首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
One of the diagnostic characters of dicraeosaurid sauropods is a reduction of pneumatization of dorsal and caudal vertebrae relative to their Flagellicaudata sister taxon, Diplodocidae. Here, we analyse pneumatic structures in the dicraeosaurid sauropod Pilmatueia faundezi, compare them to those of diplodocoids and report the first record of camerate chambers in a dicraeosaurid. The pneumatic structures are in a posterior cervical centrum (MLL-Pv-002) and consist of lateral pneumatic fossae on the centrum that communicate internally with large camerae. By contrast, Pilmatueia's dorsal and caudal vertebrae (MLL-Pv-005-016) lack pneumatic fossae on the centra, which is consistent with the previously reported reduced pneumaticity in dicraeosaurids. Nevertheless, the base of the neural arch and possibly the base of the bifid neural spines of a posterior dorsal vertebra (MLL-Pv-005) show pneumatic internal chambers. The pneumatic features of the Pilmatueia cervical centrum and dorsal neural arch we describe indicate that the degree of pneumatization is variable within dicraeosaurids.  相似文献   

2.
Skeletal pneumaticity is found in the presacral vertebrae of most sauropod dinosaurs, but pneumaticity is much less common in the vertebrae of the tail. We describe previously unrecognized pneumatic fossae in the mid-caudal vertebrae of specimens of Giraffatitan and Apatosaurus. In both taxa, the most distal pneumatic vertebrae are separated from other pneumatic vertebrae by sequences of three to seven apneumatic vertebrae. Caudal pneumaticity is not prominent in most individuals of either of these taxa, and its unpredictable development means that it may be more widespread than previously recognised within Sauropoda and elsewhere in Saurischia. The erratic patterns of caudal pneumatization in Giraffatitan and Apatosaurus, including the pneumatic hiatuses, show that pneumatic diverticula were more broadly distributed in the bodies of the living animals than are their traces in the skeleton. Together with recently published evidence of cryptic diverticula—those that leave few or no skeletal traces—in basal sauropodomorphs and in pterosaurs, this is further evidence that pneumatic diverticula were widespread in ornithodirans, both across phylogeny and throughout anatomy.  相似文献   

3.
The taxonomy, osteology, phylogenetic position, and historical biogeography of the lambeosaurine hadrosaurid Magnapaulia laticaudus (new combination) are revised. The diagnosis of this species is amended on the basis on two autapomorphies (i.e., longest haemal arches of proximal caudal vertebrae being at least four times longer than the height of their respective centra; base of prezygapophyses in caudal vertebrae merging to form a bowl-shaped surface) and a unique combination of characters (i.e., downturned cranioventral process of the maxilla; tear-shaped external naris with length/width ratio between 1.85 and 2.85; neural spines of dorsal, sacral, and proximal caudal vertebrae being at least four times the height of their respective centra). A maximum parsimony analysis supports a sister taxon relationship between M. laticaudus and Velafrons coahuilensis. Both taxa constitute a clade of southern North American lambeosaurines, which forms a sister relationship with the diverse clade of helmet-crested lambeosaurines from northern North America that includes well-known genera like Corythosaurus, Lambeosaurus, and Hypacrosaurus. According to the results of a Dispersal-Vicariance analysis, southern North American lambeosaurines split from the northern forms via vicariance from a common ancestor that lived in both the northern and southern regions of the continent.  相似文献   

4.
Pol D  Garrido A  Cerda IA 《PloS one》2011,6(1):e14572

Background

The origin of sauropod dinosaurs is one of the major landmarks of dinosaur evolution but is still poorly understood. This drastic transformation involved major skeletal modifications, including a shift from the small and gracile condition of primitive sauropodomorphs to the gigantic and quadrupedal condition of sauropods. Recent findings in the Late Triassic–Early Jurassic of Gondwana provide critical evidence to understand the origin and early evolution of sauropods.

