共查询到20条相似文献,搜索用时 27 毫秒
1.
Peter Charbel Issa Eric Troeger Robert Finger Frank G. Holz Robert Wilke Hendrik P. N. Scholl 《PloS one》2010,5(9)
Background
The impact of retinal pathology detected by high-resolution imaging on vision remains largely unexplored. Therefore, the aim of the study was to achieve high-resolution structure-function correlation of the human macula in vivo.Methodology/Principal Findings
To obtain high-resolution tomographic and topographic images of the macula spectral-domain optical coherence tomography (SD-OCT) and confocal scanning laser ophthalmoscopy (cSLO), respectively, were used. Functional mapping of the macula was obtained by using fundus-controlled microperimetry. Custom software allowed for co-registration of the fundus mapped microperimetry coordinates with both SD-OCT and cSLO datasets. The method was applied in a cross-sectional observational study of retinal diseases and in a clinical trial investigating the effectiveness of intravitreal ranibizumab in macular telangietasia type 2. There was a significant relationship between outer retinal thickness and retinal sensitivity (p<0.001) and neurodegeneration leaving less than about 50 µm of parafoveal outer retinal thickness completely abolished light sensitivity. In contrast, functional preservation was found if neurodegeneration spared the photoreceptors, but caused quite extensive disruption of the inner retina. Longitudinal data revealed that small lesions affecting the photoreceptor layer typically precede functional detection but later cause severe loss of light sensitivity. Ranibizumab was shown to be ineffective to prevent such functional loss in macular telangietasia type 2.Conclusions/Significance
Since there is a general need for efficient monitoring of the effectiveness of therapy in neurodegenerative diseases of the retina and since SD-OCT imaging is becoming more widely available, surrogate endpoints derived from such structure-function correlation may become highly relevant in future clinical trials. 相似文献2.
Adenylate cyclase activity and the effects of various activators and inhibitors of this enzyme were measured in retinas from normal mice (C57BL/6J) and congenic animals with photoreceptor dystrophy. In normal retina, approximately 250 microM-ATP was required for half-maximal stimulation of the enzyme. Activity was supported by Mg2+ and Mn2+, but Ca2+ was ineffective. The enzyme was inhibited by EGTA and stimulated by 5'-guanylylimidodiphosphate (GPP(NH)P), dopamine, and NaF. The stimulatory effects of GPP(NH)P and dopamine were greater in the presence of EGTA. Examination of microdissected normal retinas revealed that the inner (neural) retina had adenylate cyclase activity four times that of the photoreceptor cell layers, and that EGTA inhibited activity in the inner retina, but had no effect in the outer retina. In dystrophic retinas basal enzyme activity was 60% higher than that in normal retina. The enzyme in this tissue was stimulated by EGTA, GPP(NH)P, and dopamine, and their effects were additive. These results indicate that adenylate cyclase activity in vertebrate retina is under complex regulation by substrate, divalent cations, guanine nucleotides, dopamine, and perhaps calmodulin. In addition, the data demonstrate that adenylate cyclase is not evenly distributed in the retina and that it is regulated differently in the inner and outer retina. Finally, the present results indicate that regulation of this enzyme in dystrophic retina may be qualitatively and quantitatively different from that in normal retina. 相似文献
3.
Kyle W. Anderson Junjun Chen Meiyao Wang Natalia Mast Irina A. Pikuleva Illarion V. Turko 《PloS one》2015,10(5)
Histone deacetylase (HDAC) inhibition has promise as a therapy for Alzheimer’s disease (AD) and other neurodegenerative diseases. Currently, therapeutic HDAC inhibitors target many HDAC isoforms, a particularly detrimental approach when HDAC isoforms are known to have different and specialized functions. We have developed a multiple reaction monitoring (MRM) mass spectrometry assay using stable isotope-labeled QconCATs as internal standards to quantify HDAC isoforms. We further determined a quantitative pattern of specific HDACs expressed in various human and mouse neural tissues. In human AD frontal cortex, HDAC1,2 decreased 32%, HDAC5 increased 47%, and HDAC6 increased 31% in comparison to age-matched controls. Human neural retina concentrations of HDAC1, 2, HDAC5, HDAC6, and HDAC7 decreased in age-related macular degeneration (AMD)-affected donors and exhibited a greater decrease in AD-affected donors in comparison to age-matched control neural retinas. Additionally, HDAC concentrations were measured in whole hemisphere of brain of 5XFAD mice, a model of β-amyloid deposition, to assess similarity to AD in human frontal cortex. HDAC profiles of human frontal cortex and mouse hemisphere had noticeable differences and relatively high concentrations of HDAC3 and HDAC4 in mice, which were undetectable in humans. Our method for quantification of HDAC isoforms is a practical and efficient technique to quantify isoforms in various tissues and diseases. Changes in HDAC concentrations reported herein contribute to the understanding of the pathology of neurodegeneration. 相似文献
4.
