首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
Sucrose phosphorylase is a promising biocatalyst for the glycosylation of a wide range of compounds, but its industrial application has been hampered by the low thermostability of known representatives. Hence, in this study, the putative sucrose phosphorylase from the thermophile Thermoanaerobacterium thermosaccharolyticum was recombinantly expressed and fully characterised. The enzyme showed significant activity on sucrose (optimum at 55 °C), and with a melting temperature of 79 °C and a half-life of 60 h at the industrially relevant temperature of 60 °C, it is far more stable than known sucrose phosphorylases. Substrate screening and detailed kinetic characterisation revealed however a preference for sucrose 6′-phosphate over sucrose. The enzyme can thus be considered as a sucrose 6′-phosphate phosphorylase, a specificity not yet reported to date. Homology modelling and mutagenesis pointed out particular residues (Arg134 and His344) accounting for the difference in specificity. Moreover, phylogenetic and sequence analysis suggest that glycoside hydrolase 13 subfamily 18 might harbour even more specificities. In addition, the second gene residing in the same operon as sucrose 6′-phosphate phosphorylase was identified as well, and found to be a phosphofructokinase. The concerted action of both these enzymes implies a new pathway for the breakdown of sucrose, in which the reaction products end up at different stages of the glycolysis.  相似文献   

2.
A novel series of N-aryl-3,4-dihydro-1′H-spiro[chromene-2,4′-piperidine]-1′-carboxamides was identified as transient receptor potential melastatin 8 (TRPM8) channel blockers through analogue-based rational design, synthesis and screening. Details of the synthesis, effect of aryl groups and their substituents on in-vitro potency were studied. The effects of selected functional groups on the 4-position of the chromene ring were also studied, which showed interesting results. The 4-hydroxy derivatives showed excellent potency and selectivity. Optical resolution and screening of alcohols revealed that (R)-(–)-isomers were in general more potent than the corresponding (S)-(+)-isomers. The isomer (R)-(–)-10e (IC50: 8.9 nM) showed a good pharmacokinetic profile upon oral dosing at 10 mg/kg in Sprague–Dawley (SD) rats. The compound (R)-(–)-10e also showed excellent efficacy in relevant rodent models of neuropathic pain.  相似文献   

3.
5′-Triphosphate 2′-5′-oligoadenylate (2–5A) is the central player in the 2–5A system that is an innate immunity pathway in response to the presence of infectious agents. Intracellular endoribonuclease RNase L activated by 2–5A cleaves viral and cellular RNA resulting in apoptosis. The major limitations of 2–5A for therapeutic applications is the short biological half-life and poor cellular uptake. Modification of 2–5A with biolabile and lipophilic groups that facilitate its uptake, increase its in vivo stability and release the parent 2–5A drug in an intact form offer an alternative approach to therapeutic use of 2–5A. Here we have synthesized the trimeric and tetrameric 2–5A species bearing hydrophobic and enzymolabile pivaloyloxymethyl groups at 3′-positions and a triphosphate at the 5′-end. Both analogs were able to activate RNase L and the production of the trimer 2–5A (the most active) was scaled up to the milligram scale for antiviral evaluation in cells infected by influenza virus or respiratory syncytial virus. The trimer analog demonstrated some significant antiviral activity.  相似文献   

4.
The gating of the CFTR chloride channel is altered by a group of mutations that cause cystic fibrosis. This gating defect may be corrected by small molecules called potentiators. Some 1,4-dihydropyridine (DHP) derivatives, bearing a thiophen-2-yl and a furanyl ring at the 4-position of the nucleus, were prepared and tested as CFTR potentiators. In particular, we evaluated the ability of novel DHPs to enhance the activity of the rescued ΔF508-CFTR as measured with a functional assay based on the halide-sensitive yellow fluorescent protein. Most DHPs showed an effect comparable to or better than that of the reference compound genistein. The potency was instead significantly improved, with some compounds, such as 3g, 3h, 3n, 4a, 4b, and 4d, having a half effective concentration in the submicromolar range. CoMFA analysis gave helpful suggestions to improve the activity of DHPs.  相似文献   