Methodology/Principal Findings

A new sauropodomorph dinosaur, Leonerasaurus taquetrensis gen. et sp. nov., is described from the Las Leoneras Formation of Central Patagonia (Argentina). The new taxon is diagnosed by the presence of anterior unserrated teeth with a low spoon-shaped crown, amphicoelous and acamerate vertebral centra, four sacral vertebrae, and humeral deltopectoral crest low and medially deflected along its distal half. The phylogenetic analysis depicts Leonerasaurus as one of the closest outgroups of Sauropoda, being the sister taxon of a clade of large bodied taxa composed of Melanorosaurus and Sauropoda.

Conclusions/Significance

The dental and postcranial anatomy of Leonerasaurus supports its close affinities with basal sauropods. Despite the small size and plesiomorphic skeletal anatomy of Leonerasaurus, the four vertebrae that compose its sacrum resemble that of the large-bodied primitive sauropods. This shows that the appearance of the sauropod-type of sacrum predated the marked increase in body size that characterizes the origins of sauropods, rejecting a causal explanation and evolutionary linkage between this sacral configuration and body size. Alternative phylogenetic placements of Leonerasaurus as a basal anchisaurian imply a convergent acquisition of the sauropod-type sacrum in the new small-bodied taxon, also rejecting an evolutionary dependence of sacral configuration and body size in sauropodomorphs. This and other recent discoveries are showing that the characteristic sauropod body plan evolved gradually, with a step-wise pattern of character appearance.  相似文献   

5.
The material belonging to the holotype of Rayososaurus agrioensis Bonaparte is redescribed. The great development of the acromion process, directed in a markedly posterior direction, and the ventral margin of the scapula with a strong ventrodistal expansion, interpreted as autapomorphies of the taxon, justify the validity of the species. Although the material is rather fragmentary, the racquet-shaped scapula, the distal expansion positioned at the same height as the proximal expansion, and the well-developed acromion process allow the taxon to be included within Rebbachisauridae. At the same time, the angle of less than 90? between the coracoid articulation and the scapular blade, together with the great development of the acromion process of the scapula, justify its inclusion in a clade situated as a sister group of Cathartesaura. On the basis of the stratigraphic calibration of the phylogenetic analysis, an important diversification event of the rebbachisaurids is deduced during the Hauterivian-Barremian. In this context, the presence of two monophyletic groups, one of which comprises African-European taxa and the other South American taxa, would place the definitive separation of South America and Africa within this time interval.  相似文献   

6.
7.
Among extant vertebrates, pneumatization of postcranial bones is unique to birds, with few known exceptions in other groups. Through reduction in bone mass, this feature is thought to benefit flight capacity in modern birds, but its prevalence in non-avian dinosaurs of variable sizes has generated competing hypotheses on the initial adaptive significance of postcranial pneumaticity. To better understand the evolutionary history of postcranial pneumaticity, studies have surveyed its distribution among non-avian dinosaurs. Nevertheless, the degree of pneumaticity in the basal coelurosaurian group Ornithomimosauria remains poorly known, despite their potential to greatly enhance our understanding of the early evolution of pneumatic bones along the lineage leading to birds. Historically, the identification of postcranial pneumaticity in non-avian dinosaurs has been based on examination of external morphology, and few studies thus far have focused on the internal architecture of pneumatic structures inside the bones. Here, we describe the vertebral pneumaticity of the ornithomimosaur Archaeornithomimus with the aid of X-ray computed tomography (CT) imaging. Complementary examination of external and internal osteology reveals (1) highly pneumatized cervical vertebrae with an elaborate configuration of interconnected chambers within the neural arch and the centrum; (2) anterior dorsal vertebrae with pneumatic chambers inside the neural arch; (3) apneumatic sacral vertebrae; and (4) a subset of proximal caudal vertebrae with limited pneumatic invasion into the neural arch. Comparisons with other theropod dinosaurs suggest that ornithomimosaurs primitively exhibited a plesiomorphic theropod condition for axial pneumaticity that was extended among later taxa, such as Archaeornithomimus and large bodied Deinocheirus. This finding corroborates the notion that evolutionary increases in vertebral pneumaticity occurred in parallel among independent lineages of bird-line archosaurs. Beyond providing a comprehensive view of vertebral pneumaticity in a non-avian coelurosaur, this study demonstrates the utility and need of CT imaging for further clarifying the early evolutionary history of postcranial pneumaticity.  相似文献   

