首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Common bean (Phaseolus vulgaris L.) is able to fix 20–60 kg N ha–1 under tropical environments in Brazil, but these amounts are inadequate to meet the N requirement for economically attractive seed yields. When the plant is supplemented with N fertilizer, N2 fixation by Rhizobium can be suppressed even at low rates of N. Using the 15N enriched method, two field experiments were conducted to compare the effect of foliar and soil applications of N-urea on N2 fixation traits and seed yield. All treatments received a similar fertilization including 10 kg N ha–1 at sowing. Increasing rates of N (10, 30 and 50 kg N ha–1) were applied for both methods. Foliar application significantly enhanced nodulation, N2 fixation (acetylene reduction activity) and yield at low N level (10 kg N ha–1). Foliar nitrogen was less suppressive to nodulation, even at higher N levels, than soil N treatments. In the site where established Rhizobium was in low numbers, inoculation contributed substantially to increased N2 fixation traits and yield. Both foliar and soil methods inhibited nodulation at high N rates and did not significantly increase bean yield, when comparing low (10 kg N ha–1) and high (50 kg N ha–1) rates applied after emergence. In both experiments, up to 30 kg N ha–1 of biologically fixed N2 were obtained when low rates of N were applied onto the leaves.  相似文献   

2.
Peanut plants (cv. Shulamit) were grown in an Oxisol soil in pots in the glasshouse to assess effects of soil sterilization and inoculation with spores of vesicular-arbuscular mycorrhizal fungi (VAMF) on the response to five rates of phosphorus (0 to 240 kg P ha–1) and two rates of zinc (0 and 10 kg Zn ha–1) fertilizers.Both P and Zn nutrition were affected by VAMF activity but the dominant role of VAMF in this soil type was in uptake of P. In the absence of VAMF there was a clear threshold level of P application (60 kg P ha–1) below which plants grew poorly, which resulted in a sigmoidal response of dry matter to applied P. The maximum response was not fully defined because dry matter production continued to increase up to 240 kg P ha–1. Tissue P concentration of non-mycorrhizal plants increased linearly with P rate and was always significantly less than that in mycorrhizal plants.Mycorrhizal plants responded without threshold to increasing P rate, attaining maximum dry matter at 120 kg P ha–1 in inoculated sterilized soil and at 30 kg P ha–1 in nonsterile soil. These differences in maximal P rates and in the greater dry matter produced in sterile soil at high P rates were attributed to the negative effects of the root-knot nematodeMeloidogyne hapla in nonsterile soil.Plant weight did not respond to zinc fertilizer but tissue Zn concentration increased with applied Zn. Tissue Zn concentration and uptake were increased by VAMF.  相似文献   

3.
The risk of zinc (Zn) phytotoxicity in soils has increased in various regions following application of different anthropogenic materials. In order to assess the relative efficiency of Fe oxide and calcite in sorbing Zn and hence alleviating Zn phytotoxicity, we grew oilseed rape for 28 days in pots containing Zn-loaded model substrates consisting of Fe oxide (ferrihydrite)-coated sand (FOCS, 0.2–0.5 mm, 0.3 m2 ferrihydrite g–1 sand) and calcium carbonate (calcite) sand (CCS, 0.2–0.5 mm, 0.3 m2 calcite g–1 sand). Five substrates containing 5, 10, 20, 40, and 80% FOCS and supplied with ZnSO4 at a rate of 30, 100, 300, and 1000 mg Zn kg–1 were used in the cropping experiment and in an in vitro study of Zn desorption for 62 days. Plants exhibited good growth and a similar dry matter yield (DMY) at the 30 and 100 mg Zn kg–1 rates. On the other hand, DMY was markedly reduced at the 300 and, especially, at the 1000 mg Zn kg–1 rate, particularly for the substrates with the higher FOCS proportions. Symptoms of phytotoxicity (viz. chlorosis, purple colouration due to P deficiency) were apparent at such rates and were accompanied by high Zn concentrations in both shoot (average values >1000 and >1500 mg Zn kg–1 dry matter for the 300 and 1000 mg Zn kg–1 rate, respectively) and root (average values >2500 and >6000 mg Zn kg–1 dry matter for the 300 and 1000 mg Zn kg–1 rate, respectively). Total Zn uptake was maximal at 300 mg Zn kg–1. The results of water extractable Zn in the substrate after cropping and the dissolved Zn concentrations measured in substrate–water systems (desorption experiment) suggest that, on a surface area basis, calcite is more effective than Fe oxide to retain Zn and thus alleviate phytotoxicity at high Zn loadings. However, the Zn-sorption capacity of the Fe oxide cannot be neglected, particularly at low Zn loadings, where Fe oxide seems to exhibit a higher affinity for Zn – but not a higher Zn-sorption capacity – than does calcite.  相似文献   

