首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Lysosomal proteases are actively involved into pathogenesis of malignant tumors. Impairments in the interaction between proteases and their inhibitors are implicated in the processes of tumor invasion and metastasis. Among proteases associated with malignant growth, cysteine cathepsins B and L and aspartic cathepsin D are considered to play the major role in the tumor development. The present study was designed to investigate the activity of cathepsins B, L, and D during the development and treatment of murine experimental leukemias and to determine correlation between these proteases and course of pathological process as well as efficiency of the chemotherapeutic treatment. P-388 leukemia was characterized by a more aggressive development and unfavorable prognosis than L1210/1 leukemia. In mice with P-388 leukemia the activity of lysosomal cathepsins B, D, and L in the tumor tissue, liver and spleen, as well as the activity of cathepsins B and L in serum were lower than activities of these enzymes in mice with L1210/1 leukemia. Changes in the activity of cathepsins in liver and spleen of leukemic mice reflected a level of aggressiveness of the tumor development and invasion of these organs with tumor cells. Treatment of these experimental leukemias resulted in the increase of cathepsin B, L and D activity in the tumor tissue, liver, spleen and the increase in cathepsin B and L activity in serum. The highest protease activity was detected in the groups of mice characterized by the highest inhibition of the tumor growth. These data demonstrate that lysosomal proteases are involved in the progression of murine experimental leukemias and elimination of tumor cells in the result of treatment. Thus, determination of the activity of cysteine and aspartic proteases can be used for evaluation of cancer malignancy, tumor sensitivity for chemotherapy and efficiency of treatment.  相似文献   

3.
Digestive proteases of the phytophagous mite Tetranychus urticae have been characterised by comparing their activity in body and faecal extracts. Aspartyl, cathepsin B- and L-like and legumain activities were detected in both mite bodies and faeces, with a specific activity of aspartyl and cathepsin L-like proteases about 5- and 2-fold higher, respectively, in mite faeces than in bodies. In general, all these activities were maintained independently of the host plant where the mites were reared (bean, tomato or maize). Remarkably, this is the first report in a phytophagous mite of legumain-like activity, which was characterised for its ability to hydrolyse the specific substrate Z-VAN-AMC, its activation by DTT and inhibition by IAA but not by E-64. Gel free nanoLC–nanoESI-QTOF MS/MS proteomic analysis of mite faeces resulted in the identification of four cathepsins L and one aspartyl protease (from a total of the 29 cathepsins L, 27 cathepsins B, 19 legumains and two aspartyl protease genes identified the genome of this species). Gene expression analysis reveals that four cathepsins L and the aspartyl protease identified in the mite faeces, but also two cathepsins B and two legumains that were not detected in the faeces, were expressed at high levels in the spider mite feeding stages (larvae, nymphs and adults) relative to embryos. Taken together, these results indicate a digestive role for cysteine and aspartyl proteases in T. urticae. The expression of the cathepsins B and L, legumains and aspartyl protease genes analysed in our study increased in female adults after feeding on Arabidopsis plants over-expressing the HvCPI-6 cystatin, that specifically targets cathepsins B and L, or the CMe trypsin inhibitor that targets serine proteases. This unspecific response suggests that in addition to compensation for inhibitor-targeted enzymes, the increase in the expression of digestive proteases in T. urticae may act as a first barrier against ingested plant defensive proteins.  相似文献   

4.