8.
Abstract: The sauropod dinosaur, Barapasaurus tagorei, is known from the Early Jurassic Kota Formation (Sinemurian to Pliensbachian) of India. The taxon is represented by c. 300 bones that were found associated with large fossilized tree trunks and were collected from the interface of sandstone and mudstone units covering an area of c. 276 m2. The collection includes one partial skeleton; most of the remainder of the bones were disarticulated, disassociated and dispersed, but taphonomic analysis permits recognition of associated elements comprising several individuals. Skeletal anatomy of Barapasaurus includes several teeth, vertebrae from the caudal cervicals rearward to the terminal caudals, and most elements of the appendicular skeleton. Barapasaurus is characterized by spoon‐shaped teeth with bulbous bases and grooves on the anterolabial and posterolingual sides of the crown, coarse tubercles on the carina, acamerate cranial and dorsal vertebrae, lateral laminae of the middle and caudal dorsal neural spines composed of spinodiapophyseal and spinopostzygapophyseal laminae, neural canal of the mid‐dorsal vertebrae opens dorsally through a narrow slit into a large cavity and sacrum with four co‐ossified vertebrae. Phylogenetic analysis reveals that Barapasaurus is basal in comparison with Vulcanodon and is removed from Eusauropoda.  相似文献   

9.
An articulated length of vertebral column is used as a basis for the reconstruction of the salient features of the axial skeleton of the embolomerous anthracosaur Eogyrinus attheyi Watson, together with other material, including the holotype, in the Hancock Museum, Newcastle upon Tyne.
The trunk vertebrae are typically emboloinerous, with disoshaped notochordal pleuro-centra, firmly attached by broad facets to this neural arches, and much thinner intercentra. Regional variation is chiefly concerned with the span of the transverse processes, which diminishes posteriorly, and the associated separation of the two heads of each rib. A longitudinal series of trunk ribs, of diminishing length from the mid-trunk backwards, is reconstructed.
Eogyrinus has a normal tetrapod sacrum with one characteristic sacral rib. The first few caudal vertebrae bear ribs of unusual form, (of which four are preserved in sequence in the articulated specimen. The fifth caudal intercentrum bears the first and largest haemal arch and the pleurocentrum of the seventh caudal is distinguished by marked muscle origins presumably for the caudifemoral muscles.
The probability that Eogyrinus, like the few other embolomeres known, had an unusually long vertebral column for a labyrinthodont, is supported by an orthometric comparison using Romer's data on the American form Archeria.  相似文献   

10.
The new fossil fish Musculopedunculus micklichi (type locality: the lower Oligocene slate sediments to the south of Heidelberg, FRG) is described from an incomplete skeleton impression. The diagnostic characters are the powerful and relatively deep caudal peduncle with the hemal and, probably, neural processes of anterior preural centra strongly enlarged, located at an angle of about 60°, as well as a compressed body, high number of vertebrae (probably, about 80), the dorsal fin probably slightly differentiated into the spiny and soft parts, and a well-developed fronto-occipital sagittal crest. On the basis of these and other features, the fossil taxon does not conform to the known Euzaphlegidae, Gempylidae, and Trichiuridae and is recognized as the new family Musculopedunculidae probably belonging to the Trichiuroidae.  相似文献   