4.
Present nutrient management recommendations for irrigated rice in West Africa are typically uniform for large regions. Even with optimal crop management, spatial variability of indigenous nutrient supplies may cause low fertilizer efficiency, low productivity of expensive inputs and high losses to the environment. Substantial efficiency increases were achieved with site- and season-specific nutrient management approaches, but the relative importance of different components (site or season) or of the precision level used (field, scheme, or region) remained unclear. We conducted a field trial in the Senegal River valley to investigate short-range variability of indigenous nutrient supplies of N (INS), P (IPS), and K (IKS) on a three hectare farm, and subsequently used the field data and simulation tools to study the agro-economic effects of fertilizer management options with different precision levels.Spatial variability of soil characteristics and of indigenous nutrient supplies (IS) at field level was high and covered a large part of the variability reported in regional studies. INS ranged from 19 to 78 kg N ha–1, IPS ranged from 11 to 39 kg P ha– 1, and IKS ranged from 70 to 150 kg K ha–1. Rice yield ranged from 2.2 to 6.0 Mg ha–1 in N omission plots, from 4.1 to 9.8 Mg ha–1 in P omission plots, and from 5.3 to 9.6 Mg ha–1 in K omission plots. The highest yield in the fully fertilized treatment was 11.6 Mg ha–1. Simulated potential yield was 11.8 Mg ha–1. Field-specific fertilizer management and an economically optimal target yield resulted in an average yield of 9.6 Mg ha–1 compared to 7.5 Mg ha–1 for the existing uniform recommendation. Net benefit from fertilizer use dropped by 19% as a result of reduced precision. Non-season-specific recommendations accounted for 12% of net benefit loss, whereas lower spatial precision contributed 7% to the net benefit loss. We concluded that uniform domain-specific recommendations within agro-ecological zones (i.e. adjusted to the seasonal yield potential) modified by crop diagnostics offer the best opportunities to optimize fertilizer efficiency and net benefits of fertilizer use for intensive irrigated rice-based systems in West Africa.  相似文献   

5.
Comparison of plant uptake and plant toxicity of various ions in wheat   总被引:1,自引:0,他引:1  
The effects of varying solution concentrations of manganese (Mn), zinc (Zn), copper (Cu), boron (B), iron (Fe), gallium (Ga) and lanthanum (La) on plant chemical concentrations, plant uptake and plant toxicity were determined in wheat (Triticum aestivum L.) grown in a low ionic strength (2.7×10–3 M solution culture). Increasing the solution concentration of Mn, Zn, Cu, B, Fe, Ga and La increased plant concentrations of that ion. Asymptotic maximum plant concentrations were reached for Zn (10 mg kg DM–1 in the roots), Ga (2 mg kg DM–1 in the tops and 18 mg kg DM–1 in the roots) and La (0.4 mg kg DM–1 in the tops and 4 mg kg DM–1 in the roots). Plant ion concentrations were, on average, 3 times higher in the roots than the tops for Mn and Zn, 7 times for Cu, 9 times for Fe, 12 times for Ga and 15 times for La. In contrast, B concentrations were higher in the tops than the roots by, on average, 2 times. The estimated toxicity threshold (plant concentration at which a rapid decrease in yield occurred) in the tops was 0.4 mg g DM–1 for B, 2 for Zn, 0.075 for Cu and 0.09 for La and in the roots 0.2 mg g DM–1 for B, 5 for Zn, 0.3 for Cu and 3 for La. Plant uptake rates of the ions (as estimated by the slope of the relationship between solution ion concentrations and plant ion concentrations) was in the order B 250 mg kg DM–1 M –1). Plant toxicity was estimated as the reciprocal of the plant concentration that reduced yield by 50% (change in relative yield per mg ion kg DM–1). The plant toxicity of the ions tested was in the order Mn相似文献   