Background  

Most cancers express elevated protease levels which contribute to certain aspects of tumor behavior such as growth, metastatic spread, and angiogenesis. Elevation of the cathepsins of the cysteine protease family correlates with increased invasion of tumor cells. Cysteine proteases such as cathepsins B, H and L type participate in tumor cell invasion as extracellular proteases, yet are enzymes whose exact roles in metastasis are still being elucidated.  相似文献   

5.
Summary Zymography of concentrated conditioned medium (CM) from protein-free NS0 myeloma cell cultures showed that this cell line produced and released/secreted several proteases. Two caseinolytic activities at 45–50 and 90 kDa were identified as aspartic acid proteases, and at least two cathepsins of the papain-like cysteine protease family with molecular masses of 30–35 kDa were found by gelatin zymography. One of these cathepsins was identified as cathepsin L by using an enzyme assay exploiting the substrate Z-Phe-Arg-AMC and the inhibitor Z-Phe-Tyr-t(Bu)-DMK. The aspartic acid and cysteine proteases were active only at acidic pH and are therefore not a potential risk for degrading the product or affecting cell growth during culture. Secreted proforms of cathepsins may, however, possess mitogenic functions, but addition of anti-procathepsin L antibodies to NS0 cultures did not influence proliferation. The recombinant antibody product was not degraded in cell-free CM incubated at pH 7, but when the pH was decreased to 3.5–4, the aspartic acid proteases degraded the product. Gelatin zymography also revealed the presence of several serine proteases in NS0 CM, one at 85 kDa and two at 50 kDa, with pH optima close to culture pH. Addition of the serine protease inhibitor aprotinin significantly increased the specific proliferation rate as compared to the control. In addition to these data, N-terminal amino acid sequencing identified two proteins in NS0 CM as the protease inhibitors secretory leukocyte protease inhibitor and cystatin C.  相似文献   

6.
Papain-like lysosomal cysteine proteases are processive and digestive enzymes that are expressed in organisms from bacteria to humans. Increasing knowledge about the physiological and pathological roles of cysteine proteases is bringing them into the focus of drug discovery research. These proteases have rather short active-site clefts, comprising three well defined substrate-binding subsites (S2, S1 and S1') and additional broad binding areas (S4, S3, S2' and S3'). The geometry of the active site distinguishes cysteine proteases from other protease classes, such as serine and aspartic proteases, which have six and eight substrate-binding sites respectively. Exopeptidases (cathepsins B, C, H and X), in contrast with endopeptidases (such as cathepsins L, S, V and F), possess structural features that facilitate the binding of N- and C-terminal groups of substrates into the active-site cleft. Other than a clear preference for free chain termini in the case of exopeptidases, the substrate-binding sites exhibit no strict specificities. Instead, their subsite preferences arise more from the specific exclusion of substrate types. This presents a challenge for the design of inhibitors to target a specific cathepsin: only the cumulative effect of an assembly of inhibitor fragments will bring the desired result.  相似文献   

7.
Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles functions as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β- amyloid (Aβ) peptides that accumulate in Alzheimer's disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrast with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin functions. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

8.
Recent new findings indicate significant biological roles of cysteine cathepsin proteases in secretory vesicles for production of biologically active peptides. Notably, cathepsin L in secretory vesicles functions as a key protease for proteolytic processing of proneuropeptides (and prohormones) into active neuropeptides that are released to mediate cell-cell communication in the nervous system for neurotransmission. Moreover, cathepsin B in secretory vesicles has been recently identified as a β-secretase for production of neurotoxic β- amyloid (Aβ) peptides that accumulate in Alzheimer's disease (AD), participating as a notable factor in the severe memory loss in AD. These secretory vesicle functions of cathepsins L and B for production of biologically active peptides contrast with the well-known role of cathepsin proteases in lysosomes for the degradation of proteins to result in their inactivation. The unique secretory vesicle proteome indicates proteins of distinct functional categories that provide the intravesicular environment for support of cysteine cathepsin functions. Features of the secretory vesicle protein systems insure optimized intravesicular conditions that support the proteolytic activity of cathepsins. These new findings of recently discovered biological roles of cathepsins L and B indicate their significance in human health and disease. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