11.
The skeletal morphology of Paraorthacodus jurensis, a Late Jurassic neoselachian from Nusplingen, is described based on the incomplete holotype and a newly discovered almost complete specimen. For the first time, the postcranial skeleton could be investigated. Paraorthacodus is characterized by a monognath dental heterodonty and tearing‐type dentition. The number of lateral cusplets in the lateral teeth differs between the holotype and the new specimen, possibly indicating sexual dimorphism. Clasper organs are not preserved in either of the two specimens. The notochord is sheathed by about 123 well‐calcified vertebral centra. The posterior‐most caudal vertebrae are lacking. The transition from monospondylous thoracic to diplospondylous abdominal vertebrae occurs at centra 48 and 49. The origin of the caudal fin is at the 80th centrum. Most conspicuous is the presence of a single spineless dorsal fin. In this respect, Paraorthacodus differs from most palaeospinacids, but resembles Macrourogaleus. Palidiplospinax possibly is sister to a group comprising Synechodus, Paraorthacodus, and Macrourogaleus (the Palaeospinacidae). A reinterpretation of dental and skeletal characters of synechodontiform taxa indicates that Synechodontiformes and Palaeospinacidae are monophyletic groupings of basal neoselachians. Synechodontiformes is probably sister to all living elasmobranchs.  相似文献   

12.
IS-Tlk/Kyo, a mutant derived from IS/Kyo strain, exhibits a kinked and/or short tail, in addition to the congenital lumbar vertebral anomaly. Homozygotes of Tlk dominant gene are known to die during embryonic development. We previously reported the morphological features of the skeleton in IS/Kyo and IS-Tlk/Kyo fetuses and of the heart in IS/Kyo fetuses [19]. This study was conducted to clarify the morphological features of the skeleton in both adult rats and of the heart in adult IS/Kyo rats. Ventricular septal defect (VSD) was observed in 3 out of 10 IS/Kyo rats. Neither splitting of lumbar vertebra and supernumerary rib (in both strains) nor fused or absent caudal cartilage (in IS-Tlk/Kyo strain) was detected in adult rats. Fusion of lumbar vertebrae was observed in almost all specimens together with lumbarization of sacral vertebrae in a few specimens in both adult rats as well as fusion of sacral and caudal vertebrae only in adult IS-Tlk/Kyo rats. In addition, a severe reduction in the ossified sacral and caudal vertebrae was noted in adult IS-Tlk/Kyo rats (mean number: 20.6) and IS/Kyo rats (31.8), and the difference was similar to that in the length of sacral and caudal vertebrae. These results suggest that the Tlk gene may be involved in both the congenital and acquired abnormal formation of the lower vertebral centra as well as the persistent occurrence of VSD by the background gene in IS/Kyo strain.  相似文献   

13.
The Upper Jurassic of the Lusitanian Basin (Portugal) is particularly rich in sauropod fossil remains, with four established taxa: Dinheirosaurus, Lusotitan, Lourinhasaurus and Zby. The presence of sauropod caudal procoelous vertebrae is reported for the first time in the Upper Jurassic of Portugal, with specimens described from the localities of Baleal, Paimogo, Praia da Areia Branca, Porto das Barcas, and Praia da Corva. The presence of slightly procoelous centra and fan-shaped caudal ribs with smooth prezygapophyseal centrodiapophyseal fossa in the more anterior caudal vertebrae allows for the assignment of these specimens to an indeterminate eusauropod, probably belonging to a non-neosauropod eusauropod form. The absence of several features in the Portuguese specimens that are common in diplodocids, mamenchisaurids and titanosaurs, prevents the establishment of sound relationships with these clades. The described specimens are almost identical to the anterior caudal vertebrae of the Iberian turiasaur Losillasaurus. During the Iberian Late Jurassic, Turiasauria is the only Iberian group of sauropods, which shares this type of morphology with the Baleal, Paimogo, Praia da Areia Branca, Porto das Barcas and Praia da Corva specimens. These specimens represent one of the four anterior caudal vertebral morphotypes recorded in the Upper Jurassic of the Lusitanian Basin and briefly described herein.  相似文献   