Background
Due to the advances of high throughput technology and data-collection approaches, we are now in an unprecedented position to understand the evolution of organisms. Great efforts have characterized many individual genes responsible for the interspecies divergence, yet little is known about the genome-wide divergence at a higher level. Modules, serving as the building blocks and operational units of biological systems, provide more information than individual genes. Hence, the comparative analysis between species at the module level would shed more light on the mechanisms underlying the evolution of organisms than the traditional comparative genomics approaches.Results
We systematically identified the tissue-related modules using the iterative signature algorithm (ISA), and we detected 52 and 65 modules in the human and mouse genomes, respectively. The gene expression patterns indicate that all of these predicted modules have a high possibility of serving as real biological modules. In addition, we defined a novel quantity, “total constraint intensity,” a proxy of multiple constraints (of co-regulated genes and tissues where the co-regulation occurs) on the evolution of genes in module context. We demonstrate that the evolutionary rate of a gene is negatively correlated with its total constraint intensity. Furthermore, there are modules coding the same essential biological processes, while their gene contents have diverged extensively between human and mouse.Conclusions
Our results suggest that unlike the composition of module, which exhibits a great difference between human and mouse, the functional organization of the corresponding modules may evolve in a more conservative manner. Most importantly, our findings imply that similar biological processes can be carried out by different sets of genes from human and mouse, therefore, the functional data of individual genes from mouse may not apply to human in certain occasions. 相似文献5.
《Cell cycle (Georgetown, Tex.)》2013,12(1):42-45
Growth characteristics of synchronous human MOLT-4, human U-937 and mouse L1210 cultures produced with a new minimally-disturbing technology were compared to each other and to synchronous Escherichia coli B/r. Based on measurements of cell concentrations during synchronous growth, synchrony persisted in similar fashion for all cells. Cell size and DNA distributions in the mammalian cultures also progressed synchronously and reproducibly for multiple cell cycles. The results demonstrate that unambiguous multi-cycle synchrony, critical for verifying the absence of significant growth imbalances induced by the synchronization procedure, is feasible with these cell lines, and possibly others. 相似文献
6.
7.
8.
Alessia Fraccaroli Claudio A. Franco Emanuel Rognoni Filipa Neto Markus Rehberg Attila Aszodi Roland Wedlich-S?ldner Ulrich Pohl Holger Gerhardt Eloi Montanez 《PloS one》2012,7(10)
Angiogenesis requires coordinated changes in cell shape of endothelial cells (ECs), orchestrated by the actin cytoskeleton. The mechanisms that regulate this rearrangement in vivo are poorly understood - largely because of the difficulty to visualize filamentous actin (F-actin) structures with sufficient resolution. Here, we use transgenic mice expressing Lifeact-EGFP to visualize F-actin in ECs. We show that in the retina, Lifeact-EGFP expression is largely restricted to ECs allowing detailed visualization of F-actin in ECs in situ. Lifeact-EGFP labels actin associated with cell-cell junctions, apical and basal membranes and highlights actin-based structures such as filopodia and stress fiber-like cytoplasmic bundles. We also show that in the skin and the skeletal muscle, Lifeact-EGFP is highly expressed in vascular mural cells (vMCs), enabling vMC imaging. In summary, our results indicate that the Lifeact-EGFP transgenic mouse in combination with the postnatal retinal angiogenic model constitutes an excellent system for vascular cell biology research. Our approach is ideally suited to address structural and mechanistic details of angiogenic processes, such as endothelial tip cell migration and fusion, EC polarization or lumen formation. 相似文献
9.