9.
Increasing evidence suggests that lysosomal proteases are actively involved in apoptosis. Using HeLa cells as the model system, we show that selective lysosome disruption with L-leucyl-L-leucine methyl ester results in apoptosis, characterized by translocation of lysosomal proteases into the cytosol and by the cleavage of a proapoptotic Bcl-2-family member Bid. Apoptosis and Bid cleavage, but not translocation of lysosomal proteases to the cytosol, could be prevented by 15 microM L-trans-epoxysuccinyl(OEt)-Leu-3-methylbutylamide, an inhibitor of papain-like cysteine proteases. Incubation of cells with 15 microM N-benzoyloxycarbonyl-VAD-fluoromethyl ketone prevented apoptosis but not Bid cleavage, suggesting that cathepsin-mediated apoptosis in this system is caspase-dependent. In vitro experiments performed at neutral pH showed that papain-like cathepsins B, H, L, S, and K cleave Bid predominantly at Arg(65) or Arg(71). No Bid cleavage was observed with cathepsins C and X or the aspartic protease cathepsin D. Incubation of full-length Bid treated with cathepsins B, H, L, and S resulted in rapid cytochrome c release from isolated mitochondria. Thus, Bid may be an important mediator of apoptosis induced by lysosomal disruption.  相似文献   

10.
11.
Autophagy is a process involved in the proteolytic degradation of cellular macromolecules in lysosomes, which requires the activity of proteases, enzymes that hydrolyse peptide bonds and play a critical role in the initiation and execution of autophagy. Importantly, proteases also inhibit autophagy in certain cases. The initial steps of macroautophagy depend on the proteolytic processing of a particular protein, Atg8, by a cysteine protease, Atg4. This processing step is essential for conjugation of Atg8 with phosphatidylethanolamine and, subsequently, autophagosome formation. Lysosomal hydrolases, known as cathepsins, can be divided into several groups based on the catalitic residue in the active site, namely, cysteine, serine and aspartic cathepsins, which catalyse the cleavage of peptide bonds of autophagy substrates and, together with other factors, dispose of the autophagic flux. Whilst most cathepsins degrade autophagosomal content, some, such as cathepsin L, also degrade lysosomal membrane components, GABARAP-II and LC3-II. In contrast, cathepsin A, a serine protease, is involved in inhibition of chaperon-mediated autophagy through proteolytic processing of LAMP-2A. In addition, other families of calcium-dependent non-lysosomal cysteine proteases, such as calpains, and cysteine aspartate-specific proteases, such as caspases, may cleave autophagy-related proteins, negatively influencing the execution of autophagic processes. Here we discuss the current state of knowledge concerning protein degradation by autophagy and outline the role of proteases in autophagic processes. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

12.
Hook VY 《Biological chemistry》2006,387(10-11):1429-1439
Proteases are required for the production of peptide neurotransmitters and toxic peptides in neurodegenerative diseases. Unique roles of the cysteine proteases cathepsin L and cathepsin B in secretory vesicles for the production of biologically active peptides have been demonstrated in recent studies. Secretory vesicle cathepsin L participates in the proteolytic conversion of proenkephalin into the active enkephalin, an opioid peptide neurotransmitter that mediates pain relief. Moreover, recent findings provide evidence that cathepsin B in regulated secretory vesicles participates in the production of toxic beta-amyloid peptides that are known to accumulate extracellularly in Alzheimer's disease brains. The neurobiological functions of cathepsins L and B demonstrate that these secretory vesicle cysteine proteases produce biologically active peptides. These results demonstrate newly identified roles for cathepsins L and B in neurosecretory vesicles in the production of biologically active peptides.  相似文献   

