首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Previous studies in murine and human models have suggested an important role for HLA Ia-restricted CD8(+) T cells in host defense to Mycobacterium tuberculosis (Mtb). Therefore, understanding the Ags presented via HLA-Ia will be important in understanding the host response to Mtb and in rational vaccine design. We have used monocyte-derived dendritic cells in a limiting dilution analysis to generate Mtb-specific CD8(+) T cells. Two HLA-Ia-restricted CD8(+) T cell clones derived by this method were selected for detailed analysis. One was HLA-B44 restricted, and the other was HLA-B14 restricted. Both were found to react with Mtb-infected, but not bacillus Calmette-Guérin-infected, targets. For both these clones, the Ag was identified as culture filtrate protein 10 (CFP10)/Mtb11, a 10.8-kDa protein not expressed by bacillus Calmette-Guérin. Both clones were inhibited by the anti-class I Ab and anti-HLA-B,C Abs. Using a panel of CFP10/Mtb11-derived 15-aa peptides overlapping by 11 aa, the region containing the epitopes for both clones has been defined. Minimal 10-aa epitopes were defined for both clones. CD8(+) effector cells specific for these two epitopes are present at high frequency in the circulating pool. Moreover, the CD8(+) T cell response to CFP10/Mtb11 can be largely accounted for by the two epitopes defined herein, suggesting that this is the immunodominant response for this purified protein derivative-positive donor. This study represents the first time CD8(+) T cells generated against Mtb-infected APC have been used to elucidate an Mtb-specific CD8(+) T cell Ag.  相似文献   

2.
Control of infection with Mycobacterium tuberculosis (Mtb) requires Th1-type immunity, of which CD8+ T cells play a unique role. High frequency Mtb-reactive CD8+ T cells are present in both Mtb-infected and uninfected humans. We show by limiting dilution analysis that nonclassically restricted CD8+ T cells are universally present, but predominate in Mtb-uninfected individuals. Interestingly, these Mtb-reactive cells expressed the Vα7.2 T-cell receptor (TCR), were restricted by the nonclassical MHC (HLA-Ib) molecule MR1, and were activated in a transporter associated with antigen processing and presentation (TAP) independent manner. These properties are all characteristics of mucosal associated invariant T cells (MAIT), an “innate” T-cell population of previously unknown function. These MAIT cells also detect cells infected with other bacteria. Direct ex vivo analysis demonstrates that Mtb-reactive MAIT cells are decreased in peripheral blood mononuclear cells (PBMCs) from individuals with active tuberculosis, are enriched in human lung, and respond to Mtb-infected MR1-expressing lung epithelial cells. Overall, these findings suggest a generalized role for MAIT cells in the detection of bacterially infected cells, and potentially in the control of bacterial infection.  相似文献   

3.
Mycobacterium tuberculosis (Mtb) is transmitted via inhalation of aerosolized particles. While alveolar macrophages are thought to play a central role in the acquisition and control of this infection, Mtb also has ample opportunity to interact with the airway epithelium. In this regard, we have recently shown that the upper airways are enriched with a population of non-classical, MR1-restricted, Mtb-reactive CD8+ T cells (MAIT cells). Additionally, we have demonstrated that Mtb-infected epithelial cells lining the upper airways are capable of stimulating IFNγ production by MAIT cells. In this study, we demonstrate that airway epithelial cells efficiently stimulate IFNγ release by MAIT cells as well as HLA-B45 and HLA-E restricted T cell clones. Characterization of the intracellular localization of Mtb in epithelial cells indicates that the vacuole occupied by Mtb in epithelial cells is distinct from DC in that it acquires Rab7 molecules and does not retain markers of early endosomes such as Rab5. The Mtb vacuole is also heterogeneous as there is a varying degree of association with Lamp1 and HLA-I. Although the Mtb vacuole shares markers associated with the late endosome, it does not acidify, and the bacteria are able to replicate within the cell. This work demonstrates that Mtb infected lung epithelial cells are surprisingly efficient at stimulating IFNγ release by CD8+ T cells.  相似文献   

