首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Previously, we isolated two mutants of Bacteroides thetaiotaomicron that were unable to grow on the mucopolysaccharide chondroitin sulfate (CS). One of these mutants (46-1) was outcompeted by the wild type in the intestinal tracts of germfree mice, whereas the other mutant (46-4) competed equally with the wild type. In the present article, we report a detailed characterization of these two mutants. Assays of enzymes in the CS utilization pathway revealed that 46-1 did not express one of these enzymes, chondro-6-sulfatase. The absence of chondro-6-sulfatase activity in extracts from 46-1 allowed us to detect a previously unknown activity of another enzyme in the CS breakdown pathway, beta-glucuronidase. In addition to hydrolyzing its normal substrate (an unsulfated disaccharide), beta-glucuronidase also hydrolyzed the 6-sulfated disaccharide subunit of CS. Two-dimensional gel analysis of polypeptides produced by 46-1 showed that several proteins other than the 6-sulfatase were either missing or expressed aberrantly. Thus, 46-1 could be a regulatory mutant. Mutant 46-4 was unable to grow on CS, hyaluronic acid, or disaccharides of CS. Thus, expression of the CS pathway enzymes could not be induced. Nonetheless, the growth pattern of 46-4 and some other findings indicate that the structural genes for these enzymes were still intact. The most likely target of mutant 46-4 is a regulatory locus that is required for expression of CS utilization genes. A surprising characteristic of 46-1 was its inability to grow on heparin, a mucopolysaccharide which is structurally similar to CS but is utilized by a different pathway.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

2.
We used two approaches to determine whether the mucopolysaccharide chondroitin sulfate is an important source of carbon and energy for Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice. First, we tested the ability of three mutants that grew poorly or not at all on chondroitin sulfate to colonize the intestinal tract of a germfree mouse and to compete with wild-type B. thetaiotaomicron in this model system. One mutant (CG10) was rapidly outcompeted by the wild type. However, since this mutant was unable to grow on chondroitin sulfate because it could not grow on N-acetyl-galactosamine, one of its monosaccharide components, this mutant might also be unable to utilize glycoprotein mucins. Two mutants (46-1 and 46-4) were isolated that grew poorly on chondroitin sulfate but normally on both component sugars. One of them was outcompeted by the wild type, but the percent wild type increased more slowly than with CG10. In one experiment, the percent wild type never reached 100%. The other (46-4) was not outcompeted by the wild type. These results indicate that, although chondroitin sulfate may be a carbon source in the animal, it is not of major importance. Our second approach was to determine by immunoblot analysis whether a 28-kilodalton outer membrane protein that is produced by B. thetaiotaomicron only when it is grown on chondroitin sulfate or hyaluronic acid was being produced at induced level by B. thetaiotaomicron growing in the ceca of exgermfree mice. There was no evidence for induction of this protein in vivo. Thus, the immunoblot results are consistent with results of the mutant competition experiments.  相似文献   

3.
We used two approaches to determine whether the mucopolysaccharide chondroitin sulfate is an important source of carbon and energy for Bacteroides thetaiotaomicron in the intestinal tracts of germfree mice. First, we tested the ability of three mutants that grew poorly or not at all on chondroitin sulfate to colonize the intestinal tract of a germfree mouse and to compete with wild-type B. thetaiotaomicron in this model system. One mutant (CG10) was rapidly outcompeted by the wild type. However, since this mutant was unable to grow on chondroitin sulfate because it could not grow on N-acetyl-galactosamine, one of its monosaccharide components, this mutant might also be unable to utilize glycoprotein mucins. Two mutants (46-1 and 46-4) were isolated that grew poorly on chondroitin sulfate but normally on both component sugars. One of them was outcompeted by the wild type, but the percent wild type increased more slowly than with CG10. In one experiment, the percent wild type never reached 100%. The other (46-4) was not outcompeted by the wild type. These results indicate that, although chondroitin sulfate may be a carbon source in the animal, it is not of major importance. Our second approach was to determine by immunoblot analysis whether a 28-kilodalton outer membrane protein that is produced by B. thetaiotaomicron only when it is grown on chondroitin sulfate or hyaluronic acid was being produced at induced level by B. thetaiotaomicron growing in the ceca of exgermfree mice. There was no evidence for induction of this protein in vivo. Thus, the immunoblot results are consistent with results of the mutant competition experiments.  相似文献   

