首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 190 毫秒
1.
M Jia  P G Nelson 《Peptides》1987,8(3):565-568
Monosynaptic excitatory post-synaptic potentials (EPSPs) evoked in spinal cord (SC) neurons by stimulation of dorsal root ganglion (DRG) neurons in cell cultures were reduced by perfusion application of the opiate peptide, Met-enkephalin (2-4 microM). In about 2/3 of cases examined, EPSPs evoked by stimulation of spinal cord cells were also reduced by Met-enkephalin. The effects were antagonized by concomitant perfusion with naloxone (1-2 microM) and recovered when perfusion with Met-enkephalin was stopped. Statistical analysis of synaptic responses indicated that the reduction of EPSP amplitude was due, at least to a major extent, to a decrease in presynaptic transmitter release.  相似文献   

2.
16 subjects with severe spasms secondary to traumatic and nontraumatic myelopathy underwent epidural spinal cord stimulation. 4 patients had a complete motor and sensory spinal cord lesion. 6 of the subjects with an incomplete spinal cord lesion were ambulatory. All patients had previously undergone extensive trials with medications and physical therapy. All 14 subjects in whom a satisfactory placement of the electrode could be obtained had a reduction in the severity of the spasms. In 6 patients, the spasms were almost abolished. Extremity, trunkal and abdominal spasms were affected. Clonus in the upper extremities was consistently reduced. Marked improvement in bladder and bowel function was observed in each of 2 subjects. In over 1-year follow-up, 5 subjects show persistence of the results, with less stimulation required to maintain the therapeutic effects. No neurological deterioration occurred following the procedure or after long-term spinal stimulation. 1 patient showed after several months of continuous stimulation increased voluntary motor control present only when spinal cord stimulation was activated. Complications included 1 system infection, 1 electrode migration, 1 wire breakage and skin breakdown at a connector site, development of high impedance in 1 electrode and 1 skin breakdown over the lead.  相似文献   

3.
The effect of CL 115,347, a topically active antihypertensive PGE2 analog, and PGE2 on changes in blood pressure (BP), heart rate (HR) response and plasma epinephrine (E) and norepinephrine (NE) levels induced by stimulation of the sympathetic spinal cord outflow were studied in pithed stroke-prone spontaneously hypertensive rats (SHRSP). Surgical pithing significantly reduced plasma E but not NE levels suggesting that the sympathoadrenal medullary system differentially affects E and NE release. Sympathetic stimulation of the spinal cord of pithed SHRSP increased HR, BP, plasma E and NE levels. Topically applied CL 115,347 (0.001-0.2 mg/kg) dose-dependently decreased BP, while intravenously infused PGE2 (30 micrograms/kg/min) did not alter BP except for a brief initial drop. Topical application of CL 115,347 (0.1 mg/kg) also inhibited BP responses to sympathetic stimulation without effects on HR or plasma E or NE levels. Intravenous infusion of PGE2 (30 micrograms/kg/min) inhibited both BP and HR responses to spinal cord stimulation but did not alter plasma catecholamine levels. These studies in SHRSP suggest that CL 115,347 and PGE2 modulate cardiovascular responses mainly via postjunctional effects, but act differently on the cardiovascular elements, viz. CL 115,347 acts primarily on blood vessels while PGE2 acts on blood vessels and heart.  相似文献   

4.
F W Beck  J R Sowers  D Sicca  B G Welch 《Life sciences》1985,36(25):2435-2444
This study evaluates dopaminergic regulation of aldosterone secretion in 6 patients with high spinal cord transections. Administration of the dopamine antagonist metoclopramide resulted in a marked rise in plasma aldosterone and 18-hydroxycorticosterone levels in 12 normal individuals, but no change in plasma levels of these zona glomerulosa corticosteroid products in spinal cord patients. Spinal cord transected patients also did not have the rise in plasma renin activity that was observed in normals following metoclopramide administration. Basal levels of aldosterone, 18 hydroxycorticosterone, corticosterone and renin activity as well as the aldosterone responses to graded dose infusion of adrenocorticotropin were similar in the spinal cord patients and the normals. These data suggest that dopaminergic regulation of adrenal zona glomerulosa corticosteroid and renal renin secretion is absent in patients with high spinal cord transections, suggesting that intact neural pathways from the central nervous system are necessary for metoclopramide stimulation of aldosterone and renin secretion in men. Since basal plasma aldosterone levels were normal in spinal cord transected patients, it appears that the absence of dopaminergic control does not result in elevated secretion.  相似文献   

