrate molecules of receptor type protein‐tyrosine phosphatase (RPTPζ/β), which is the receptor of VacA; and (iv) were involved in a delay and negative regulation of VacA‐induced signal. Furthermore, immunohistochemical staining of gastric mucosal biopsy specimens provided strong evidence that tyrosine‐phosphorylated CagA is found together with CagA at the luminal surface of gastric foveola in vivo. Conclusion. These findings suggest an important role for CagA containing ITAM‐like sequences in the pathogenesis of H. pylori‐related disease.  相似文献   

7.
Background and Aims: Helicobacter pylori is a highly diverse pathogen, which encounters epithelial cells as the initial defense barrier during its lifelong infection. The structure of epithelial cells can be disrupted through cleavage of microfilaments. Cytokeratin 18 (CK18) is an intermediate filament, the cleavage of which is considered an early event during apoptosis following activation of effector caspases. Methods: Helicobacter pylori strains were isolated from 76 dyspeptic patients. cagA 3’ variable region and CagA protein status were analyzed by PCR and western blotting, respectively. Eight hours post‐co‐culture of AGS cells with different H. pylori strains, flow cytometric analysis was performed using M30 monoclonal antibody specific to CK18 cleavage‐induced neo‐epitope. Results: Higher rates of CK18 cleavage were detected during co‐culture of AGS cells with H. pylori strains bearing greater numbers of cagA EPIYA‐C and multimerization (CM) motifs. On the other hand, H. pylori strains with greater numbers of EPIYA‐B relative to EPIYA‐C demonstrated a decrease in CK18 cleavage rate. Thus, H. pylori‐mediated cleavage of CK18 appeared proportional to the number of CagA EPIYA‐C and CM motifs, which seemed to be downplayed in the presence of EPIYA‐B motifs. Conclusions: Our observation associating the heterogeneity of cagA variants with the potential of H. pylori strains in the induction of CK18 cleavage as an early indication of apoptosis in gastric epithelial cells supports the fact that apoptosis may be a type‐specific trait. However, additional cagA‐targeted experiments are required to clearly identify the role of EPIYA and CM motifs in apoptosis and/or the responsible effector molecules.  相似文献   

8.
Bacterial infections typically elicit a strong Heat Shock Response (HSR) in host cells. However, the gastric pathogen Helicobacter pylori has the unique ability to repress this response, the mechanism of which has yet to be elucidated. This study sought to characterize the underlying mechanisms by which H. pylori down-modulates host HSP expression upon infection. Examination of isogenic mutant strains of H. pylori defective in components of the type IV secretion system (T4SS), identified the secretion substrate, CagA, to be essential for down-modulation of the HSPs HSPH1 (HSP105), HSPA1A (HSP72), and HSPD1 (HSP60) upon infection of the AGS gastric adenocarcinoma cell line. Ectopic expression of CagA by transient transfection was insufficient to repress HSP expression in AGS or HEK293T cells, suggesting that additional H. pylori factors are required for HSP repression. RT-qPCR analysis of HSP gene expression in AGS cells infected with wild-type H. pylori or isogenic cagA-deletion mutant found no significant change to account for reduced HSP levels. In summary, this study identified CagA to be an essential bacterial factor for H. pylori-mediated suppression of host HSP expression. The novel finding that HSPH1 is down-modulated by H. pylori further highlights the unique ability of H. pylori to repress the HSR within host cells. Elucidation of the mechanism by which H. pylori achieves HSP repression may prove to be beneficial in the identification of novel mechanisms to inhibit the HSR pathway and provide further insight into the interactions between H. pylori and the host gastric epithelium.  相似文献   

9.
Chronic Helicobacter pylori infection is known to be associated with the development of peptic ulcer, gastric cancer and gastric lymphoma. Currently, the bacterial factors of H. pylori are reported to be important in the development of gastroduodenal diseases. CagA protein, encoded by the cagA, is the best studied virulence factor of H. pylori. The pathogenic CagA protein contains a highly polymorphic Glu-Pro-Ile-Tyr-Ala (EPIYA) repeat region in the C-terminal. This repeat region is reported to be involved in the pathogenesis of gastroduodenal diseases. The segments containing EPIYA motifs have been designated as segments A, B, C, and D; however the classification and disease relation are still unclear. This study used 560 unique CagA sequences containing 1,796 EPIYA motifs collected from public resources, including 274 Western and 286 East Asian strains with clinical data obtained from 433 entries. Fifteen types of EPIYA or EPIYA-like sequences are defined. In addition to four previously reported major segment types, several minor segment types (e.g., segment B′, B′′) and more than 30 sequence types (e.g., ABC, ABD) were defined using our classification method. We confirm that the sequences from Western and East Asian strains contain segment C and D, respectively. We also confirm that strains with two EPIYA segment C have a greater chance of developing gastric cancer than those with one segment C. Our results shed light on the relationships between the types of CagAs, the country of origin of each sequence type, and the frequency of gastric disease.  相似文献   