6.
Summary A field experiment was performed to assess the effects of Rhizobium inoculation and nitrogen fertilizer (100 kg N ha–1) on four cultivars of Phaseolus beans; Carioca, Negro Argel, Venezuela 350 and Rio Tibagi. In the inoculated treatment 2.5 kg N ha–1 of15N labelled fertilizer was added in order to apply the isotope dilution technique to quantify the contribution of N2 fixation to the nutrition of these cultivars.Nodulation of all cultivars in the uninoculated treatments was poor, but the cultivars Carioca and Negro Argel were well nodulated when inoculated. Even when inoculated, nodulation of the cultivars Venezuela 350 and Rio Tibagi was poor and these cultivars showed little response to inoculation in terms of nitrogen accumulation or grain yield. The estimates of the contribution of N2 fixation estimated using the isotope dilution technique, for the Carioca and Negro Argel cultivars, amounted to 31.7 and 18.4 kg N ha–1 respectively. These two cultivars produced 991 and 883 kg ha–1 of grain, respectively, when inoculated and 663 and 620 kg ha–1 with the addition of 100 kg N ha–1 of N fertilizer. The response to nitrogen was particularly poor due to high leaching losses in the very sandy soil at the experimental site.The Venezuela 350 and Rio Tibagi cultivars only responded to N fertilizer and not to inoculation with Rhizobium which stresses the great importance of selecting plant cultivars for nitrogen fixation in the field.  相似文献   

7.
Sikora  L. J.  Enkiri  N. K. 《Plant and Soil》2001,235(1):65-73
Composts are considered low analysis fertilizers because their nitrogen and phosphorus content are around 1% and the organic nitrogen mineralization rate is near 10%. If compost is added to agricultural land at the N requirement of grain crops (40 – 100 kg N ha–1), application rates approach 40–100 mg ha–1. Much lower rates may be advisable to avoid rapid accumulation of growth limiting constituents such as heavy metals found in some composts. Combining low amendment rates of composts with sufficient fertilizer to meet crop requirements is an appealing alternative which (a) utilizes composts at lower rates than those needed to supply all the crop N requirement, (b) reduces the amount of inorganic fertilizer applied to soils, and (c) reduces the accumulation of non-nutrient compost constituents in soils. A study was conducted to compare the effects of blends of biosolids compost (C) with 15N urea(U) or 15NH4 15NO3 (N) fertilizers to fertilizer alone on tall fescue (Festuca arundinacea L.) growth and N uptake. Blends which provided 0, 20, 40 or 60 mg N kg–1 application rate as compost N and 120, 100, 80 or 60 mg N kg–1 as fertilizer N, respectively, were added to Sassafras soil (Typic Hapludults). Fescue was grown on the blends in a growth chamber for 98 days. Fescue yields recorded by clippings taken at 23, 46 and 98 days and roots harvested after the 98-day clipping increased with increasing fertilizer level for both NH4NO3 and urea and with or without compost. Nitrogen uptake by fescue responded similarly to yield with increases recorded with increasing fertilizer levels with or without compost. Paired comparisons based on cumulative 98-day clippings data showed that yields from blends were equal to yields from fertilizer treatments containing the same percentage of fertilizer as the blends. These data indicated that compost did not provide sufficient plant-available N to increase yields or N uptake. None of the blends equaled 120 mg N kg–1 fertilizer rate except for 100 mg NH4NO3-or urea-N kg–1 –20 mg compost-N kg–1blends. The data suggest that biosolids compost blended with fertilizer at a rate of 2–6 mg ha –1 did not supply sufficient additional available N to increase yields or N uptake over those of fertilizer alone.  相似文献   