5.
Post-translational modulation of eIF4E through phosphorylation by Mnks is highly integral to the pathogenesis of different cancers. Therefore, inhibition of Mnks offers a strategy for cancer treatment. Herein, a series of 2′H-spiro[cyclohexane-1,3′-imidazo[1,5-a]pyridine]-1′,5′-dione derivatives is presented as Mnk inhibitors. Some of them showed sub-micromolar to low nanomolar inhibitory activities against Mnk1/2 with a high level of selectivity for both kinases over CDKs. Biochemical assays revealed that compounds 4c and 4t are non-ATP-competitive inhibitors of Mnks. Lead compound 4t demonstrated a high selectivity for Mnk1/2 over a selection of 51 kinases, and displayed anti-proliferative activities against a panel of cancer cell lines. However, this compound in combination with our in-house CDK4/6 inhibitor 83 did not show a synergistic effect in A2780 ovarian cancer cells, suggesting that caution be exercised in the selection of an agent to be combined with an Mnk inhibitor.  相似文献   

6.
γ-Secretase modulators (GSMs), which lower pathogenic amyloid beta (Aβ) without affecting the production of total Aβ or Notch signal, have emerged as a potential therapeutic agent for Alzheimer’s disease (AD). A novel series of 5,6,7,8-tetrahydro[1,2,4]triazolo[4,3-a]pyridine derivatives was discovered and characterized as GSMs. Optimization of substituents at the 8-position of the core scaffold using ligand-lipophilicity efficiency (LLE) as a drug-likeness guideline led to identification of various types of high-LLE GSMs. Phenoxy compound (R)-17 exhibited especially high LLE as well as potent in vivo Aβ42-lowering effect by single administration. Furthermore, multiple oral administration of (R)-17 significantly reduced soluble and insoluble brain Aβ42, and ameliorated cognitive deficit in novel object recognition test (NORT) using Tg2576 mice as an AD model.  相似文献   

7.
The Transient Receptor Potential Vanilloid 1 (TRPV1, vanilloid receptor 1) ion channel plays a key role in the perception of thermal and inflammatory pain, however, its molecular environment in dorsal root ganglia (DRG) is largely unexplored. Utilizing a panel of sequence-directed antibodies against TRPV1 protein and mouse DRG membranes, the channel complex from mouse DRG was detergent-solubilized, isolated by immunoprecipitation and subsequently analyzed by mass spectrometry. A number of potential TRPV1 interaction partners were identified, among them cytoskeletal proteins, signal transduction molecules, and established ion channel subunits. Based on stringent specificity criteria, the voltage-gated K+ channel beta 2 subunit (Kvβ2), an accessory subunit of voltage-gated K+ channels, was identified of being associated with native TRPV1 channels. Reverse co-immunoprecipitation and antibody co-staining experiments confirmed TRPV1/Kvβ2 association. Biotinylation assays in the presence of Kvβ2 demonstrated increased cell surface expression levels of TRPV1, while patch-clamp experiments resulted in a significant increase of TRPV1 sensitivity to capsaicin. Our work shows, for the first time, the association of a Kvβ subunit with TRPV1 channels, and suggests that such interaction may play a role in TRPV1 channel trafficking to the plasma membrane.  相似文献   