10.
Infection with Helicobacter pylori is responsible for gastritis and gastroduodenal ulcers but is also a high risk factor for the development of gastric adenocarcinoma and lymphoma. The most pathogenic H. pylori strains (i.e., the so-called type I strains) associate the CagA virulence protein with an active VacA cytotoxin but the rationale for this association is unknown. CagA, directly injected by the bacterium into colonized epithelium via a type IV secretion system, leads to cellular morphological, anti-apoptotic and proinflammatory effects responsible in the long-term (years or decades) for ulcer and cancer. VacA, via pinocytosis and intracellular trafficking, induces epithelial cell apoptosis and vacuolation. Using human gastric epithelial cells in culture transfected with cDNA encoding for either the wild-type 38 kDa C-terminal signaling domain of CagA or its non-tyrosine-phosphorylatable mutant form, we found that, depending on tyrosine-phosphorylation by host kinases, CagA inhibited VacA-induced apoptosis by two complementary mechanisms. Tyrosine-phosphorylated CagA prevented pinocytosed VacA to reach its target intracellular compartments. Unphosphorylated CagA triggered an anti-apoptotic activity blocking VacA-induced apoptosis at the mitochondrial level without affecting the intracellular trafficking of the toxin. Assaying the level of apoptosis of gastric epithelial cells infected with wild-type CagA+/VacA+ H. pylori or isogenic mutants lacking of either CagA or VacA, we confirmed the results obtained in cells transfected with the CagA C-ter constructions showing that CagA antagonizes VacA-induced apoptosis. VacA toxin plays a role during H. pylori stomach colonization. However, once bacteria have colonized the gastric niche, the apoptotic action of VacA might be detrimental for the survival of H. pylori adherent to the mucosa. CagA association with VacA is thus a novel, highly ingenious microbial strategy to locally protect its ecological niche against a bacterial virulence factor, with however detrimental consequences for the human host.  相似文献   

11.
The CagA protein of Helicobacter pylori is associated with increased virulence and gastric cancer risk. CagA is translocated into the host cell by a H. pylori type IV secretion system via mechanisms that are poorly understood. Translocated CagA interacts with numerous host factors, altering a variety of host signalling pathways. The recently determined crystal structure of C-terminally-truncated CagA indicated the presence of two domains: the smaller, flexible N-terminal domain and the larger, middle domain. In this study, we have investigated the conformation, oligomeric state and stability of the N-terminal, middle and glutamate-proline-isoleucine-tyrosine-alanine (EPIYA)-repeats domains. All three domains are monomeric, suggesting that the multimerisation of CagA observed in infected cells is likely to be mediated not by CagA itself but by its interacting partners. The middle and the C-terminal domains, but not the N-terminal domain, are capable of refolding spontaneously upon heat denaturation, lending support to the hypothesis that unfolded CagA is threaded C-terminus first through the type IV secretion channel with its N-terminal domain, which likely requires interactions with other domains to refold, being threaded last. Our findings also revealed that the C-terminal EPIYA-repeats domain of CagA exists in an intrinsically disordered premolten globule state with regions in PPII conformation - a feature that is shared by many scaffold proteins that bind multiple protein components of signalling pathways. Taken together, these results provide a deeper understanding of the physicochemical properties of CagA that underpin its complex cellular and oncogenic functions.  相似文献   