8.
A pot and a lysimeter experiment were carried out to study the effects of inoculation of the roots of rice seedlings with R. capsulatus in combination with graded levels of nitrogen (N) fertilizer on growth and yield of the rice variety Giza 176. Inoculation increased all the measured growth parameters and yield attributes, but the statistically significant differences at all N levels tested were only those for plant dry weight, number of productive tillers, grain and straw yields. The absolute increases in grain yield of the pot experiment due to inoculation were 0.63, 0.93 and 1.22 ton ha–1 at 0, 47.6 and 95.2 kg N ha–1, respectively. The results suggest that inoculation along with 47.6 kg N ha–1 can save 50% of the nitrogen fertilizer needed for optimum G176 rice crop. However, inoculation along with 95.2 kg N ha–1 can increase grain yield by about 1.2 ton ha–1. This is probably the first reported evidence of a beneficial effect of phototrophic purple nonsulphur bacteria on rice growth and yield under flooded soil conditions.  相似文献   

9.
Fertilizer application to rice-fields in the river-deltas in the Mediterranean area is a potential menace for wildlife protection, through eutrophication.Fertilizer use shows a trend of increasing rates of N application. A rate for N of 200 kg ha–1 has become normal and a rate of 400 kg ha–1 has already been recorded.Denitrification causes large losses of N with the result that more fertilizer is applied. This is especially true for the Camargue (S-France), where N is applied long before the rice (Aryza sativa) can take it up.Therefore we have tried to develop techniques which need the application of smaller amounts of N which are used more efficiently. In order to do this we tried to establish a N budget for rice-fields.Experiments were therefore set up in the field (plots of 550 m2) and in pots (2–3 l). Our results suggest that a late application of N (e.g. when the rice shows signs of N-deficiency by becoming yellowish), but at lower concentrations (70 kg ha–1) can produce the same ultimate yield. The introduction of carp without any further input of N produced the same final yield.The N budget shows that 15±1.5 g m–2 of N is needed for a normal crop. N losses due to denitrification may be as high as 12.2–13.6 g m–2 of N. The input by irrigation water may provide up to about 20% of the input; N fixation is negligible. We estimate that 25–50% of the N missing in the budget comes from minderalization of the organic N pool in the soil. Denitrification may render part of this pool bio-available by oxidation. In sum, this work has revealed some surprising effects with potentially important consequences for farming practice and, in consequence, for conservation.  相似文献   

10.
Moawad  H.  Badr El-Din  S. M. S.  Khalafallah  M. A. 《Plant and Soil》1988,112(1):137-141
The nitrogen contribution from the shoot and root system of symbiotically grown leucaena was evaluated in a field experiment on an Alfisol at IITA in Southern Nigeria. Maize in plots that received prunings from inoculated leucaena contained more N and grain yield was increased by 1.9 t.ha.–1. Large quantities of nitrogen were harvested with leucaena prunings (300 kg N ha–1 in six months) but the efficiency of utilization of this nitrogen by maize was low compared to inorganic N fertilizer (ammonium sulphate) at 80 kg N ha–1. Maize yield data indicated that nitrogen in leucaena prunigs was 34 and 45% as efficient as 80 kg N ha–1 of (NH4)2SO4 for uninoculated and inoculated plants with Rhizobium IRc 1045, respectively. In plots where the prunings were removed, the leaf litter and decaying roots and nodules contributed N equivalent of 32 kg ha–1. Twenty-five kg ha–1 was the inorganic N equivalent from nitrogen fixed symbiotically by leucaena when inoculated with Rhizobium strain IRc 1045. Application of prunings from inoculated leucaena resulted in higher soil ogranic C, total N, pH and available NO3.  相似文献   