13.
The cysteine proteinases cathepsins B and L are members of the multigene family of lysosomal proteases that have been implicated in the processing of yolk proteins (YPs) in teleost oocytes. However, the full identification of the type of cathepsins expressed in fish ovarian follicles and embryos, as well as their regulatory mechanisms and specific function(s), are not yet elucidated. In this study, cDNAs encoding cathepsins B, L, F, K, S, Z, C, and H have been isolated from the teleost Fundulus heteroclitus, and the analysis of their deduced amino acid sequences revealed highly similar structural features to vertebrate orthologs, and confirmed in this species the existence of cathepsin L-like, cathepsin B-like, and cathepsin F-like subfamilies of cysteine proteinases. While all identified cathepsins were expressed in ovarian follicles, the corresponding mRNAs showed different temporal expression patterns. Thus, similar mRNA levels of cathepsins L, F, S, B, C, and Z were found throughout the oocyte growth or vitellogenesis period, whereas those for cathepsin H and K appeared to decrease as vitellogenesis advanced. During oocyte maturation, a transient accumulation of cathepsins L, S, H, and F mRNAs, approximately a 3-, 1.5-, 1.6-, and 6-fold increase, respectively, was detected in ovarian follicles within the 20-25 hr after hormone stimulation, coincident with the maximum proteolysis of the oocyte major YPs. The specific temporal pattern of expression of these genes may indicate a potential role of cathepsin L-like and cathepsin F proteases in the YP processing events occurring during fish oocyte maturation and/or early embryogenesis.  相似文献   

14.
Autophagy is a process involved in the proteolytic degradation of cellular macromolecules in lysosomes, which requires the activity of proteases, enzymes that hydrolyse peptide bonds and play a critical role in the initiation and execution of autophagy. Importantly, proteases also inhibit autophagy in certain cases. The initial steps of macroautophagy depend on the proteolytic processing of a particular protein, Atg8, by a cysteine protease, Atg4. This processing step is essential for conjugation of Atg8 with phosphatidylethanolamine and, subsequently, autophagosome formation. Lysosomal hydrolases, known as cathepsins, can be divided into several groups based on the catalitic residue in the active site, namely, cysteine, serine and aspartic cathepsins, which catalyse the cleavage of peptide bonds of autophagy substrates and, together with other factors, dispose of the autophagic flux. Whilst most cathepsins degrade autophagosomal content, some, such as cathepsin L, also degrade lysosomal membrane components, GABARAP-II and LC3-II. In contrast, cathepsin A, a serine protease, is involved in inhibition of chaperon-mediated autophagy through proteolytic processing of LAMP-2A. In addition, other families of calcium-dependent non-lysosomal cysteine proteases, such as calpains, and cysteine aspartate-specific proteases, such as caspases, may cleave autophagy-related proteins, negatively influencing the execution of autophagic processes. Here we discuss the current state of knowledge concerning protein degradation by autophagy and outline the role of proteases in autophagic processes. This article is part of a Special Issue entitled: Proteolysis 50 years after the discovery of lysosome.  相似文献   

15.
16.
Falcipain-2 (FP2) is an essential enzyme in the lifecycle of malaria parasites such as Plasmodium falciparum, and its inhibition is viewed as an attractive mechanism of action for new anti-malarial agents. Selective inhibition of FP2 with respect to a family of human cysteine proteases (that include cathepsins B, K, L and S) is likely to be required for the development of agents targeting FP2. Here we describe a series of P2-modified aminonitrile based inhibitors of FP2 that provide a clear strategy toward addressing selectivity for the P. falciparum and show that it can provide potent FP2 inhibitors with strong selectivity against all four of these human cathepsin isoforms.  相似文献   