12.
The clinical outcome of Helicobacter pylori infections is determined by multiple host-pathogen interactions that may develop to chronic gastritis, and sometimes peptic ulcers or gastric cancer. Highly virulent strains encode a type IV secretion system (T4SS) that delivers the effector protein CagA into gastric epithelial cells. Translocated CagA undergoes tyrosine phosphorylation at EPIYA-sequence motifs, called A, B and C in Western-type strains, by members of the oncogenic Src and Abl host kinases. Phosphorylated EPIYA-motifs mediate interactions of CagA with host signaling factors – in particular various SH2-domain containing human proteins – thereby hijacking multiple downstream signaling cascades. Observations of tyrosine-phosphorylated CagA are mainly based on the use of commercial phosphotyrosine antibodies, which originally were selected to detect phosphotyrosines in mammalian proteins. Systematic studies of phosphorylated EPIYA-motif detection by the different antibodies would be very useful, but are not yet available. To address this issue, we synthesized phospho- and non-phosphopeptides representing each predominant Western CagA EPIYA-motif, and determined the recognition patterns of seven different phosphotyrosine antibodies in Western blots, and also performed infection studies with diverse representative Western H. pylori strains. Our results show that a total of 9–11 amino acids containing the phosphorylated EPIYA-motifs are necessary and sufficient for specific detection by these antibodies, but revealed great variability in sequence recognition. Three of the antibodies recognized phosphorylated EPIYA-motifs A, B and C similarly well; whereas preferential binding to phosphorylated motif A and motifs A and C was found with two and one antibodies, respectively, and the seventh anti-phosphotyrosine antibody did not recognize any phosphorylated EPIYA-motif. Controls showed that none of the antibodies recognized the corresponding non-phospho CagA peptides, and that all of them recognized phosphotyrosines in mammalian proteins. These data are valuable in judicious application of commercial anti-phosphotyrosine antibodies and in characterization of CagA phosphorylation during infection and disease development.  相似文献   

13.
The cytotoxin‐associated gene A protein (CagA) plays a pivotal role in the aetiology of Helicobacter pylori‐associated gastric diseases. CagA is injected into the cytoplasm of host cells by a type IV secretion system, and is phosphorylated on tyrosine residues by the host enzyme c‐Src. We previously reported that the enzyme haem oxygenase‐1 (HO‐1) inhibits IL‐8 secretion by H. pylori‐infected cells. However, the cellular mechanism by which HO‐1 regulates the innate immune function of infected cells remains unknown. We now show that nitric oxide and haemin, two inducers of HO‐1, decrease the level of phosphorylated CagA (p‐CagA) in H. pylori‐infected gastric epithelial cells and this is blocked by either pharmacological inhibition of HO‐1 or siRNA knockdown of hmox‐1. Moreover, forced expression of HO‐1 by transfection of a plasmid expressing hmox‐1 also results in a strong attenuation of CagA phosphorylation. This occurs through the inhibition of H. pylori‐induced c‐Src phosphorylation/activation by HO‐1.Consequently, H. pylori‐induced cytoskeletal rearrangements and activation of the pro‐inflammatory response mediated by p‐CagA are inhibited in HO‐1‐expressing cells. These data highlight a mechanism by which the innate immune response of the host can restrict the pathogenicity of H. pylori by attenuating CagA phosphorylation in gastric epithelial cells.  相似文献   

14.
Wang H  Han J  Chen D  Duan X  Gao X  Wang X  Shao S 《Current microbiology》2012,64(2):191-196
Helicobacter pylori is a highly successful human-specific gastric pathogen that infects up to 50% of the world’s population. Virulent H. pylori isolates harbor the cytotoxin-associated genes pathogenicity island (cag-PAI), which encodes a type IV secretion system that translocates bacterial effector (e.g., CagA oncoprotein) molecules into host cells. Although some cag-PAI genes are shown to be required for CagA delivery or localization, the majority have no known function. In the current study, the authors performed a cell components fractionation assay and showed that CagI, one of the cag-PAI proteins located in the bacterial membrane, was not translocated into host cells. The homologous recombination method then was used to construct the isogenic mutant of H. pylori cagI, and the translocation assay was performed. The results showed that the isogenic mutant of H. pylori NCTC 11637 cagI could cause a reduction in the degree of CagA translocation. Overall, the results suggested that CagI might be an accessory component of the CagA secretion system not translocated into host cells and that it is located in the bacterial membrane.  相似文献   