11.
A study was conducted in 1998 and 1999 on a long-term fallow management trial, established in 1989 at the International Institute of Tropical Agriculture (IITA), Ibadan, in the derived savanna of southwestern Nigeria, to quantify P fractions under natural fallow (NF) and a Pueraria cover crop fallow. Plots with previous 1:1, 1:2, and 1:3 crop/fallow ratios before reverting to fallow in either 1998 or 1999 were considered. Biomass accumulation under the two fallow types was comparable and increased linearly with fallow age, reaching slightly above 7 t dry matter ha–1 after 8 months of fallow. Phosphorus accumulation in the fallow vegetation ranged from 2.1 – 9.1 kg ha–1 for natural fallow (NF) and from 1.5 – 6.6 kg ha–1 for Pueraria. Magnesium was also higher under NF (9.1 – 21 kg ha–1) than under Pueraria (4.4 – 13 kg ha–1), whereas N, Ca, and K contents were higher in Pueraria biomass than under NF at 1 year after fallow. Pueraria fallow tended to lower soil pH compared with NF. However, plots with less frequent cropping (1:3 crop/fallow ratio) did not have significantly different pH irrespective of the fallow vegetation type. Olsen extractable soil P increased as fallow length increased irrespective of the fallow system and previous crop/fallow ratio. For example, under NF (0–5 cm depth, 1:1 crop/fallow ratio in1998) Olsen P increased from 12 mg kg–1 to 17 mg kg–1 after 1 year of fallow and under Pueraria, it increased from 8 mg kg–1 to 15 mg kg–1. Fallow type and previous crop/fallow ratio had no significant and consistent effects on soil P fractions. However, NaOH- and concentrated HCl- extractable organic P fractions increased with fallow length. In 1998, under NF, NaOH- extractable organic P increased from 12 to 21 mg kg–1 (1:1 crop/fallow ratio) and from 10 to 19 mg kg–1 for both 1:2 and 1:3 crop/fallow ratio. HCl- extractable organic P increased from 11 to 30 mg kg–1 (1:1 crop/fallow ratio), from 13 to 27 mg kg–1 (1:2 crop/fallow ratio) and from 18 to 35 mg kg–1 (1:3 crop/fallow ratio). Similar trend was observed under Pueraria fallow. These results suggest that P was reallocated to non-readily available organic P fractions irrespective of fallow type and previous land use. These organic P fractions, which are usually more stable, reflect the overall change in soil organic P levels when the soil was stressed by cultivation and then reverted to fallow. These pools may thus represent an active reservoir (source and sink) of P in shifting cultivation under tropical conditions without inorganic fertilizer application.  相似文献   

12.
Nutrient cycling and biomass characteristics of a tropical palm forest dominated byOrbignya cohune were found to be different from thsoe of hardwood dominated forests. The cohune palm forest had a high proportion of biomass in leaves (5%), a reduced sapling layer, a large amount of standing forest litter and an exceptionally low decomposition rate factor (0.1 year–1). Mineral concentrations in palm leaves were generally lower than in hardwood species with the exception of Na, which was exceptionally high inOrbignya cohune. Biomass was estimated at 226 tons ha–1 containing 1173 kg ha–1 N; 126 kg ha–1 P; 437 kg ha–1 K; 1869 kg ha–1 Mg; 125 kg ha–1 Ca, and 2177 kg ha–1 Na. Soils of cohune association did not differ significantly from those of neighbouring hardwood dominated associations with the exception of Na which occurred in higher concentration because of bioaccumulation in the dominant. The results suggest that the growth habits and physiology of a dominant can strongly influence some of the ecological parameters used to describe aforest association.  相似文献   