Ah-Lai Law Qi Ling Katherine A. Hajjar Clare E. Futter John Greenwood Peter Adamson Silène T. Wavre-Shapton Stephen E. Moss Matthew J. Hayes 《Molecular biology of the cell》2009,20(17):3896-3904
The daily phagocytosis of shed photoreceptor outer segments by pigment epithelial cells is critical for the maintenance of the retina. In a subtractive polymerase chain reaction analysis, we found that functional differentiation of human ARPE19 retinal pigment epithelial (RPE) cells is accompanied by up-regulation of annexin (anx) A2, a major Src substrate and regulator of membrane–cytoskeleton dynamics. Here, we show that anx A2 is recruited to the nascent phagocytic cup in vitro and in vivo and that it fully dissociates once the phagosome is internalized. In ARPE19 cells depleted of anx A2 by using small interfering RNA and in ANX A2−/− mice the phagocytosis of outer segments was impaired, and in ANX A2−/− mice there was an accumulation of phagocytosed outer segments in the RPE apical processes, indicative of retarded phagosome transport. We show that anx A2 is tyrosine phosphorylated at the onset of phagocytosis and that the synchronized activation of focal adhesion kinase and c-Src is abnormal in ANX A2−/− mice. These findings reveal that anx A2 is involved in the circadian regulation of outer segment phagocytosis, and they provide new insight into the protein machinery that regulates phagocytic function in RPE cells. 相似文献
10.
11.
Jessica M. Skeie Stephen H. Tsang Vinit B. Mahajan 《Journal of visualized experiments : JoVE》2011,(50)
While the mouse retina has emerged as an important genetic model for inherited retinal disease, the mouse vitreous remains to be explored. The vitreous is a highly aqueous extracellular matrix overlying the retina where intraocular as well as extraocular proteins accumulate during disease.1-3 Abnormal interactions between vitreous and retina underlie several diseases such as retinal detachment, proliferative diabetic retinopathy, uveitis, and proliferative vitreoretinopathy.1,4 The relative mouse vitreous volume is significantly smaller than the human vitreous (Figure 1), since the mouse lens occupies nearly 75% of its eye.5 This has made biochemical studies of mouse vitreous challenging. In this video article, we present a technique to dissect and isolate the mouse vitreous from the retina, which will allow use of transgenic mouse models to more clearly define the role of this extracellular matrix in the development of vitreoretinal diseases. 相似文献
12.
Novruz B. Ahmedli Yekaterina Gribanova Collins C. Njoku Akash Naidu Alejandra Young Emmanuel Mendoza Clyde K. Yamashita Riza K?ksal ?zgül Jerry E. Johnson Donald A. Fox Debora B. Farber 《The Journal of biological chemistry》2013,288(14):9742-9754
The novel rhomboid-like protein RHBDD2 is distantly related to rhomboid proteins, a group of highly specialized membrane-bound proteases that catalyze regulated intramembrane proteolysis. In retina, RHBDD2 is expressed from embryonic stages to adulthood, and its levels show age-dependent changes. RHBDD2 is distinctly abundant in the perinuclear region of cells, and it localizes to their Golgi. A glycine zipper motif present in one of the transmembrane domains of RHBDD2 is important for its packing into the Golgi membranes. Its deletion causes dislodgment of RHBDD2 from the Golgi. A specific antibody against RHBDD2 recognizes two forms of the protein, one with low (39 kDa; RHBDD2L) and the other with high (117 kDa; RHBDD2H) molecular masses in mouse retinal extracts. RHBDD2L seems to be ubiquitously expressed in all retinal cells. In contrast, RHBDD2H seems to be present only in the outer segments of cone photoreceptors and may correspond to a homotrimer of RHBDD2L. This protein consistently co-localizes with S- and M-types of cone opsins. We identified a homozygous mutation in the human RHBDD2 gene, R85H, that co-segregates with disease in affected members of a family with autosomal recessive retinitis pigmentosa. Our findings suggest that the RHBDD2 protein plays important roles in the development and normal function of the retina. 相似文献
13.