15.
Helicobacter pylori is a paradigm of persistent pathogens and major risk factor for developing severe diseases including adenocarcinoma in the human stomach. An important bacterial factor linked to gastric disease progression is the cag pathogenicity island‐encoded type‐IV secretion system (T4SS) effector protein CagA. Translocated CagA undergoes tyrosine phosphorylation at EPIYA‐motifs and then activates or inactivates multiple host signaling proteins in a phosphorylation‐dependent and phosphorylation‐independent fashion. In this way, intracellular CagA acts as a ‘masterkey’ or ‘picklock’, which evolved during evolution to hijack key host cell signal transduction functions. Crucial targets of CagA represent a variety of serine/threonine and tyrosine kinases, which control major checkpoints of eukaryotic signaling. Here we review the signal transmission by translocated CagA on multiple receptor kinases (c‐Met and EGFR) and non‐receptor kinases (Src, Abl, Csk, aPKC, Par1, PI3K, Akt, FAK, GSK‐3, JAK, PAK1, PAK2 and MAP kinases), manipulating a selection of fundamental processes in the human gastric epithelium such as cell adhesion, polarity, proliferation, motility, receptor endocytosis, cytoskeletal rearrangements, apoptosis, inflammation and cell cycle progression. This enormous complexity generates a highly remarkable and puzzling scenario during H. pylori infection. The contribution of these signaling pathways to bacterial survival, persistence and gastric pathogenesis is discussed.  相似文献   

16.
Infection with Helicobacter pylori strains containing high number of EPIYA-C phosphorylation sites in the CagA is associated with significant gastritis and increased risk of developing pre-malignant gastric lesions and gastric carcinoma. However, these findings have not been reproduced in animal models yet. Therefore, we investigated the effect on the gastric mucosa of Mongolian gerbil (Meriones unguiculatus) infected with CagA-positive H. pylori strains exhibiting one or three EPIYA-C phosphorilation sites. Mongolian gerbils were inoculated with H. pylori clonal isolates containing one or three EPIYA-C phosphorylation sites. Control group was composed by uninfected animals challenged with Brucella broth alone. Gastric fragments were evaluated by the modified Sydney System and digital morphometry. Clonal relatedness between the isolates was considered by the identical RAPD-PCR profiles and sequencing of five housekeeping genes, vacA i/d region and of oipA. The other virulence markers were present in both isolates (vacA s1i1d1m1, iceA2, and intact dupA). CagA of both isolates was translocated and phosphorylated in AGS cells. After 45 days of infection, there was a significant increase in the number of inflammatory cells and in the area of the lamina propria in the infected animals, notably in those infected by the CagA-positive strain with three EPIYA-C phosphorylation sites. After six months of infection, a high number of EPIYA-C phosphorylation sites was associated with progressive increase in the intensity of gastritis and in the area of the lamina propria. Atrophy, intestinal metaplasia, and dysplasia were also observed more frequently in animals infected with the CagA-positive isolate with three EPIYA-C sites. We conclude that infection with H. pylori strain carrying a high number of CagA EPIYA-C phosphorylation sites is associated with more severe gastric lesions in an animal model of H. pylori infection.Key words: Gastritis, atrophy, intestinal metaplasia, dysplasia, Mongolian gerbil, cagA EPIYA C motif  相似文献   

17.
Helicobacter pylori (H. pylori) is a common gastric pathogen that infects approximately half of the world’s population. Infection with H. pylori can lead to diverse pathological conditions, including chronic gastritis, peptic ulcer disease, and cancer. The latter is the most severe consequence of H. pylori infection. According to epidemiological studies, gastric infection with H. pylori is the strongest known risk factor for non-cardia gastric cancer (GC), which remains one of the leading causes of cancer-related deaths worldwide. However, it still remains to be poorly understood how host-microbe interactions result in cancer development in the human stomach. Here we focus on the H. pylori bacterial factors that affect the host ubiquitin proteasome system. We investigated E3 ubiquitin ligases SIVA1 and ULF that regulate p14ARF (p19ARF in mice) tumor suppressor. ARF plays a key role in regulation of the oncogenic stress response and is frequently inhibited during GC progression. Expression of ARF, SIVA1 and ULF proteins were investigated in gastroids, H. pylori-infected mice and human gastric tissues. The role of the H. pylori type IV secretion system was assessed using various H. pylori isogenic mutants. Our studies demonstrated that H. pylori infection results in induction of ULF, decrease in SIVA1 protein levels, and subsequent ubiquitination and degradation of p14ARF tumor suppressor. Bacterial CagA protein was found to sequentially bind to SIVA1 and ULF proteins. This process is regulated by CagA protein phosphorylation at the EPIYA motifs. Downregulation of ARF protein leads to inhibition of cellular apoptosis and oncogenic stress response that may promote gastric carcinogenesis.  相似文献   