13.
Bekker  A. W.  Hue  N. V.  Yapa  L. G. G.  Chase  R. G. 《Plant and Soil》1994,164(2):203-211
Effects of coralline lime, in combination with 3 kg Cu ha−1 plus 3 kg Zn ha−1, on yield and nutrient uptake by peanut (Arachis hypogea) were studied at three locations in Western Samoa. Coarse (0–10 mm) coralline lime material containing 31.1% Ca and 1.7% Mg was used as lime at 0, 555, 2222 and 5000 kg ha−1. In the Togitogiga soil, which had the lowest level of exchangeable Ca, peanut yield increased by 6 fold after liming with 555 kg ha−1, relative to the unamended control. This yield increase was associated with reduced Mn toxicity as well as reduced Ca deficiency. The alleviation of Mn toxicity was not likely due to decreased Mn solubility because the lime application (555 kg ha−1) increased soil pH by <0.1 unit. Rather it was the increased Ca availability which reduced the Mn toxicity through a Ca/Mn antagonism. The critical range of exchangeable Ca for peanut growth was found to be about 1.5–1.6 cmol 1/2Ca2+ kg−1. A Ca/Mn-ratio >80 was required for a desirable Ca/Mn balance in peanut tissue. On the other two locations (with exchangeable Ca levels of 1.5–1.6 cmol 1/2Ca2+ kg−1), liming increased peanut yields by 15–20%. Additions of Cu plus Zn also increased the yields, although the increases were small (7%) and not significant at the 95% probability level. This research was made possible by Grant No. 936-5542-G-SS-9092 from the Program in Science and Technology Cooperation, AID/ST/AGR, U.S. Agency for International Development.  相似文献   

14.
Zinc deficiency as a critical problem in wheat production in Central Anatolia   总被引:19,自引:0,他引:19  
In a soil and plant survey, and in field and greenhouse experiments the nutritional status of wheat plants was evaluated for Zn, Fe, Mn and Cu in Central Anatolia, a semi-arid region and the major wheat growing area of Turkey.All 76 soils sampled in Central Anatolia were highly alkaline with an average pH of 7. 9. More than 90% of soils contained less than 0.5 mg kg-1 DTPA-extractable Zn, which is widely considered to be the critical deficiency concentration of Zn for plants grown on calcareous soils. About 25% of soils contained less than 2.5 mg kg-1 DTPA-extractable Fe which is considered to be the critical deficiency concentration of Fe for plants. The concentrations of DTPA-extractable Mn and Cu were in the sufficiency range. Also the Zn concentrations in leaves were very low. More than 80% of the 136 leaf samples contained less than 10 mg Zn kg–1. By contrast, concentrations of Fe, Mn and Cu in leaves were in the sufficient range.In the field experiments at six locations, application of 23 kg Zn ha-1 increased grain yield in all locations. Relative increases in grain yield resulting from Zn application ranged between 5% to 554% with a mean of 43%. Significant increases in grain yield (more than 31%) as a result of Zn application were found for the locations where soils contained less than 0.15 mg kg-1 DTPA-extractable Zn.In pot experirnents with two bread (Triticum aestivum, cvs. Gerek-79 and Kirac-66) and two durum wheats (Triticum durum, cvs. Kiziltan-91 and Kunduru-1149), an application of 10 mg Zn kg-1 soil enhanced shoot dry matter production by about 3.5-fold in soils containing 0.11 mg kg-1 and 0.15 mg kg-1 DTPA-extractable Zn. Results from both field observations and greenhouse experiments showed that durum wheats were more susceptible to Zn deficiency than the bread wheats. On Zn deficient soils, durum wheats as compared to bread wheats developed deficiency symptoms in shoots earlier and to a greater extent, and had lower Zn concentration in shoot tissue and lower Zn content per shoot than the bread wheats.The results presented in this paper demonstrate that (i) Zn deficiency is a critical nutritional problem in Central Anatolia substantially limiting wheat production, (ii) durum wheats possess higher sensitivity to Zn deficient conditions than bread wheats, and (iii) wheat plants grown in calcareous soils containing less than 0.2 mg kg-1 DTPA-extractable Zn significantly respond to soil Zn applications. The results also indicate that low levels of Zn in soils and plant materials (i.e. grains) could be a major contributing factor for widespread occurrence of Zn deficiency in children in Turkey, whose diets are dominated by cereal-based foods.  相似文献   