5.
Somatostatin distribution was measured quantitatively in the rat spinal cord by radioimmunoassay. Rostro-caudally, somatostatin content was about 50% higher in lumbar-sacral cord than in cervical or thoracic levels. The dorso-ventral distribution is more uneven: somatostatin is highest in the dorsal horn, where the peptide is 15 times as concentrated as it is in the ventral white matter, the region of lowest concentration. However, measurable amounts of the peptide were found in all regions studied. Dorsal root ganglionectomy decreased somatostatin levels in the dorsal cord, supporting the previously proposed role for this peptide as a primary sensory neurotransmitter or modulator; but somatostatin content also was decreased both rostral and caudal to spinal transection, indicating the presence of ascending and descending somatostatin pathways within the spinal cord. Brain levels did not change. Met-enkephalin and substance P were also measured after the above surgical manipulations. Met-enkephalin content was not altered and substance P content was lowered significantly only after ganglionectomy. Although this study confirms the primary sensory neuron as the origin of a part of spinal cord somatostatin, it further indicates the presence of ascending and descending somatostatin pathways within the rat spinal cord.  相似文献   

6.
We have previously reported that administration of beta-endorphin intraventricularly in the rat increases the release of immunoreactive Met-enkephalin from the spinal cord. To further eliminate the possibility that the increase in Met-enkephalin might arise from the degradation of beta-endorphin injected, the effect of peptidase inhibitors, aprotinin and bacitracin, on the spinal fluid content of Met-enkephalin released by intraventricular beta-endorphin was studied using an intrathecal perfusion technique in urethane anesthetized rats. Inhibition of peptidases by intraventricular aprotinin and bacitracin did not decrease nor enhance the increased content of Met-enkephalin in the spinal perfusate produced by intraventricular beta-endorphin. The result indicates that the Met-enkephalin arises from neuronal release in the spinal cord rather than from degradation of the beta-endorphin injected intraventricularly.  相似文献   

7.
The effect of CL 115,347, a topically active antihypertensive PGE2 analog, and PGE2 on changes in blood pressure (BP), heart rate (HR) response and plasma epinephrine (E) and norepinephrine (NE) levels induced by stimulation of the sympathetic spinal cord outflow were studied in pithed stroke-prone spontaneously hypertensive rats (SHRSP). Surgical pithing significantly reduced plasma E but not NE levels suggesting that the sympathoadrenal medullary system differentially affects E and NE release. Sympathetic stimulation of the spinal cord of pithed SHRSP increased HR, BP, plasma E and NE levels. Topically applied CL 115,347 (0.001–0.1 mg/kg) dose-dependently decreased BP, while intravenously infused PGE2 (30 μg/kg/min) did not alter BP except for a brief initial drop. Topical application of CL 115,347 (0.1 mg/kg) also inhibited BP responses to sympathetic stimulation without effects on HR or plasma E or NE levels. Intravenous infusion of PGE2 (30 μg/kg/min) inhibited both BP and HR responses to spinal cord stimulation but did not alter plasma catecholamine levels. These studies in SHRSP suggest that CL 115,347 and PGE2 modulate cardiovascular responses mainly via postjunctional effects, but act differently on the cardiovascular elements, CL 115,347 acts primarily on blood vessels while PGE2 acts on blood vessels and heart.  相似文献   