4.
Identification of CD8+ T cell antigens/epitopes expressed by human pathogens with large genomes is especially challenging, yet necessary for vaccine development. Immunity to tuberculosis, a leading cause of mortality worldwide, requires CD8+ T cell immunity, yet the repertoire of CD8 antigens/epitopes remains undefined. We used integrated computational and proteomic approaches to screen 10% of the Mycobacterium tuberculosis (Mtb) proteome for CD8 Mtb antigens. We designed a weighting schema based upon a Multiple Attribute Decision Making:framework to select 10% of the Mtb proteome with a high probability of containing CD8+ T cell epitopes. We created a synthetic peptide library consisting of 15-mers overlapping by 11 aa. Using the interferon-γ ELISPOT assay and Mtb-infected dendritic cells as antigen presenting cells, we screened Mtb-specific CD8+ T cell clones restricted by classical MHC class I molecules (MHC class Ia molecules), that were isolated from Mtb-infected humans, against this library. Three novel CD8 antigens were unambiguously identified: the EsxJ family (Rv1038c, Rv1197, Rv3620c, Rv2347c, Rv1792), PE9 (Rv1088), and PE_PGRS42 (Rv2487c). The epitopes are B5701-restricted EsxJ24–34, B3905-restricted PE953–67, and B3514-restricted PE_PGRS4248–56, respectively. The utility of peptide libraries in identifying unknown epitopes recognized by classically restricted CD8+ T cells was confirmed, which can be applied to other intracellular pathogens with large size genomes. In addition, we identified three novel Mtb epitopes/antigens that may be evaluated for inclusion in vaccines and/or diagnostics for tuberculosis.  相似文献   

5.
The development of an effective vaccine against Mycobacterium tuberculosis is a research area of intense interest. Mounting evidence suggests that protective immunity to M. tuberculosis relies on both MHC class II-restricted CD4(+) T cells and MHC class I-restricted CD8(+) T cells. By purifying polypeptides present in the culture filtrate of M. tuberculosis and evaluating these molecules for their ability to stimulate PBMC from purified protein derivative-positive healthy individuals, we previously identified a low-m.w. immunoreactive T cell Ag, Mtb 8.4, which elicited strong Th1 T cell responses in healthy purified protein derivative-positive human PBMC and in mice immunized with recombinant Mtb 8.4. Herein we report that Mtb 8.4-specific T cells can be detected in mice immunized with the current live attenuated vaccine, Mycobacterium bovis-bacillus Calmette-Guérin as well as in mice infected i.v. with M. tuberculosis. More importantly, immunization of mice with either plasmid DNA encoding Mtb 8.4 or Mtb 8.4 recombinant protein formulated with IFA elicited strong CD4(+) T cell and CD8(+) CTL responses and induced protection on challenge with virulent M. tuberculosis. Thus, these results suggest that Mtb 8.4 is a potential candidate for inclusion in a subunit vaccine against TB.  相似文献   

6.
The control of Mycobacterium tuberculosis (Mtb) infection is heavily dependent on the adaptive Th1 cellular immune response. Paradoxically, optimal priming of the Th1 response requires activation of priming dendritic cells with Th1 cytokine IFN-gamma. At present, the innate cellular mechanisms required for the generation of an optimal Th1 T cell response remain poorly characterized. We hypothesized that innate Mtb-reactive T cells provide an early source of IFN-gamma to fully activate Mtb-exposed dendritic cells. Here, we report the identification of a novel population of Mtb-reactive CD4(-) alphabetaTCR(+) innate thymocytes. These cells are present at high frequencies, respond to Mtb-infected cells by producing IFN-gamma directly ex vivo, and display characteristics of effector memory T cells. This novel innate population of Mtb-reactive T cells will drive further investigation into the role of these cells in the containment of Mtb following infectious exposure. Furthermore, this is the first demonstration of a human innate pathogen-specific alphabetaTCR(+) T cell and is likely to inspire further investigation into innate T cells recognizing other important human pathogens.  相似文献   

7.
We previously described an escape mechanism exploited by Mycobacterium tuberculosis (Mtb) to prevent the generation of fully competent dendritic cells (DC). We have now tested the effect of isolated mycobacterial components on human monocyte differentiation into DC and demonstrated that cell wall (CW)-associated alpha-glucan induces monocytes to differentiate into DC (Glu-MoDC) with the same altered phenotype and functional behaviour of DC derived from Mtb-infected monocytes (Mt-MoDC). In fact, Glu-MoDC lack CD1 molecule expression, fail to upregulate CD80 and produce IL-10 but not IL-12. We also showed that Glu-MoDC are not able to prime effector T cells or present lipid antigens to CD1-restricted T-cell clones. Thus, we propose a mechanism of Mtb-monocyte interaction mediated by CW-associated alpha-glucan, which allows the bacterium to evade both innate and acquired immune responses.  相似文献   