4.
Genes encoding enzymes of the biosynthetic pathway leading to phylloquinone, the secondary electron acceptor of photosystem (PS) I, were identified in Synechocystis sp. PCC 6803 by comparison with genes encoding enzymes of the menaquinone biosynthetic pathway in Escherichia coli. Targeted inactivation of the menA and menB genes, which code for phytyl transferase and 1,4-dihydroxy-2-naphthoate synthase, respectively, prevented the synthesis of phylloquinone, thereby confirming the participation of these two gene products in the biosynthetic pathway. The menA and menB mutants grow photoautotrophically under low light conditions (20 microE m(-2) s(-1)), with doubling times twice that of the wild type, but they are unable to grow under high light conditions (120 microE m(-2) s(-1)). The menA and menB mutants grow photoheterotrophically on media supplemented with glucose under low light conditions, with doubling times similar to that of the wild type, but they are unable to grow under high light conditions unless atrazine is present to inhibit PS II activity. The level of active PS II per cell in the menA and menB mutant strains is identical to that of the wild type, but the level of active PS I is about 50-60% that of the wild type as assayed by low temperature fluorescence, P700 photoactivity, and electron transfer rates. PS I complexes isolated from the menA and menB mutant strains contain the full complement of polypeptides, show photoreduction of F(A) and F(B) at 15 K, and support 82-84% of the wild type rate of electron transfer from cytochrome c(6) to flavodoxin. HPLC analyses show high levels of plastoquinone-9 in PS I complexes from the menA and menB mutants but not from the wild type. We propose that in the absence of phylloquinone, PS I recruits plastoquinone-9 into the A(1) site, where it functions as an efficient cofactor in electron transfer from A(0) to the iron-sulfur clusters.  相似文献   

5.
Glucose is metabolized in Escherichia coli chiefly via the phosphoglucose isomerase reaction; mutants lacking that enzyme grow slowly on glucose by using the hexose monophosphate shunt. When such a strain is further mutated so as to yield strains unable to grow at all on glucose or on glucose-6-phosphate, the secondary strains are found to lack also activity of glucose-6-phosphate dehydrogenase. The double mutants can be transduced back to glucose positivity; one class of transductants has normal phosphoglucose isomerase activity but no glucose-6-phosphate dehydrogenase. An analogous scheme has been used to select mutants lacking gluconate-6-phosphate dehydrogenase. Here the primary mutant lacks gluconate-6-phosphate dehydrase (an enzyme of the Enter-Doudoroff pathway) and grows slowly on gluconate; gluconate-negative mutants are selected from it. These mutants, lacking the nicotinamide dinucleotide phosphate-linked glucose-6-phosphate dehydrogenase or gluconate-6-phosphate dehydrogenase, grow on glucose at rates similar to the wild type. Thus, these enzymes are not essential for glucose metabolism in E. coli.  相似文献   

6.
Mutagenesis of Bacteroides thetaiotaomicron with the transposon Tn4351 produced five classes of mutants that were not able to grow on amylose or amylopectin. These classes of mutants differed in their ability to grow on maltoheptaose (G7) and in the level of starch-degrading enzymes produced when bacteria were grown on maltose. All of the mutants were deficient in starch binding. Since one class of mutants retained normal levels of starch-degrading enzymes, this indicates that binding of the starch molecule by a cell surface receptor is necessary for starch utilization by B. thetaiotaomicron. Analysis of a starch-negative mutant that grew on G7 indicated that B. thetaiotaomicron possessed two starch-binding components or sites. One component (site A), apparently missing in this mutant, had an absolute preference for larger starch oligomers, whereas the other component (site M) also had a high affinity for maltodextrins (G4 through G7). Mutants not able to grow on maltodextrins (greater than G4) probably lacked both of these binding components. Only one class of mutants did not grow normally on maltose, but instead had a 4- to 5-h lag on maltose and a slower growth rate than the wild type. This class of mutants did not produce any of the starch-degrading enzymes or bind starch, even when growing on maltose. Such a phenotype probably resulted from transposon inactivation of a central regulatory gene or a gene encoding an enzyme that produces the inducer. The fact that both the degradative enzymes and the starch-binding activity were affected in this mutant indicates that genes encoding the cell surface starch-binding site are under the same regulatory control as genes encoding the enzymes.  相似文献   