8.
As a part of systematic investigation of synthesis and biological activities of indole analogues linked to various heterocyclic systems, we have synthesized new compounds viz., 2-amino-4-(5′-substituted 2′-phenyl-1H-indol-3′-yl)-6-aryl-4H-pyran-3-carbonitriles (2ai), 4,5-diamino-6-(5′-substituted 2′-phenyl-1H-indol-3′-yl)-8-aryl-2-oxo-2,6-dihydrodipyrano [2,3-b:3,2-e]pyridine-3-carbonitriles (3ai), 4-amino-5-(5′-substituted 2′-phenyl-1H-indol-3-yl)-7-aryl-1H-pyrano[2,3-d]pyrimidin-2(5H)-ones (4ai), 4-amino-5-(5′-substituted 2′-phenyl-1H-indol-3′-yl)-7-aryl-1H-pyrano[2,3-d]pyrimidin-2(5H)-thiones (5ai), 4-(5′-subtituted 2′-phenyl-1H-indol-3′-yl)-6-aryl-1,4-dihydropyrano[2,3-c]pyrazol-3-amines (6ai) and 5-(5′-substituted 2′-phenyl-1H-indol-3′-yl)-7-aryl-3H-pyrano[2,3-d]pyrimidin-4(5H)-ones (7ai). Antibacterial activity results revealed that, compound 6a showed promising activity versus Escherichia coli, Staphylococcus aureus and Klebsiella pneumoniae. Compound 6d exhibited good activity against S. aureus, K. pneumoniae and Pseudomonas aeruginosa. Antifungal activity results indicated that, compound 4d exhibited maximum zone of inhibition against Aspergillus oryzae and Aspergillus flavus. In case of antioxidant activity, compound 4a showed promising radical scavenging activity, ferric ions (Fe3+) reducing antioxidant power (FRAP) and metal chelating activity.  相似文献   

9.
Further optimization of the biaryl amide series via extensively exploring structure–activity relationships resulted in potent and subtype selective M1 agonists exemplified by compounds 9a and 9j with good rat PK properties including CNS penetration. Synthesis, structure–activity relationships, subtype selectivity for M1 over M2–5, and DMPK properties of these novel compounds are described.  相似文献   

10.
G-protein-coupled receptor (GPR) 119 is involved in glucose-stimulated insulin secretion (GSIS) and represents a promising target for the treatment of type 2 diabetes as it is highly expressed in pancreatic β-cells. Although a number of oral GPR119 agonists have been developed, their inability to adequately directly preserve β-cell function limits their effectiveness. Here, we evaluated the therapeutic potential of a novel small-molecule GPR119 agonist, AS1907417, which represents a modified form of a 2,4,6-tri-substituted pyrimidine core agonist, AS1269574, we previously identified. The exposure of HEK293 cells expressing human GPR119, NIT-1 cells expressing human insulin promoter, and the pancreatic β-cell line MIN-6-B1 to AS1907417, enhanced intracellular cAMP, GSIS, and human insulin promoter activity, respectively. In in vivo experiments involving fasted normal mice, a single dose of AS1907417 improved glucose tolerance, but did not affect plasma glucose or insulin levels. Twice-daily doses of AS1907417 for 4 weeks in diabetic db/db, aged db/db mice, ob/ob mice, and Zucker diabetic fatty rats reduced hemoglobin A1c levels by 1.6%, 0.8%, 1.5%, and 0.9%, respectively. In db/db mice, AS1907417 improved plasma glucose, plasma insulin, pancreatic insulin content, lipid profiles, and increased pancreatic insulin and pancreatic and duodenal homeobox 1 (PDX-1) mRNA levels. These data demonstrate that novel GPR119 agonist AS1907417 not only effectively controls glucose levels, but also preserves pancreatic β-cell function. We therefore propose that AS1907417 represents a new type of antihyperglycemic agent with promising potential for the effective treatment of type 2 diabetes.  相似文献   

11.
A series of novel 2-phenylindole analogs were synthesized and evaluated for activity in subgenomic HCV replicon inhibition assays. Several compounds containing small alkyl sulfonamides on the phenyl ring exhibiting submicromolar EC50 values against the genotype 1b replicon were identified. Among these, compound 25d potently inhibited the 1b replicon (EC50 = 0.17 μM) with 147-fold selectivity with respect to cytotoxicity. Compound 25d was stable in the presence of human liver microsomes and had a good pharmacokinetic profile in rats with an IV half-life of 4.3 h and oral bioavailability (F) of 58%.  相似文献   

12.
A variety of new prodrugs of 2′-methyl cytidine based on acyloxy ethylamino phosphoramidates have been synthesized and tested in vitro and in vivo for their biological activity. Compared with the parent drug a 10- to 20-fold increase in formation of nucleotide triphosphate in rat and human hepatocytes could be achieved.  相似文献   