8.
The distribution of cryptic forms (larger enkephalin-containing peptides) in neostriatum, hypothalamus, spinal cord T3-L1 and neurointermediate lobe of pituitary were determined by radioimmunoassay. Optimal conditions for enzymic hydrolysis of the cryptic enkephalins by trypsin and carboxypeptidase B were established. The proportion of total Met- and Leu-enkephalin represented by native pentapeptide varied markedly among these central nervous system regions. Also, the distributions of native and cryptic Met-enkephalin were distinct from that of Leu-enkephalin. Chromatographic separation by HPLC of immunoreactive Met-enkephalin peptides revealed only two peaks corresponding to Met-enkephalin and Met-enkephalin sulfoxide in rather equal amounts. Hydrolysis of cryptic Met-enkephalin also produced only two HPLC-separable peaks of immunoreactive Met-enkephalin, again corresponding to Met-enkephalin and Met-enkephalin sulfoxide. Bioactivity of cryptic striatal Met-enkephalin after hydrolysis was demonstrated by antinociception and catalepsy in rats following its intracerebroven-tricular injection. Repeated short-term administration of nicotine, 0.1 mg/kg IP six times at 30 min intervals, produced significant increases in native and cryptic Met-enkephalin in striatum, consistent with an increase in neuronal release of Met-enkephalin together with increases in synthesis and processing of proenkephalin A in this brain region. This regimen of nicotine also decreased levels of native Met-enkephalin and of both native and cryptic Leu-enkephalin in neurointermediate lobe, consistent with nicotine-induced release of both proenkephalin A- and prodynorphin-derived peptides from neurointermediate lobe.  相似文献   

9.
Since 1974, clinical experiments have been conducted at the Rehabilitation Clinic in Konstancin (Poland) on the effects of electrostimulation on the damaged spinal cord. 30 patients with stimulation after injury to the cervical spinal cord are reported. Patients with complete and incomplete cervical cord injury were compared. The patients were treated by surgical decompression with simultaneous implantation of stimulating electrodes in contact with the spinal cord. The control group of patients were operated upon in the same period for similar injuries, but had no stimulators implanted. Neurological improvement was better in the stimulated compared to the nonstimulated patients, both as regards number of neurological improvements as well as quality of neurological function. The comparison also confirmed a favorable effect of spinal cord stimulation on the development of bladder automatism.  相似文献   

10.
电刺激兔肾脏传入神经对血压,心率及加压素释放的影响   总被引:1,自引:0,他引:1  
吕敏  魏顺光 《生理学报》1995,47(5):471-477
本工作以兔为实验对象,观察电刺激肾脏传入神经(ARN)对血压、心率、颈交感神经放电、以及加压素(AVP)合成和释放的影响,并对ARN进入中枢的通路作了观察。结果显示,电刺激ARN可以引起血压下降、心率减慢、颈交感神经放电抑制等反应,ARN的兴奋还可使下丘脑的视上核、室旁核中的AVP含量增加,垂体中AVP含量下降,血浆AVP水平升高。硝普钠的降压实验和静脉注射AVP受体阻断剂AVPa的实验均证实了A  相似文献   

11.
Sympathetic preganglionic neurons and interneurons are closely apposed (presumably synapsed upon) by corticospinal tract (CST) axons. Sprouting of the thoracic CST rostral to lumbar spinal cord injuries (SCI) substantially increases the incidence of these appositions. To test our hypothesis that these additional synapses would increase CST control of sympathetic activity after SCI, we measured the effects of electrical stimulation of the CST on renal sympathetic nerve activity (RSNA) and arterial pressure (AP) in alpha-chloralose-anesthetized rats with either chronically intact or chronically lesioned spinal cords. Stimuli were delivered to the CST at intensities between 25-150 muA and frequencies between 25 and 75 Hz. Stimulation of the CST at the midcervical level decreased RSNA and AP. These decreases were not mediated by direct projections of the CST to the thoracic spinal cord because we could still elicit them by midcervical stimulation after acute lesions of the CST at caudal cervical levels. In contrast, caudal thoracic CST stimulation increased RSNA and AP. Neither the responses to cervical nor thoracic stimulation were affected by chronic lumbar SCI. These data show that the CST mediates decreases in RSNA via a cervical spinal system but excites spinal sympathetic neurons at caudal thoracic levels. Because chronic lumber spinal cord injury affected responses evoked from neither the cervical nor thoracic CST, we conclude that lesion-induced or regeneration-induced formation of new synapses between the CST and sympathetic neurons may not affect cardiovascular regulation.  相似文献   