7.
8.
The function of the peroxisomes was examined in the pathogenic basidiomycete Cryptococcus neoformans. Recent studies reveal the glyoxylate pathway is required for virulence of diverse microbial pathogens of plants and animals. One exception is C. neoformans, in which isocitrate lyase (encoded by ICL1) was previously shown not to be required for virulence, and here this was extended to exclude also a role for malate synthase (encoded by MLS1). The role of peroxisomes, in which the glyoxylate pathway enzymes are localized in many organisms, was examined by mutation of two genes (PEX1 and PEX6) encoding AAA (ATPases associated with various cellular activities)-type proteins required for peroxisome formation. The pex1 and pex6 deletion mutants were unable to localize the fluorescent DsRED-SKL protein to peroxisomal punctate structures, in contrast to wild-type cells. pex1 and pex6 single mutants and a pex1 pex6 double mutant exhibit identical phenotypes, including abolished growth on fatty acids but no growth difference on acetate. Because both icl1 and mls1 mutants are unable to grow on acetate as the sole carbon source, these findings demonstrate that the glyoxylate pathway can function efficiently outside the peroxisome in C. neoformans. The pex1 mutant exhibits wild-type virulence in a murine inhalation model and in an insect host, demonstrating that peroxisomes are not required for virulence under these conditions. An unusual phenotype of the pex1 and pex6 mutants was that they grew poorly with glucose as the carbon source, but nearly wild type with galactose, which suggested impaired hexokinase function and that C. neoformans peroxisomes might function analogously to the glycosomes of the trypanosomid parasites. Deletion of the hexokinase HXK2 gene reduced growth in the presence of glucose and suppressed the growth defect of the pex1 mutant on glucose. The hexokinase 2 protein of C. neoformans contains a predicted peroxisome targeting signal (type 2) motif; however, Hxk2 fused to fluorescent proteins was not localized to peroxisomes. Thus, we hypothesize that glucose or glycolytic metabolites are utilized in the peroxisome by an as yet unidentified enzyme or regulate a pathway required by the fungus in the absence of peroxisomes.  相似文献   

9.
Wild-type strains of Escherichia coli are unable to use L-1,2-propanediol as a carbon and energy source. Strain 3, a mutant selected for the ability to grow on this compound at progressively more rapid rates, synthesizes constitutively a nicotinamide adenine dinucleotide-linked propanediol oxidoreductase. This enzyme is normally synthesized during anaerobic growth on L-fucose when it functions as a lactaldehyde reductase. Propanediol, the end product of this fermentation process, escapes irretrievably into the medium. The propanediol-utilizing mutant can no longer grow on fucose in either the presence or absence of molecular oxygen. In the present study nine independent lines of propanediol-positive mutants were characterized. One mutant, strain 418, attained a propanediol growth rate close to that of strain 3 without loss of the ability to grow on fucose. In all cases examined, however, prolonged selection on propanediol did result in the emergence of fucose-negative mutants. All of these mutants had enzyme patterns similar to that of strain 3; namely, fucose permease, fucose isomerase, and fuculose kinase were noninducible, whereas fuculose 1-phosphate aldolase was constitutive. In strain 418 and in the fucose-positive predecessors of the other mutants, the first four enzymes in the pathway remained inducible, as in the wild-type strain. Improvements in the growth rate on propanediol appeared to reflect principally the increased activity level of the oxidoreductase during the early stages of evolution. According to transductional analysis, the mutations affecting the ability to grow on propanediol and those that affect the expression of the first enzymes in the fucose pathway were very closely linked. The loss of the ability to grow on fucose is thought to be a mechanistic consequence incidental to the remodeling of the regulatory system in favor of the utilization of the novel carbon source.  相似文献   