8.
We recently reported that dendritic cells (DC) infected with Mycobacterium tuberculosis (Mtb) produce Th1/IFN-gamma-inducing cytokines, IFN-alpha beta and IL-12. In the present article, we show that maturing Mtb-infected DC express high levels of CCR7 and they become responsive to its ligand CCL21. Conversely, CCR5 expression was rapidly lost from the cell surface following Mtb infection. High levels of CCL3 and CCL4 were produced within 8 h after infection, which is likely to account for the observed CCR5 down-modulation on Mtb-infected DC. In addition, Mtb infection stimulated the secretion of CXCL9 and CXCL10. Interestingly, the synthesis of CXCL10 was mainly dependent on the Mtb-induced production of IFN-alpha beta. Indeed, IFN-alpha beta neutralization down-regulated CXCL10 expression, whereas the expression of CXCL9 appeared to be unaffected. The chemotactic activity of the Mtb-infected DC supernatants was evaluated by migration assays using activated NK, CD4(+), and CD8(+) cells that expressed both CCR5 and CXCR3. Mtb-induced expression of CCL3, CCL4, CXCL9, and CXCL10 was involved in the stimulation of NK and T cell migration. In accordance with the data on the IFN-alpha beta-induced expression of CXCL10, neutralization of IFN-alpha beta significantly reduced the chemotactic activity of the supernatant from Mtb-infected DC. This indicates that IFN-alpha beta may modulate the immune response through the expression of CXCL10, which along with CXCL9, CCL3, and CCL4 participates in the recruitment and selective homing of activated/effector cells, which are known to accumulate at the site of Mtb infection and take part in the formation of the granulomas.  相似文献   

9.
Although dendritic cells (DC) are potent APC that prime T cells against many pathogens, there is no direct evidence that DC are required for immunity to Mycobacterium tuberculosis (Mtb) infection. The requirement for DC to prime the CD4+ T cell response following Mtb infection was investigated using pCD11c-diptheria toxin receptor/GFP transgenic mice, in which DC can be transiently ablated in vivo. We show a critical role for DC in initiation of the CD4+ T cell response to the mycobacterial Ag early secretory Ag of tuberculosis 6. The delay in initiating the Ag-specific T cell response led to impaired control of Mtb replication. Interestingly, DC were not required for the secondary CD4+ T cell response following Mtb infection in peptide-vaccinated mice. Thus, this study shows that DC are essential for the initiation of the adaptive T cell response to the human pathogen Mtb.  相似文献   

10.
The control of Mycobacterium tuberculosis (Mtb) infection is heavily dependent on the adaptive Th1 cellular immune response. Paradoxically, optimal priming of the Th1 response requires activation of priming dendritic cells with Th1 cytokine IFN-γ. At present, the innate cellular mechanisms required for the generation of an optimal Th1 T cell response remain poorly characterized. We hypothesized that innate Mtb-reactive T cells provide an early source of IFN-γ to fully activate Mtb-exposed dendritic cells. Here, we report the identification of a novel population of Mtb-reactive CD4 αβTCR+ innate thymocytes. These cells are present at high frequencies, respond to Mtb-infected cells by producing IFN-γ directly ex vivo, and display characteristics of effector memory T cells. This novel innate population of Mtb-reactive T cells will drive further investigation into the role of these cells in the containment of Mtb following infectious exposure. Furthermore, this is the first demonstration of a human innate pathogen-specific αβTCR+ T cell and is likely to inspire further investigation into innate T cells recognizing other important human pathogens.  相似文献   