Khalil Miloudi Agnieszka Dejda Fran?ois Binet Eric Lapalme Agustin Cerani Przemyslaw Sapieha 《Journal of visualized experiments : JoVE》2014,(88)
The rodent retina is perhaps the most accessible mammalian system in which to investigate neurovascular interplay within the central nervous system (CNS). It is increasingly being recognized that several neurodegenerative diseases such as Alzheimer’s, multiple sclerosis, and amyotrophic lateral sclerosis present elements of vascular compromise. In addition, the most prominent causes of blindness in pediatric and working age populations (retinopathy of prematurity and diabetic retinopathy, respectively) are characterized by vascular degeneration and failure of physiological vascular regrowth. The aim of this technical paper is to provide a detailed protocol to study CNS vascular regeneration in the retina. The method can be employed to elucidate molecular mechanisms that lead to failure of vascular growth after ischemic injury. In addition, potential therapeutic modalities to accelerate and restore healthy vascular plexuses can be explored. Findings obtained using the described approach may provide therapeutic avenues for ischemic retinopathies such as that of diabetes or prematurity and possibly benefit other vascular disorders of the CNS. 相似文献
14.
Susumu Hiragaki Kenkichi Baba Elise Coulson Stefanie Kunst Rainer Spessert Gianluca Tosini 《PloS one》2014,9(9)
Previous studies have shown that retinal melatonin plays an important role in the regulation of retinal daily and circadian rhythms. Melatonin exerts its influence by binding to G-protein coupled receptors named melatonin receptor type 1 and type 2 and both receptors are present in the mouse retina. Earlier studies have shown that clock genes are rhythmically expressed in the mouse retina and melatonin signaling may be implicated in the modulation of clock gene expression in this tissue. In this study we determined the daily and circadian expression patterns of Per1, Per2, Bmal1, Dbp, Nampt and c-fos in the retina and in the photoreceptor layer (using laser capture microdissection) in C3H-f+/+ and in melatonin receptors of knockout (MT1 and MT2) of the same genetic background using real-time quantitative RT-PCR. Our data indicated that clock and clock-controlled genes are rhythmically expressed in the retina and in the photoreceptor layer. Removal of melatonin signaling significantly affected the pattern of expression in the retina whereas in the photoreceptor layer only the Bmal1 circadian pattern of expression was affected by melatonin signaling removal. In conclusion, our data further support the notion that melatonin signaling may be important for the regulation of clock gene expression in the inner or ganglion cells layer, but not in photoreceptors. 相似文献
15.
16.
Ludovic S. Mure Pierre-Loic Cornut Camille Rieux Elise Drouyer Philippe Denis Claude Gronfier Howard M. Cooper 《PloS one》2009,4(6)
In addition to rods and cones, the human retina contains light-sensitive ganglion cells that express melanopsin, a photopigment with signal transduction mechanisms similar to that of invertebrate rhabdomeric photopigments (IRP). Like fly rhodopsins, melanopsin acts as a dual-state photosensitive flip-flop in which light drives both phototransduction responses and chromophore photoregeneration that bestows independence from the retinoid cycle required by rods and cones to regenerate photoresponsiveness following bleaching by light. To explore the hypothesis that melanopsin in humans expresses the properties of a bistable photopigment in vivo we used the pupillary light reflex (PLR) as a tool but with methods designed to study invertebrate photoreceptors. We show that the pupil only attains a fully stabilized state of constriction after several minutes of light exposure, a feature that is consistent with typical IRP photoequilibrium spectra. We further demonstrate that previous exposure to long wavelength light increases, while short wavelength light decreases the amplitude of pupil constriction, a fundamental property of IRP difference spectra. Modelling these responses to invertebrate photopigment templates yields two putative spectra for the underlying R and M photopigment states with peaks at 481 nm and 587 nm respectively. Furthermore, this bistable mechanism may confer a novel form of “photic memory” since information of prior light conditions is retained and shapes subsequent responses to light. These results suggest that the human retina exploits fly-like photoreceptive mechanisms that are potentially important for the modulation of non-visual responses to light and highlights the ubiquitous nature of photoswitchable photosensors across living organisms. 相似文献
17.