10.
Mutant strains of Pseudomonas putida (arvilla) mt-2 which have lost the ability to grow at the expense of m- or p-toluate (methylbenzoate) but retain the ability to grow with benzoate arise spontaneously during growth on benzoate; this genetic loss occurs to a lesser extent during growth on nonaromatic carbon sources in the presence of mitomycin C. The mutants have totally lost the activity of the enzymes of the divergent meta pathway with the possible exception of 2-oxopent-4-enoate hydratase and 4-hydroxy-2-oxovalerate aldolase; unlike the wild type they utilize benzoate by the ortho pathway. Evidence is presented that these mutants have lost a plasmid coding for the enzymes of the meta pathway, which may be transmitted back to them or into other P. putida strains. Preliminary results from these mutants and from a mutant defective in the regulation of the plasmid-carried pathway suggest that the wild type contains two benzoate oxidase systems, one on the plasmid which is nonspecific in both its catalysis and its induction and one on the chromosome which is more specific to benzoate as substrate and is specifically induced by benzoate.  相似文献   

11.
1) A vitamin-B6-producing mutant, BA 1, was selected by treatment of Bacillus subtilis with N-methyl-N'-nitro-N-nitrosoguanidine. Using gradient plates supplemented with the vitamin B6 antagonist isonicotinohydrazide, three mutants of BA 1 were isolated, which excrete 2-5 mg of vitamin B6/l of growth medium. 2) Mutation of the three vitamin-B6-producing strains BA 1, BA 11 and L 71 led to the isolation of 49 vitamin-B6 deficient mutants. All mutants are able to grow with pyridoxine, pyridoxal, pyridoxamine, and even with 4'-deoxypyridoxine. Glycolaldehyde or nicotinic acid do not support growth of the mutants. Some of these vitamin-B6-deficient mutants can also grow in the absence of vitamin B6, providing isoleucine is present. Others show a growth stimulation, when isoleucine is added to a medium containing a vitamin B6 compound. Isoleucine can be replaced by 3-methyl-2-oxovalerate. Cross-feeding experiments indicated a division of the mutants into two groups. Using chromatographic methods, substances which support growth of the mutants were purified, but have not yet been identified. Following the addition of 4'-deoxypyridoxine, 4'-deoxypyridoxine 5'-phosphate was isolated from the growth medium of a vitamin B6-deficient mutant. 3) Threonine dehydratase, transaminase B and transaminase C from wild-type Bacillus subtilis were compared with the enzymes from vitamin-B6-producing strains and with the enzymes from vitamin-B6-deficient mutants. Both the vitamin-B6-producing and the vitamin B6-deficient mutants show higher specific activities than wild type. In the mutant strains no multivalent repression of the threonine dehydratase and transminase B by isoleucine, leucine and valine could be demonstrated. Leucine dehydrogenase, the first enzyme of the isoleucine catabolic pathway, is constitutively produced in the vitamin-B6-producing and in the vitamin-B6-deficient mutants. In the vitamin-B6-deficient mutants, there is a correlation between growth yield in the presence of isoleucine and the specific activity of leucine dehydrogenase. In the crude extract of Bacillus subtilis no pyridoxamine-phosphate oxidase activity could be demonstrated, whereas pyridoxal kinase was readily detectable.  相似文献   

12.
The regulatory properties of three key enzymes in the phenylalanine biosynthetic pathway, 3-deoxy-D-arabino-heptulosonate 7-phosphate synthetase (DAHP synthetase) [EC 4.1.2.15], chorismate mutase [EC 5.4.99.5], and prephenate dehydratase [prephenate hydro-lyase (decarboxylating), EC 4.2.1.51] were compared in three phenylalanine-excreting mutants and the wild strain of Brevibacterium flavum. Regulation of DAHP synthetase by phenylalanine and tyrosine in these mutants did not change at all, but the specific activities of the mutant cell extracts increased 1.3- to 2.8-fold, as reported previously (1). Chorismate mutase activities in both the wild and the mutant strains were cumulatively inhibited by phenylalanine and tyrosine and recovered with tryptophan, while the specific activities of the mutants increased 1.3- to 2.8-fold, like those of DAHP synthetase. On the other hand, the specific activities of prephenate dehydratase in the mutant and wild strains were similar, when tyrosine was present. While prephenate dehydratase of the wild strain was inhibited by phenylalanine, tryptophan, and several phenylalanine analogues, the mutant enzymes were not inhibited at all but were activated by these effectors. Tyrosine activated the mutant enzymes much more strongly than the wild-type enzyme: in mutant 221-43, 1 mM tyrosine caused 28-fold activation. Km and the activation constant for tyrosine were slightly altered to a half and 6-fold compared with the wild-type enzyme, respectively, while the activation constants for phenylalanine and tryptophan were 500-fold higher than the respective inhibition constants of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 x 10(5), a half of that of the wild-type enzyme. The molecular weight of the mutant enzyme was estimated to be 1.2 X 10(5) a half of that of the wild type enzyme, while in the presence of tyrosine, phenylalanine, or tryptophan, it increased to that of the wild-type enzyme. Immediately after the mutant enzyme had been activated by tyrosine and then the tyrosine removed, it still showed about 10-fold higher specific activity than before the activation by tyrosine. However, on standing in ice the activity gradually fell to the initial level before the activation by tyrosine. Ammonium sulfate promoted the decrease of the activity. On the basis of these results, regulatory mechanisms for phenylalanine biosynthesis in vivo as well as mechanisms for the phenylalanine overproduction in the mutants are discussed.  相似文献   