12.
The effect of high level section of the spinal cord upon the hepatic cyclic AMP system was investigated in the rat. We report that transection of the spinal cord dramatically decreases the basal level of cyclic AMP from 0.88 nmol/g liver to 0.36 nmol/g at 1 h and to 0.20 nmol/g at 4 h. This was not due to increased activity of cyclic AMP phosphodiesterase or to decreased activity of basal adenylate cyclase. The sensitivity of adenylate cyclase to its usual effectors in vitro was not impaired. It is proposed that the lowering of liver cyclic AMP below its basal level after high level section of the spinal cord is due to decreased levels of hepatic catecholamines and/or plasma glucagon.  相似文献   

13.
The effect of high level section of the spinal cord upon the hepatic cyclic AMP system was investigated in the rat. We report that transection of the spinal cord dramatically decreases the basal level of cyclic AMP from 0.88 nmol/g liver to 0.36 nmol/g at 1 h and to 0.20 nmol/g at 4 h. This was not due to increased activity of cyclic AMP phosphodiesterase or to decreased activity of basal adenylate cyclase. The sensitivity of adenylate cyclase to its usual effectors in vitro was not impaired. It is proposed that the lowering of liver cyclic AMP below its basal level after high level section of the spinal cord is due to decreased levels of hepatic catecholamines and/or plasma glucagon.  相似文献   

14.
One patient with an incomplete traumatic myelopathy underwent epidural spinal cord stimulation for the management of severe intractable spasms, which were abolished by the stimulation. After several months of stimulation, the patient regained some voluntary motor function in the lower extremities. Voluntary motor control of the left quadriceps was present only when spinal cord stimulation was activated and stopped immediately after it was turned off. The effects could be consistently reproduced. EMG polygraphic recordings confirmed the results.  相似文献   

15.
The effect of intraventricular beta-endorphin-(1-27) on the spinal release of Met-enkephalin induced by intraventricular beta-endorphin was studied using the intrathecal superfusion technique in urethane anesthetized rats. Intraventricular injection of beta-endorphin at a dose of 15 micrograms released Met-enkephalin from the spinal cord. This release of Met-enkephalin induced by beta-endorphin was significantly reduced by beta-endorphin-(1-27), 60 micrograms, injected intraventricularly. Injection of beta-endorphin (1-27) itself did not cause any release of Met-enkephalin. The finding is in line with the previous report that beta-endorphin (1-27) inhibited the analgesia induced by beta-endorphin.  相似文献   

16.
Injury-induced overexpression of tumor necrosis factor alpha (TNFα) in the spinal cord can induce chronic neuroinflammation and excitotoxicity that ultimately undermines functional recovery. Here we investigate how TNFα might also act to upset spinal function by modulating spinal plasticity. Using a model of instrumental learning in the injured spinal cord, we have previously shown that peripheral intermittent stimulation can produce a plastic change in spinal plasticity (metaplasticity), resulting in the prolonged inhibition of spinal learning. We hypothesized that spinal metaplasticity may be mediated by TNFα. We found that intermittent stimulation increased protein levels in the spinal cord. Using intrathecal pharmacological manipulations, we showed TNFα to be both necessary and sufficient for the long-term inhibition of a spinal instrumental learning task. These effects were found to be dependent on glial production of TNFα and involved downstream alterations in calcium-permeable AMPA receptors. These findings suggest a crucial role for glial TNFα in undermining spinal learning, and demonstrate the therapeutic potential of inhibiting TNFα activity to rescue and restore adaptive spinal plasticity to the injured spinal cord. TNFα modulation represents a novel therapeutic target for improving rehabilitation after spinal cord injury.  相似文献   