Dark-adapted retinas of mice (C57BL/6J) incubated in the dark in media containing 1 mM 3-isobutylmethylxanthine (IBMX) or 5 mM Co2+ accumulate cyclic AMP (cAMP). A portion of this pool is light sensitive, as light can prevent or reverse its accumulation. Similarly, tryptamine, serotonin, 5-methoxytryptamine, bufotenine, and 5-methoxydimethyltryptamine can block the accumulation of the light-sensitive pool of cAMP, whereas tryptophan, melatonin, N-acetylserotonin, 5-methoxytryptophol, and tetrahydro-beta-carbolines are inactive. The phenomenon is not seen with mutant mouse retinas (rd/rd), which lack most photoreceptors, but persists in abnormal retinas containing photoreceptors but with extensive neuronal depletion in the inner retina. Tryptamine also inhibits cAMP accumulation in either dark or light-adapted retinas exposed to forskolin alone but not in media containing high levels of forskolin plus 1 mM IBMX. There is some suggestion that serotonin 5-HT-2 antagonists can partially reverse the action of the tryptamines, but hitherto undescribed receptors may be involved. Current data suggest that photoreceptors are the target for the action of the tryptamines. 相似文献
18.
19.
视网膜单细胞成像技术研究 总被引:2,自引:0,他引:2
建立了一台基于37单元变形镜、Shack-hartman波前像差传感器和12位科研级CCD相机的自适应光学视网膜相机。采用一个中心波长为679nm的超辐射二极管(SLD)作为相机的光源,通过将超辐射二极管和多模光纤耦合,显著减小了SLD光源的空间相干性,从而消除了散斑噪声对成像的影响。多模光纤的输出提供了一种高亮度、均匀照明的光源,使人眼视网膜单细胞成像的速度达到4.8幅/秒。 相似文献
20.
Comparison of PDGF-AA- and PDGF-BB-Induced Phosphoinositide Formation in Human and Mouse Fibroblasts
In certain cells, such as human fibroblasts (AG 1523), there is a clear difference in the cell motility response induced by the different isoforms of platelet-derived growth factor (PDGF). PDGF-BB induces extensive actin reorganization and is a potent chemotactic agent, whereas PDGF-AA has a limited effect on actin reorganization and is not chemotactic. In the present study, we wanted to compare these effects on cell motility with the effects of the PDGF isoforms on phosphoinositide (PtdIns) turnover. We find that stimulation of serum-starved AG 1523 cells with PDGF-AA or PDGF-BB caused an initial increase of the phosphatidylinositol phosphate and bisphosphate (PtdInsP and PtdInsP2) pools, suggesting that activation of the phosphoinositide kinases is an initial response to PDGF stimulation. Despite a lower number of PDGF α-receptors than β-receptors on these cells, the initial formation of PtdInsP and PtdInsP2 appears to be stimulated to a similar degree by the two PDGF isoforms. In contrast, PtdInsP2 hydrolysis, indirectly measured as formation of phosphatidic acid, was correlated to the number of receptors. During prolonged exposure to PDGF-BB the stimulated PtdIns turnover remained at a high level, whereas the effect of PDGF-AA appeared more transient. A marked increase in the synthesis of a component migrating as phosphatidylinositol trisphosphate (PtdInsPa) was also detected after stimulation with PDGF-BB for 5 min. With PDGF-AA minor amounts were found, indicating that activation of the PtdIns 3′-kinase occurs also via the PDGF α-receptor. Stimulation with PDGF-BB, but not -AA, also induced a 50% decrease in lyso-PtdIns. In murine fibroblasts (Swiss 3T3), where the two PDGF isoforms have a similar effect on cell motility, the two PDGF isoforms also similarly induced PtdIns turnover, PtdInsP3 formation, and a decrease in lyso-PtdIns. Thus, there seems to be a correlation between PDGF-induced PtdIns turnover and PDGF-induced actin reorganization. This is compatible with previous evidence suggesting the microfilament formation is directly linked to an increased turnover of polyphosphoinositides in stimulated cells. 相似文献