13.
Two previously reported mutants ofPachysolen tannophilus, which accumulate ethanol more rapidly and in greater yield than the wild-type NRRL Y2460, have been cross-mated. Aneth 2-1 mutant which is unable to grow on ethanol, was mated with the mutant NO3–NO3-4 which possesses increased levels of pentose phosphate pathway enzymes. The new hybrid strain combines the properties of both parents and possesses improved characteristics for xylose fermentation to ethanol.  相似文献   

14.
Pseudomonas MS can grow on methylamine and a number of other compounds containing C1 units as a sole source of carbon and energy. Assimilation of carbon into cell material occurs via the "serine pathway" since enzymes of this pathway are induced after growth on methylamine, but not malate or acetate. A mutant has been isolated which is unable to grow on methylamine or any other related substrate providing C1 units. This mutant is also unable to grow on acetate. Measurment of enzyme activities in cell-free extracts of wild-type cells showed that growth on methylamine caused induction of isocitrate lyase, a key enzyme in the glyoxylate cycle. The mutant organism lacks malate lyase, a key enzyme of the serine pathway, and isocitrate lyase as well. These results suggest that utilization of C1 units by Pseudomonas MS results in the net accumulation of acetate which is then assimilated into cell material via the glyoxylate cycle.  相似文献   

15.
16.
17.
The isolation of several mutant strains blocked in l-lysine degradation has permitted an assessment of the physiological significance of enzymatic reactions related to lysine metabolism in Pseudomonas putida. Additional studies with intact cells involved labeling of metabolic intermediates from radioactive l- or d-lysine, and patterns of enzyme induction in both wild-type and mutant strains. These studies lead to the conclusions that from l-lysine, the obligatory pathway is via delta-aminovaleramide, delta-aminovalerate, glutaric semialdehyde, and glutarate, and that no alternative pathways from l-lysine exist in our strain. A distinct pathway from d-lysine proceeds via Delta(1)-piperideine-2-carboxylate, l-pipecolate, and Delta(1)-piperideine-6-carboxylate (alpha-aminoadipic semialdehyde). The two pathways are independent in the sense that certain mutants, unable to grow on l-lysine, grow at wild-type rates of d-lysine, utilizing the same intermediates as the wild type, as inferred from labeling studies. This finding implies that lysine racemase in our strain, while detectable in cell extracts, is not physiologically functional in intact cells at a rate that would permit growth of mutants blocked in the l-lysine pathway. Pipecolate oxidase, a d-lysine-related enzyme, is induced by d-lysine and less efficiently by l-lysine. Aminooxyacetate virtually abolishes the inducing activity of l-lysine for this enzyme, suggesting that lysine racemase, although functionally inactive for growth purposes, may still have regulatory significance in permitting cross-induction of d-lysine-related enzymes by l-lysine, and vice versa. This finding suggests a mechanism in bacteria for maintaining regulatory patterns in pathways that may have lost their capacity to support growth. In addition, enzymatic studies are reported which implicate Delta(1)-piperideine-2-carboxylate reductase as an early step in the d-lysine pathway.  相似文献   