14.
15.
Orthogonikleithrus leichi n. gen and n. sp. from the Late Jurassic of Zandt, W-Germany resemblesLeptolepides in the supra- and infraorbital sensory canals and in the length of the anterior process of the maxilla, andAscalabos in the massive aspect of the premaxilla. The caudal skeleton has some similarities with that ofLeptolepides (e. g. the broadening of the neural and haemal spines of the last caudal vertebrae, length of uroneurals 1 and 2), but also with that ofAnaethalion (in the neural arches above preural centrum 1 and ural centra). According to this combination of features, the fish remains as Elopocephala incertae sedis.  相似文献   

16.
Impairment of segmentation during embryonic development leads to congenital fusion of vertebrae. Nevertheless, vertebral fusion can also occur during post‐embryonic life. Fusion can cause reduction in mobility and may be pathological, but it can also be part of normal development and mechanically required, such as in the teleost caudal skeleton, or in the tetrapod sacrum. Using a series of closely spaced ontogenetic stages of zebrafish, stained for mineralized (Alizarin red) and cartilaginous (Alcian blue) structures, we have characterized all fusions occurring during the formation of the caudal skeleton. The urostyle results from the vertebral fusion of the compound centrum preural1‐ural1 [PU1++U1] and ural2 [U2+]. Based on developmental and morphological characters: (i) number of vestigial haemal arches, (ii) occasional presence of a haemal arch rudiment, (iii) occasional individuals with separate centra rudiments or distinct mineralization time points, and (iv) evidence for internal separation, we propose that the urostyle forms as a fusion product of five, and not three vertebral centra, as previously described. The last fusion to occur in development, between the compound centrum [PU1++U1] and U2+, is a relatively slow process that typically occurs in Cypriniformes and Salmoniformes and is therefore considered reliable to monitor the fusion process. The vertebrae adjacent to the urostyle, preurals 2 and 3, are highly susceptible to fusion, and thus inadequate as a negative control to fusion, in contrast to trunk vertebrae, where fusion is never observed. With this we have established the basis for a new model to study vertebral fusion and to unravel cellular and molecular events underlying this process.  相似文献   

17.
Diplodocoidea includes some of the first well‐known sauropod dinosaurs, including such late 19th century and early 20th century discoveries as Apatosaurus, Diplodocus, and Dicraeosaurus. As a consequence of their long history of study, the basic set of suprageneric diplodocoid interrelationships is well resolved, and the diagnostic features of each genus are well established. However, intergeneric relationships are less resolved, including the relationships of putatively basal taxa like Amphicoelias and Haplocanthosaurus, the flagellicaudatan Suuwassea, and the highly specialized rebbachisaurids. For the rebbachisaurids, this uncertainty is coupled with a recent surge in the discovery of new taxa. Comparative cladistic methods demonstrate that character and taxon sampling need to be improved before greater phylogenetic resolution can be expected. Here, I present a new phylogenetic analysis that resolves many of the outstanding questions regarding the relationships within Diplodocoidea and examines palaeobiogeographical trends within the group. Suuwassea is recovered as a basal dicraeosaurid (the only Laurasian member of the group), and two distinct clades of rebbachisaurids are identified: a group closely allied with Nigersaurus and a clade associated with Limaysaurus. Amphicoelias, Amazonsaurus, and Haplocanthosaurus are provisionally placed as successively less‐derived taxa at the base of Diplodocoidea. A North American origin for Diplodocoidea and Flagellicaudata is hypothesized based on the geographical and temporal distribution of those taxa. Rebbachisaurid taxa demonstrate a South American/African vicariance pattern, but the timing of the event pre‐dates the proposed final rifting of those continents by c. 40 million years; the meaning of this discrepancy is uncertain. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161 , 872–915.  相似文献   