13.
In an effort to develop ATP-competitive VEGFR-2 selective inhibitors, a novel series of tricyclic pyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4-amine derivatives were designed and synthesized. These compounds were characterized by IR, 1H NMR, 13C NMR, elemental and mass spectral analyses. Docking studies have given a partial insight into the molecular determinants of the activity of this novel series in VEGFR-2 kinase active site. Moreover, these compounds were assessed at 10 μM for their selective inhibitory activities over a panel of 6 human kinases, namely VEGFR-1/Flt-1, VEGFR-2/KDR, EGFR, CDK5/p25, GSK3α and GSK3β. Compound N-(4,6-dimethylthieno[2,3-b]pyridine)-7,9-dimethylpyrido[3′,2′:4,5]thieno[3,2-d]pyrimidin-4-amine (9d) exhibited the most potent and selective inhibitory activity against VEGFR-2/KDR over the six human kinases, with an IC50 value 2.6 μM. The identification of this hit candidate could aid the design of new tricyclic-based VEGFR-2 kinase modulators.  相似文献   

14.
Biaryl amides were discovered as novel and subtype selective M1 muscarinic acetylcholine receptor agonists. The identification, synthesis, and initial structure–activity relationships that led to compounds 3j and 4c, possessing good M1 agonist potency and intrinsic activity, and subtype selectivity for M1 over M2–5, are described.  相似文献   

15.
High throughput screening of the corporate compound collection led to the identification of a novel series of 2-amino-9-aryl-3-cyano-4-methyl-7-oxo-6,7,8,9-tetrahydropyrido[2′,3′:4,5]thieno[2,3-b]pyridine derivatives as selective PR agonists. Initial SAR exploration leading to potent and selective agonists 9 and 11, X-ray crystal structure of 9 bound to PR-LBD and preliminary developability data are described.  相似文献   

16.
In order to develop phenyl sulfonamides as a novel class of anti-epileptic drugs (AED) for both general and partial seizure, we initiated in vivo screening of our chemical library in the mice MES and sc-PTZ models and found compounds 1 and 2 as lead compounds. Optimization of 1 and 2 led to the discovery of compound 21, which showed potent anticonvulsant effect in MES, scPTZ and rat amygdala kindling models. These findings indicate that compound 21 could be a useful new broad spectrum AED like sodium valproate and provide an opportunity to struggle current therapy-resistant epilepsy.  相似文献   

17.
18.
19.
Quinuclidine-containing spirooxazolines, as described in the previous report in this series, were demonstrated to have utility as α7 nicotinic acetylcholine receptor (α7 nAChR) partial agonists. In this work, the SAR of this chemotype was expanded to include an array of diazine heterocyclic substitutions. Many of the heterocyclic analogs were potent partial agonists of the α7 receptor, selective against other nicotinic receptors and the serotinergic 5HT3A receptor. (1′S,3′R,4′S)-N-(6-phenylpyrimidin-4-yl)-4H-1′-azaspiro[oxazole-5,3′-bicyclo[2.2.2]octan]-2-amine, a potent and selective α7 nAChR partial agonist, was demonstrated to improve cognition in the mouse novel object recognition (NOR) model of episodic memory.  相似文献   

20.
To discover more derivatives with better glucose-lowering efficacy compared with berberine, twenty-three novel compounds with 4,7,12,12a-tetrahydro-5H-thieno[3′,2′:3,4]pyrido[1,2-b]isoquinoline or 5,8,12,12a-tetrahydro-6H-thieno[2′,3′:4,5]pyrido[2,1-a]isoquinoline cores were designed, synthesized, and biologically evaluated in vitro in continuation of our previous work on indirect activators of adenosine 5′-monophosphate-activated protein kinase (AMPK). Nine compounds effectively stimulated glucose consumption (>2.3-fold at 10 μM) in L6 myotube cells, and two compounds (4d and 4s) exhibited superior inhibitory activity (<57.6% at 5 μM) compared with berberine on gluconeogenesis in rat primary hepatocytes. Additionally, these compounds significantly up-regulated the phosphorylation of AMPK and its substrate, acetyl-CoA carboxylase (ACC) and slightly decreased the mitochondrial membrane potential in L6 myotube cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号