17.
Cathepsins are a family of lysosomal proteases that play an important role in protein degradation, antigen presentation, apoptosis, and inflammation. Cathepsins are divided into three groups, i.e., cysteine protease, serine protease, and aspartic protease. Cathepsin D and cathepsin L, which are aspartic protease and cysteine protease respectively, have been identified in a number of teleosts; however, the immunological relevance of fish cathepsins is largely unknown. In this study, we cloned and analyzed the expression profiles of a cathepsin D (CsCatD) and a cathepsin L (CsCatL) homologs from half-smooth tongue sole (Cynoglossus semilaevis). CsCatD is composed of 396 amino acid residues and shares 67.6-88.4% overall sequence identities with fish and human cathepsin D. Structurally CsCatD possesses an aspartic endopeptidase domain, which contains two conserved aspartic acid residues that form the catalytic site. CsCatL is 336 residues in length and shares 64.7-90.2% overall sequence identities with fish and human cathepsin L. CsCatL has an N-terminal cathepsin propeptide inhibitor domain followed by a Papain family cysteine protease domain, the latter containing four conserved catalytic residues: Gln-133, Cys-139, His-279, and Asn-303. Recombinant CsCatL purified from Escherichia coli exhibited apparent protease activity. Quantitative real time RT-PCR analysis detected constitutive expression of CsCatD and CsCatL in multiple tissues, with the lowest level found in heart and the highest level found in liver. Experimental challenge of tongue sole with the bacterial pathogen Vibrio anguillarum and megalocytivirus caused significant inductions of both CsCatD and CsCatL expression in kidney and spleen in time-dependent manners. Immunization of the fish with a subunit vaccine also enhanced CsCatD and CsCatL expression in the first week post-vaccination. These results suggest involvement of CsCatD and CsCatL in host immune reactions to bacterial and viral infections and in the process of antigen-induced immune response.  相似文献   

18.
Lysosomal cysteine cathepsins: signaling pathways in apoptosis   总被引:3,自引:0,他引:3  
Stoka V  Turk V  Turk B 《Biological chemistry》2007,388(6):555-560
Apoptosis is the major mechanism by which eukaryotic organisms eliminate potentially dangerous, superfluous and damaged cells. Initially, nuclei and mitochondria were found to be the key organelles involved in the process. However, recent data suggest that lysosomes and the endoplasmic reticulum also play important roles in the process. A number of different stimuli were found to directly or indirectly target the lysosomal membrane, thereby inducing lysosomal permeabilization and the release of cysteine cathepsins and the aspartic protease cathepsin D into the cytosol. Once in the cytosol, cathepsins can trigger cell death by different mechanisms. Here we discuss the different signaling pathways used by lysosomal proteases to trigger apoptosis and their potential role in physiological processes.  相似文献   

19.
Cysteine proteases of the papain superfamily are present in nearly all eukaryotes. They play pivotal roles in the biology of parasites and inhibition of cysteine proteases is emerging as an important strategy to combat parasitic diseases such as sleeping sickness, Chagas’ disease and leishmaniasis. Homology modeling of the mature Leishmania mexicana cysteine protease CPB2.8 suggested that it differs significantly from bovine cathepsin B and thus could be a good drug target. High throughput screening of a compound library against this enzyme and bovine cathepsin B in a counter assay identified four novel inhibitors, containing the warhead-types semicarbazone, thiosemicarbazone and triazine nitrile, that can be used as leads for antiparasite drug design. Covalent docking experiments confirmed the SARs of these lead compounds in an effort to understand the structural elements required for specific inhibition of CPB2.8. This study has provided starting points for the design of selective and highly potent inhibitors of L. mexicana cysteine protease CPB that may also have useful efficacy against other important cysteine proteases.  相似文献   

20.
Our study was aimed at examinating whether or not the human genome encodes for previously unreported cysteine cathepsins. To this end, we used analyses of the genome sequence and mRNA expression levels. The program TBLASTN was employed to scan the draft sequence of the human genome for the 11 known cysteine cathepsins. The cathepsin-like segments in the genome were inspected, filtered, and annotated. In addition to the known cysteine cathepsins, the scan identified three pseudogenes, closely related to cathepsin L, on chromosome 10, as well as two remote homologs, tubulointerstitial protein antigen and tubulointerstitial protein antigen-related protein. No new members of the family were identified. mRNA expression profiles for 10 known human cysteine cathepsins showed varying expression levels in 46 different human tissues and cell lines. No expression of any of the three cathepsin L-like pseudogenes was found. Based on these results, it is likely that to date all human cysteine cathepsins are known.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号