15.
In a field experiment performed in microplots, winter wheat was fertilized at two different total N dressings (135 and 180 kg ha–1) split-applied as Na15NO3 in three equal applications at tillering, stem elongation, and flag leaf.No significant differences were found in the percentage recovery values for the entire plant at the three split applications between the two N dressings. The total percentage recovery of fertilizer N by the plant was high and practically equal at both fertilization levels (76.65% and 75.84% for 135 and 180 kg N ha–1, respectively); crop yields were also similar. In contrast, gaseous losses calculated after drawing up the balance sheet were, in absolute values, higher for the tillering and stem elongation split applications when using the 180 kg N ha–1 dressing (7.67 and 4.84 kg N ha–1, respectively) than for the 135 kg N ha–1 dressing (3.45 and 1.26 kg N ha–1, respectively). They were found to be zero at flag leaf at both fertilization levels. The amount of applied fertilizer N did not influence the amount of N taken up from the soil which was about 143 kg ha–1.  相似文献   

16.
The fertilisation of wheat crops with Se is a cost-effective method of enhancing the concentration of organic Se in grain, in order to increase the Se intake of animals and humans. It is important to avoid phytotoxicity due to over-application of Se. Studies of phytotoxicity of Se in wheat grown in Australia, where rainfall and grain yield are usually relatively low, have not been reported previously, and overseas studies have had varied results. This study used trials conducted in the field, glasshouse and laboratory to assess Se phytotoxicity in wheat. In field trials that used rates of up to 120 g ha–1Se as selenate, and in pilot trials that used up to 500 g ha–1 Se soil-applied or up to 330 g ha–1 Se foliar-applied, with soils of low S concentrations (2–5 mg kg–1), no Se toxicity symptoms were observed. In pot trials of four weeks duration, the critical tissue level for Se toxicity was around 325 mg kg–1 DW, a level attained by addition to the growth medium of 2.6 mg kg–1 Se as selenate. Solution concentrations above 10 mg L–1 Se inhibited early root growth of wheat in laboratory studies, with greater inhibition by selenite than selenate. For selenite, Se concentrations around 70 mg L–1 were required to inhibit germination, while for selenate germination % was unaffected by a solution concentration of 150 mg L–1 Se. Leaf S concentration and content of wheat increased three-fold with the addition of 1 mg kg–1 Se as selenate to the growth medium. This effect is probably due to the induction of the S deficiency response of the main sulphate transporter. This study found wheat to be more Se-tolerant than did earlier studies of tobacco, soybeans and rice. We conclude that Se phytotoxicity in wheat will not be observed at the range of Se application rates that would be used to increase grain Se for human consumption (4–200 g ha–1 Se as selenate, which would result in soil and tissue levels well below those seen in the above studies), even when – as is common in Australia – soil S concentration and grain yield are low.  相似文献   

17.
Field research was conducted on four Atlantic Coastal Plain soils in the United States to evaluate response of corn (Zea mays L.) plants to Mn application. The soils under study were classified as either Aeric or Typic Ochraquults. Manganese application increased corn grain yields by an average of 1195 kg ha–1 on the four soils. The average grain yields on the soils were 7955 kg ha–1 for the control and 9150 kg ha–1 for the +Mn treatment. A Mitscherlich plant growth model was used to establish relationships between percent maximum grain yield and Mn concentration in the ear leaf at early silk (r=0.87, =0.01) and in the mature grain (r=0.58, =0.01). Based on 90% of maximum yield as the definition of the critical deficiency level, the critical Mn deficiency levels calculated with parameters from the Mitscherlich model were 10.6 mg kg–1 in the ear leaf and 4.9 mg kg–1 in the grain.  相似文献   