11.
Key Ags of Mycobacterium tuberculosis initially identified in the context of host responses in healthy purified protein derivative-positive donors and infected C57BL/6 mice were prioritized for the development of a subunit vaccine against tuberculosis. Our lead construct, Mtb72F, codes for a 72-kDa polyprotein genetically linked in tandem in the linear order Mtb32(C)-Mtb39-Mtb32(N). Immunization of C57BL/6 mice with Mtb72F DNA resulted in the generation of IFN-gamma responses directed against the first two components of the polyprotein and a strong CD8(+) T cell response directed exclusively against Mtb32(C). In contrast, immunization of mice with Mtb72F protein formulated in the adjuvant AS02A resulted in the elicitation of a moderate IFN-gamma response and a weak CD8(+) T cell response to Mtb32c. However, immunization with a formulation of Mtb72F protein in AS01B adjuvant generated a comprehensive and robust immune response, resulting in the elicitation of strong IFN-gamma and Ab responses encompassing all three components of the polyprotein vaccine and a strong CD8(+) response directed against the same Mtb32(C) epitope identified by DNA immunization. All three forms of Mtb72F immunization resulted in the protection of C57BL/6 mice against aerosol challenge with a virulent strain of M. tuberculosis. Most importantly, immunization of guinea pigs with Mtb72F, delivered either as DNA or as a rAg-based vaccine, resulted in prolonged survival (>1 year) after aerosol challenge with virulent M. tuberculosis comparable to bacillus Calmette-Guérin immunization. Mtb72F in AS02A formulation is currently in phase I clinical trial, making it the first recombinant tuberculosis vaccine to be tested in humans.  相似文献   

12.
Macrophages and dendritic cells (DC) play an essential role in the initiation and maintenance of immune response to pathogens. To analyze early interactions between Mycobacterium tuberculosis (Mtb) and immune cells, human peripheral blood monocyte-derived macrophages (MDM) and monocyte-derived dendritic cells (MDDC) were infected with Mtb. Both cells were found to internalize the mycobacteria, resulting in the activation of MDM and maturation of MDDC as reflected by enhanced expression of several surface Ags. After Mtb infection, the proinflammatory cytokines TNF-alpha, IL-1, and IL-6 were secreted mainly by MDM. As regards the production of IFN-gamma-inducing cytokines, IL-12 and IFN-alpha, was seen almost exclusively from infected MDDC, while IL-18 was secreted preferentially by macrophages. Moreover, Mtb-infected MDM also produce the immunosuppressive cytokine IL-10. Because IL-10 is a potent inhibitor of IL-12 synthesis from activated human mononuclear cells, we assessed the inhibitory potential of this cytokine using soluble IL-10R. Neutralization of IL-10 restored IL-12 secretion from Mtb-infected MDM. In line with these findings, supernatants from Mtb-infected MDDC induced IFN-gamma production by T cells and enhanced IL-18R expression, whereas supernatants from MDM failed to do that. Neutralization of IFN-alpha, IL-12, and IL-18 activity in Mtb-infected MDDC supernatants by specific Abs suggested that IL-12 and, to a lesser extent, IFN-alpha and IL-18 play a significant role in enhancing IFN-gamma synthesis by T cells. During Mtb infection, macrophages and DC may have different roles: macrophages secrete proinflammatory cytokines and induce granulomatous inflammatory response, whereas DC are primarily involved in inducing antimycobacterial T cell immune response.  相似文献   

13.
The ability of two different human professional APCs, specifically macrophages (Mphi) and dendritic cells (DC), to stimulate primary responses in human CD8+ T lymphocytes was examined using both allogeneic and Ag-pulsed autologous APCs. CTL responses in CD8+ T lymphocytes isolated from HIV-uninfected donors were evaluated against six different HIV epitopes that are restricted by four different HLA alleles using autologous human PBMC-derived Mphi and DCs for primary stimulation. In a side-by-side experiment, immature DCs, but not Mphi, were able to prime a CTL response against the B14-restricted p24gag 298-306 epitope; mature DCs were also able to prime a response against this epitope. In addition, DCs were capable of priming CD8+ CTL responses against the B8-restricted p24gag 259-267 epitope. In contrast, Mphi were unable to prime strong CTL responses against other epitopes. Since the Ag-specific cytotoxic responses required subsequent rounds of restimulation before they could be detected, the ability of the allogeneic Mphi and DCs to directly prime CD8+ T lymphocyte responses without subsequent restimulation was examined. Similar to the aforementioned peptide-specific results, DCs were more efficient than Mphi in priming both allogeneic proliferative and cytotoxic responses in human CD8+ T lymphocytes. Collectively, these results promote an enhanced status for DCs in the primary stimulation of human CD8+ T lymphocytes.  相似文献   

14.
结核病是一种棘手的重大传染病.虽然存在一些有一定疗效的治疗药物,亦有预防性疫苗--卡介苗(BCG);但结核病仍在世界范围流行,且发病率和病死率居高不下.结核病的免疫病理机制及疫苗研究近年来取得了一定的进展.结核分枝杆菌通过Toll样受体(TLR)等模式识别受体,激活巨噬细胞的天然免疫反应,清除细菌和调节获得性免疫反应....  相似文献   