18.
Helicobacter pylori is a highly successful pathogen uniquely adapted to colonize humans. Gastric infections with this bacterium can induce pathology ranging from chronic gastritis and peptic ulcers to gastric cancer. More virulent H. pylori isolates harbour numerous well-known adhesins (BabA/B, SabA, AlpA/B, OipA and HopZ) and the cag (cytotoxin-associated genes) pathogenicity island encoding a type IV secretion system (T4SS). The adhesins establish tight bacterial contact with host target cells and the T4SS represents a needle-like pilus device for the delivery of effector proteins into host target cells such as CagA. BabA and SabA bind to blood group antigen and sialylated proteins respectively, and a series of T4SS components including CagI, CagL, CagY and CagA have been shown to target the integrin β1 receptor followed by injection of CagA across the host cell membrane. The interaction of CagA with membrane-anchored phosphatidylserine may also play a role in the delivery process. While substantial progress has been made in our current understanding of many of the above factors, the host cell receptors for OipA, HopZ and AlpA/B during infection are still unknown. Here we review the recent progress in characterizing the interactions of the various adhesins and structural T4SS proteins with host cell factors. The contribution of these interactions to H. pylori colonization and pathogenesis is discussed.  相似文献   

19.
The cytotoxin-associated gene (Cag) pathogenicity island is a strain-specific constituent of Helicobacter pylori (H. pylori) that augments cancer risk. CagA translocates into the cytoplasm where it stimulates cell signaling through the interaction with tyrosine kinase c-Met receptor, leading cellular proliferation. Identified as a potential gastric stem cell marker, cluster-of-differentiation (CD) CD44 also acts as a co-receptor for c-Met, but whether it plays a functional role in H. pylori-induced epithelial proliferation is unknown. We tested the hypothesis that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation. To assay changes in gastric epithelial cell proliferation in relation to the direct interaction with H. pylori, human- and mouse-derived gastric organoids were infected with the G27 H. pylori strain or a mutant G27 strain bearing cagA deletion (∆CagA::cat). Epithelial proliferation was quantified by EdU immunostaining. Phosphorylation of c-Met was analyzed by immunoprecipitation followed by Western blot analysis for expression of CD44 and CagA. H. pylori infection of both mouse- and human-derived gastric organoids induced epithelial proliferation that correlated with c-Met phosphorylation. CagA and CD44 co-immunoprecipitated with phosphorylated c-Met. The formation of this complex did not occur in organoids infected with ∆CagA::cat. Epithelial proliferation in response to H. pylori infection was lost in infected organoids derived from CD44-deficient mouse stomachs. Human-derived fundic gastric organoids exhibited an induction in proliferation when infected with H. pylorithat was not seen in organoids pre-treated with a peptide inhibitor specific to CD44. In the well-established Mongolian gerbil model of gastric cancer, animals treated with CD44 peptide inhibitor Pep1, resulted in the inhibition of H. pylori-induced proliferation and associated atrophic gastritis. The current study reports a unique approach to study H. pylori interaction with the human gastric epithelium. Here, we show that CD44 plays a functional role in H. pylori-induced epithelial cell proliferation.  相似文献   

20.
Several bacterial pathogens inject virulence proteins into host target cells that are substrates of eukaryotic tyrosine kinases. One of the key examples is the Helicobacter pylori CagA effector protein which is translocated by a type‐IV secretion system. Injected CagA becomes tyrosine‐phosphorylated on EPIYA sequence motifs by Src and Abl family kinases. CagA then binds to and activates/inactivates multiple signaling proteins in a phosphorylation‐dependent and phosphorylation‐independent manner. A recent proteomic screen systematically identified eukaryotic binding partners of the EPIYA phosphorylation sites of CagA and similar sites in other bacterial effectors by high‐resolution mass spectrometry. Individual phosphorylation sites recruited a surprisingly high number of interaction partners suggesting that each phosphorylation site can interfere with many downstream pathways. We now count 20 reported cellular binding partners of CagA, which represents the highest quantitiy among all yet known virulence‐associated effector proteins in the microbial world. This complexity generates a highly remarkable and puzzling scenario. In addition, the first crystal structure of CagA provided us with new information on the function of this important virulence determinant. Here we review the recent advances in characterizing the multiple binding signaling activities of CagA. Injected CagA can act as a ‘master key’ that evolved the ability to highjack multiple host cell signalling cascades, which include the induction of membrane dynamics, actin‐cytoskeletal rearrangements and the disruption of cell‐to‐cell junctions as well as proliferative, pro‐inflammatory and anti‐apoptotic nuclear responses. The discovery that different pathogens use this common strategy to subvert host cell functions suggests that more examples will emerge soon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号