18.
Iwan Ho 《Plant and Soil》1988,109(2):291-293
Amounts of N, P, K, Ca, Mg, Zn, Fe, and Mn absorbed by a nodulating and a non-nodulating (Non-nod) peanut genotype at two nitrogen fertilizer levels (nil and 200 kg N ha–1) were determined in a field experiment. The amounts of nutrient elements in the plant parts were greatest for N, followed by K, Ca, Mg, P, Fe, Mn, and Zn in descending order. Although there were differences in the uptake of other nutrients, the major difference between Non-nod and nodulating genotypes was in nitrogen indicating the poor yield of the Non-nod line due to its inability to acquire N.Submitted as Journal Article No: 677 by International Crops Research Institute for the Semi-Arid Tropics (ICRISAT).  相似文献   

19.
Summary The interaction of exchangeable soil K with cultivars resulted in differences in grain production by five barley cultivars. The cultivars differed in the amount of exchangeable soil K required to produce maximum yield. Bonanza attained its maximum yield at 183 kg K2O ha–1, but Galt did not reach its maximum yield until a high level of exchangeable soil K was reached (252 kg K2O ha–1). The other cultivars were within this range. The cultivars also differed in their yield response to applied K fertilizer. Under conditions of growth-limiting K supply, Galt and Gateway were slightly more responsive to the addition of K fertilizer than were Centennial and Conquest, and much more responsive than Bonanza. The interactions of exchangeable soil K and soil pH or soil NO3–N and soil pH with cultivars indicated differences in acid tolerance of the cultivars. Galt was more pH sensitive than Bonanza.  相似文献   

20.
Li  Hong  Parent  Léon E.  Karam  Antoine  Tremblay  Catherine 《Plant and Soil》2003,251(1):23-36
It was hypothesized that soil N variability, and fertilization and cropping management affect potato (Solanum tuberosum L.) growth and fertilizer N efficiency. Following a 20-year sod breakup on a loamy soil in eastern Quebec, Canada (46°37 N, 71°47 W), we conducted a 3-year (1993–1995) study to investigate the effects of soil pool N and fertilizer N management on non-irrigated potato (cv. Superior) tuber yield, fertilizer N recovery (NRE), and residual N distribution in soils under humid, cool and acid pedoclimatic conditions. The fertilizer N treatments consisted of a control, side-dress at rates of 70, 105 and 140 kg ha–1, and split applications (at seeding and bloom) at rates of 70+70, 105+70 and 140+70 kg ha–1, respectively. Soil acidity was corrected with limestone following the plow down of the sod. Years of cropping, main effect of N treatment, and year and fertilizer N interaction were significant on total and marketable tuber yields and N uptake, which were significantly related to soil N, and root growth. Apparent NRE ranged between 29 and 70%, depending on years and N rates. Total tuber yield, N uptake, soil N use and NRE were significantly higher in the first (sod–potato) year, but decreased by 41.8, 22.7, 21.4 and 14.7%, respectively, in the third (sod–potato–potato–potato) year. Initial soil N pool was declined by 75% following the 3-year cropping. In 2–3 years, the side-dress N (140 kg ha–1) increased significantly tuber yields (11.4–19.8%) compared to the split N (70+70 kg ha–1). Higher split N had no effect on tuber yield and N uptake but increased residual N at harvest. Unused fertilizer N was strongly linked (R 2=0.98) to fertilizer N rates. Time factor and N treatment had significant effects (P<0.0001) on loss of N to below the root zone. Smaller scale rate and timing of split N need to be further determined. Increasing fertilizer N use efficiency could be expected with sod breakup and 75% of regional recommendation rate under humid, cool and acid pedoclimatic conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号