15.
CD8+ T cells play an important role in the host response to infection with Mycobacterium tuberculosis (Mtb). Mtb resides in an arrested phagosome that is phenotypically similar to an early endosome. The mechanisms by which Mtb-derived Ags gain access to the HLA-I-processing pathway are incompletely characterized. Studies with CD8+ T cell lines have suggested that Mtb Ags gain access to the HLA-I pathway in an alternate vacuolar pathway that is both brefeldin A (BFA) and TAP independent. To define the requirements of entry of Ag into the HLA-I pathway, we have used human CD8+ T cell clones specific for the secreted Mtb Ag CFP10. Human monocyte-derived dendritic cells were pulsed with CFP10 expressed in a recombinant adenovirus, surface adsorbed to microspheres, or in its native form by Mtb. When delivered by adenovirus, processing and presentation of CFP10 were blocked by both BFA and the proteasomal blocker lactacystin. In contrast, processing of CFP10 adsorbed to the surface of microspheres was not affected by either of these Ag-processing inhibitors. BFA, lactacystin, and TAP inhibition blocked the recognition of Mtb-infected dendritic cells, suggesting that processing was via a cytosolic pathway for this secreted protein Ag. We conclude that secreted proteins from Mtb can be processed in a BFA- and proteasome-dependent manner, consistent with egress of Ag into the cytosol and subsequent loading of proteasomally derived peptides.  相似文献   

16.
HIV-1-infected persons with HLA-B27 and -B57 alleles commonly remain healthy for decades without antiretroviral therapy. Properties of CD8+ T cells restricted by these alleles considered to confer disease protection in these individuals are elusive but important to understand and potentially elicit by vaccination. To address this, we compared CD8+ T cell function induced by HIV-1 immunogens and natural infection using polychromatic flow cytometry. HIV-1-specific CD8+ T cells from all four uninfected immunized and 21 infected subjects secreted IFN-gamma and TNF-alpha. However, CD8+ T cells induced by vaccination and primary infection, but not chronic infection, proliferated to their cognate epitopes. Notably, B27- and B57-restricted CD8+ T cells from nonprogressors exhibited greater expansion than those restricted by other alleles. Hence, CD8+ T cells restricted by certain protective alleles can resist replicative defects, which permits expansion and antiviral effector activities. Our findings suggest that the capacity to maintain CD8+ T cell proliferation, regardless of MHC-restriction, may serve as an important correlate of disease protection in the event of infection following vaccination.  相似文献   

17.
HLA-B*27 exerts protective effects in hepatitis C virus (HCV) and human immunodeficiency virus (HIV) infections. While the immunological and virological features of HLA-B*27-mediated protection are not fully understood, there is growing evidence that the presentation of specific immunodominant HLA-B*27-restricted CD8+ T-cell epitopes contributes to this phenomenon in both infections. Indeed, protection can be linked to single immunodominant CD8+ T-cell epitopes and functional constraints on escape mutations within these epitopes. To better define the immunological mechanisms underlying HLA-B*27-mediated protection in HCV infection, we analyzed the functional avidity, functional profile, antiviral efficacy and naïve precursor frequency of CD8+ T cells targeting the immunodominant HLA-B*27-restricted HCV-specific epitope as well as its antigen processing and presentation. For comparison, HLA-A*02-restricted HCV-specific epitopes were analyzed. The HLA-B*27-restricted CD8+ T-cell epitope was not superior to epitopes restricted by HLA-A*02 when considering the functional avidity, functional profile, antiviral efficacy or naïve precursor frequency. However, the peptide region containing the HLA-B*27-restricted epitope was degraded extremely fast by both the constitutive proteasome and the immunoproteasome. This efficient proteasomal processing that could be blocked by proteasome inhibitors was highly dependent on the hydrophobic regions flanking the epitope and led to rapid and abundant presentation of the epitope on the cell surface of antigen presenting cells. Our data suggest that rapid antigen processing may be a key immunological feature of this protective and immunodominant HLA-B*27-restricted HCV-specific epitope.  相似文献   