18.
Theropod dinosaurs from the Late Jurassic of Gondwana are still poorly known, with Elaphrosaurus bambergi Janensch, 1920, from the late Kimmeridgian of Tendaguru, Tanzania, being the only taxon represented by more than isolated remains from Africa. Having long been considered a coelurosaurian, more specifically an ornithomimosaur, Elaphrosaurus is currently regarded as a basal ceratosaur. Here, we revise the osteology and phylogenetic position of this important taxon. Elaphrosaurus shows many unusual osteological characters, including extremely elongated and constricted cervical vertebrae, an expansive shoulder girdle with strongly modified forelimbs, a relatively small ilium, and elongate hindlimbs with a very small ascending process of the astragalus that is fused to the tibia. We found this taxon to share many derived characters with noasaurids, such as: strongly elongate cervical and dorsal vertebrae; low, rectangular neural spines in the mid‐caudal vertebrae; presence of only an anterior centrodiapophyseal lamina in anterior caudal vertebrae; presence of a wide, U–shaped notch between the glenoid and the anteroventral hook in the coracoid; a laterally flared postacetabular blade of the ilium; a flat anterior side of the distal tibia; and a reduced shaft of metatarsal II. Our analysis placed Elaphrosaurus within a dichotomous Noasauridae as part of a Jurassic subclade, here termed Elaphrosaurinae, that otherwise includes taxa from eastern Asia. These results underscore the long and complex evolutionary history of abelisauroids, which is still only beginning to be understood.  相似文献   

19.
A partially articulated postcranial skeleton of a small ornithischian dinosaur, Gideonmantellia amosanjuanae nov. gen. et sp., from the Early Cretaceous of Galve (Teruel province, Spain) is described. It was recovered in an outcrop of fluvial red clays from the Camarillas Formation, which is Barremian in age. This partial skeleton is recognised as a new ornithopod taxon by the following autapomorphies: (1) postacetabular process of the ilium with a brevis shelf that is noticeably medially expanded in its cranial part but narrow and horizontal in its caudal part; (2) rod-like prepubic process with its anterior end twisted and expanded; and (3) L-shaped first chevron. Our phylogenetic analysis indicates that Gideonmantellia represents a basal ornithopod taxon more derived than Orodromeus, the “Asian clade” (which includes Haya and others) and Hypsilophodon.  相似文献   

20.
Abstract: Morphological changes in the ontogeny of sauropods are poorly known, making difficult to establish the systematic affinities of very young individuals. New information on an almost complete juvenile sauropod (SMA 0009) with an estimated total length of about 2 m is here presented. The specimen was described as a diplodocid owing to the presence of some putative synapomorphies of this group. However, recent further preparation revealed the absence of diplodocid characters and the presence of macronarian derived characters. To test the affinities of this specimen, a phylogenetic analysis was conducted. The strict consensus tree recovers the specimen as a basal titanosauriform, in an unresolved relation with Brachiosaurus and Giraffatitan. Nevertheless, a brachiosaurid assignment is here suggested in base of the widely accepted monophyly of this group (only recovered when SMA 0009 is placed within this group). Although the existence of a new taxon cannot be completely ruled out, the combination of derived and plesiomorphic characters in the specimen suggests its assignment to Brachiosaurus. Sixteen extra steps are needed to place this specimen within Diplodocidae. The high cost to place this specimen within this group is owing to the fact that several diplodocid characters are absent in SMA 0009, such as the absence of divided centroprezygapophyseal lamina in cervical vertebrae, procoelous anterior caudal centra, composed lateral lamina in anterior caudal vertebrae, elongated middle caudal vertebrae, short cervical ribs and caudolateral projection of distal condyle of metatarsal I. Finally, the systematic position reveals few major ontogenetic transformations. These affect the pneumatic structures (e.g. change from simple pleurocoels in the cervical vertebrae to complex pleurocoels and the development of lateral excavations in the dorsal vertebrae) but also include unrecorded transformations of the neural spine (e.g. the development of the spinodiapophyseal lamina, the widening of the neural spines in the dorsal vertebrae) and allometric growth in some limb bones.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号