17.
The following experiments were designed in order to examine the inter-relationships of various prostaglandins (PG's) and the adrenergic nervous system, in conjunction with blood pressure and heart rate responses, in vivo. Stimulation of the entire spinal cord (50v, 0.3–3 Hz, 1.0 msec) of the pithed rat increased blood pressure, heart rate and plasma epinephrine (EPI) and norepinephrine (NE) concentration (radioenzymatic-thin layer chromatographic assay). Infusion of PGE2(10–30 μg/kg. min, i.v.) suppressed blood pressure and heart rate responses to spinal cord stimulation while plasma EPI (but not NE) was augmented over levels found in control animals. PGI2 (0.03–3.0 μg/kg. min, i.v.) suppressed the blood pressure response to spinal cord stimulation without any effect on heart rate or the plasma catecholamine levels. PGE2 and PGF2α(10–30 μg/kg. min, i.v.) did not change the blood pressure, heart rate or plasma EPI and NE responses to the spinal cord stimulation although PGF2α disclosed an overall vasopressor effect during the pre-stimulation period. At the pre-stimulation period it was also observed that PGE2, PGF2α and PGI2, had a positive chronotropic effect on the heart rate, the cardiac accelerating effect of PGE2 was not abolished by propanolol. These in vivo studies suggest that in the rat, PGE2 and PGI2 modulate sympathetic responses, primarily by interaction with the post-synaptic elements — PGE2 on both blood vessels and the heart and PGI2 by acting principally on blood vessels.  相似文献   

18.
The central conduction time of the descending and ascending fibers of the spinal cord were examined in patients with radiologically defined cervical spinal stenosis (antero-posterior diameter of the spinal canal less than 13 mm). Nineteen patients were examined, only 4 of whom showed clinical signs of spastic weakness or ataxia. The electromyographic response after non-invasive stimulation of the leg area of the motor cortex was delayed in13 of the 15 clinically unaffected patients. The central latency (N21-P39) of the somatosensory evoked response after stimulation of the tibial nerve (tibialis SEP) was increased in 12 of the 15 individuals. The 4 patients with clinical signs showed abnormal latencies with both methods.The use of both techniques for the examination of the function of the spinal cord revealed increased latencies in the central motor and/or sensory pathways in all patients. The technique of non-invasive stimulation of the corticospinal system therefore provides an additional tool to detect and quantity subclinical and clinically apparent lesions in patients with defined cervical spinal stenosis.  相似文献   

19.
Met- and Leu-enkephalin applied subarachnoidally into the rostral portion of a transected spinal cord (at the T6-T7 level) induce postural asymmetry of the hind limbs in rats, Met-enkephalin being predominantly responsible for the flexion of the right, and Leu-enkephalin of the left, hind leg. The blood serum of rats injected with Met-enkephalin contains a factor which, when administered subarachnoidally into the caudal portion of the transected spinal cord, is capable of inducing the hind limb postural asymmetry--predominantly, with the right leg flexion. This factor is inactivated by papain and differs from Met- and Leu-enkephalin in chromatographic properties. Apparently, Met-enkephalin induces the release of a peptide factor into the blood, from the brain or organs innervated by the neurons lying above the cut. It is then carried with the blood to the hind limbs and effects the hind limb postural asymmetry.  相似文献   

20.
Darlene Lucas  T. L. Yaksh 《Peptides》1990,11(6):1119-1125
Processing of the proenkephalin molecule will result in peptide fragments in which the pentapeptide YGGFM is included. We have employed a molecular sieve (2 kDa) separation, enzyme hydrolysis radioimmunoassay (RIA) treatment sequence which permits concurrent measurement of Met-enkephalin (Enk) and several enkephalin-encrypting (X-Enk) peptides in a single sample. Using this protocol, the release of Enk and X-Enk (total Enk - Enk) greater and less than 2 kDa from spinal cord and the mesencephalic aqueductal grey was assessed under resting conditions and during stimulation of the sciatic nerve in the chloralose-urethane anesthetized cat. Under resting conditions measurable levels of Enk (10.5±4.7; 9.1±2.1 pg/min) and X-Enk (47.8±19.7; 45.7±12.3 pg/min) are found in aqueductal and spinal superfusates, respectively. The X-Enk measured under resting and evoked conditions in aqueductal and spinal perfusates is associated almost exclusively (>90–95%) with fragments >2 kDa in size. These results, showing the relative absence of detectable levels of X-Enk forms <2 kDa, were confirmed by reverse phase chromatography. During sciatic nerve stimulation, the levels of both Enk and X-Enk were mildly elevated in spinal and ventricular perfusates. With the addition of thiorphan (10−5 M), though there was no effect on the resting release of either Enk or X-Enk, the levels of Enk measured under evoked conditions were significantly augmented in both ventricular and spinal perfusates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号