18.
Both the CD4-CD8- (double negative) and CD4-CD8+ T cell lineages have been shown to contain T cells which recognize microbial lipid and glycolipid Ags in the context of human CD1 molecules. To determine whether T cells expressing the CD4 coreceptor could recognize Ag in the context of CD1, we derived CD4+ T cell lines from the lesions of leprosy patients. We identified three CD4+ Mycobacterium leprae-reactive, CD1-restricted T cell lines: two CD1b restricted and one CD1c restricted. These T cell lines recognize mycobacterial Ags, one of which has not been previously described for CD1-restricted T cells. The response of CD4+ CD1-restricted T cells, unlike MHC class II-restricted T cells, was not inhibited by anti-CD4 mAb, suggesting that the CD4 coreceptor does not impact positive or negative selection of CD1-restricted T cells. The CD4+ CD1-restricted T cell lines produced IFN-gamma and GM-CSF, the Th1 pattern of cytokines required for cell-mediated immunity against intracellular pathogens, but no detectable IL-4. The existence of CD4+ CD1-restricted T cells that produce a Th1 cytokine pattern suggests a contributory role in immunity to mycobacterial infection.  相似文献   

19.
CD8(+) T cells are essential for host defense to intracellular bacterial pathogens such as Mycobacterium tuberculosis (Mtb), Salmonella species, and Listeria monocytogenes, yet the repertoire and dominance pattern of human CD8 antigens for these pathogens remains poorly characterized. Tuberculosis (TB), the disease caused by Mtb infection, remains one of the leading causes of infectious morbidity and mortality worldwide and is the most frequent opportunistic infection in individuals with HIV/AIDS. Therefore, we undertook this study to define immunodominant CD8 Mtb antigens. First, using IFN-gamma ELISPOT and synthetic peptide arrays as a source of antigen, we measured ex vivo frequencies of CD8(+) T cells recognizing known immunodominant CD4(+) T cell antigens in persons with latent tuberculosis infection. In addition, limiting dilution was used to generate panels of Mtb-specific T cell clones. Using the peptide arrays, we identified the antigenic specificity of the majority of T cell clones, defining several new epitopes. In all cases, peptide representing the minimal epitope bound to the major histocompatibility complex (MHC)-restricting allele with high affinity, and in all but one case the restricting allele was an HLA-B allele. Furthermore, individuals from whom the T cell clone was isolated harbored high ex vivo frequency CD8(+) T cell responses specific for the epitope, and in individuals tested, the epitope represented the single immunodominant response within the CD8 antigen. We conclude that Mtb-specific CD8(+) T cells are found in high frequency in infected individuals and are restricted predominantly by HLA-B alleles, and that synthetic peptide arrays can be used to define epitope specificities without prior bias as to MHC binding affinity. These findings provide an improved understanding of immunodominance in humans and may contribute to a development of an effective TB vaccine and improved immunodiagnostics.  相似文献   

20.
Ag-specific CD8+ CTL are crucial for effective tumor rejection. Attempts to treat human malignancies by adoptive transfer of tumor-reactive CTL have been limited due to the difficulty of generating and expanding autologous CTL with defined Ag specificity. The current study examined whether human CTL can be generated against the tumor-associated Ag HER2 using autologous dendritic cells (DC) that had been genetically engineered to express HER2. DC progenitors were expanded by culturing CD34+ hemopoietic progenitor cells in the presence of the designer cytokine HyperIL-6. Proliferating precursor cells were infected by a retroviral vector encoding the HER2 Ag and further differentiated into CD83+ DC expressing high levels of MHC, adhesion, and costimulatory molecules. Retroviral transduction of DC resulted in the expression of the HER2 molecule with a transduction efficiency of 15%. HER2-transduced DC correctly processed and presented the Ag, because HLA-A*0201-positive DC served as targets for CTL recognizing the HLA-A*0201-binding immunodominant peptide HER2(369-377). HER2-transduced DC were used as professional APCs for stimulating autologous T lymphocytes. Following repetitive stimulation, a HER2-specific, HLA-A*0201-restricted CTL line was generated that was capable of lysing HLA-A*0201-matched tumor cells overexpressing HER2. A CD8+ T cell clone could be generated that displayed the same specificity pattern as the parenteral CTL line. The ability to generate and expand HER2-specific, MHC class I-restricted CTL clones using HER2-transduced autologous DC in vitro facilitates the development of adoptive T cell transfer for patients with HER2-overexpressing tumors without the requirement of defining immunogenic peptides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号