18.
The commonly used food additive carrageenan, including lambda (λ), kappa (κ) and iota (ι) forms, is composed of galactose disaccharides linked in alpha-1,3 and beta-1,4 glycosidic bonds with up to three sulfate groups per disaccharide residue. Carrageenan closely resembles the endogenous galactose or N-acetylgalactosamine-containing glycosaminoglycans (GAGs), chondroitin sulfate (CS), dermatan sulfate (DS), and keratan sulfate. However, these GAGs have beta-1,3 and beta-1,4 glycosidic bonds, in contrast to the unusual alpha-1,3 glycosidic bond in carrageenan. Since sulfatase activity is inhibited by sulfate, and carrageenan is so highly sulfated, we tested the effect of carrageenan exposure on sulfatase activity in human intestinal and mammary epithelial cell lines and found that carrageenan exposure significantly reduced the activity of sulfatases, including N-acetylgalactosamine-4-sulfatase, galactose-6-sulfatase, iduronate sulfatase, steroid sulfatase, arylsulfatase A, SULF-1,2, and heparan sulfamidase. Consistent with the inhibition of sulfatase activity, following exposure to carrageenan, GAG content increased significantly and showed marked differences in disaccharide composition. Specific changes in CS disaccharides included increases in di-sulfated disaccharide components of CSD (2S6S) and CS-E (4S6S), with declines in CS-A (4S) and CS-C (6S). Specific changes in heparin-heparan sulfate disaccharides included increases in 6S disaccharides, as well as increases in NS and 2S6S disaccharides. Study results suggest that carrageenan inhibition of sulfatase activity leads to re-distribution of the cellular GAG composition with increase in di-sulfated CS and with potential consequences for cell structure and function.  相似文献   

19.
Neurospora crassa osmosensitive (os) mutants are sensitive to high osmolarity and therefore are unable to grow on medium containing 4% NaCl. We found that os-2 and os-5 mutants were resistant to the phenylpyrrole fungicides fludioxonil and fenpiclonil. To understand the relationship between osmoregulation and fungicide resistance, we cloned the os-2 gene by using sib selection. os-2 encodes a putative mitogen-activated protein (MAP) kinase homologous to HOG1 and can complement the osmosensitive phenotype of a Saccharomyces cerevisiae hog1 mutant. We sequenced three os-2 alleles and found that all of them were null with either frameshift or nonsense point mutations. An os-2 gene replacement mutant also was generated and was sensitive to high osmolarity and resistant to phenylpyrrole fungicides. Conversely, os-2 mutants transformed with the wild-type os-2 gene could grow on media containing 4% NaCl and were sensitive to phenylpyrrole fungicides. Fludioxonil stimulated intracellular glycerol accumulation in wild-type strains but not in os-2 mutants. Fludioxonil also caused wild-type conidia and hyphal cells to swell and burst. These results suggest that the hyperosmotic stress response pathway of N. crassa is the target of phenylpyrrole fungicides and that fungicidal effects may result from a hyperactive os-2 MAP kinase pathway.  相似文献   

20.
Ribitol catabolic pathway in Klebsiella aerogenes   总被引:12,自引:11,他引:1       下载免费PDF全文
In Klebsiella aerogenes W70, there is an inducible pathway for the catabolism of ribitol consisting of at least two enzymes, ribitol dehydrogenase (RDH) and d-ribulokinase (DRK). These two enzymes are coordinately controlled and induced in response to d-ribulose, an intermediate of the pathway. Whereas wild-type K. aerogenes W70 are unable to utilize xylitol as a carbon and energy source, mutants constitutive for the ribitol pathway are able to utilize RDH to oxidize the unusual pentitol, xylitol, to d-xylulose. These mutants are able to grow on xylitol, presumably by utilization of the d-xylulose produced. Mutants constitutive for l-fucose isomerase can utilize the isomerase to convert d-arabinose to d-ribulose. In the presence of d-ribulose, RDH and DRK are induced, and such mutants are thus able to phosphorylate the d-ribulose by using the DRK of the ribitol pathway. Derivatives of an l-fucose isomerase-constitutive mutant were plated on d-arabinose, ribitol, and xylitol to select and identify mutations in the ribitol pathway. Using the transducing phage PW52, we were able to demonstrate genetic linkage of the loci involved. Three-point crosses, using constitutive mutants as donors and RDH(-), DRK(-) double mutants as recipients and selecting for DRK(+) transductants on d-arabinose, resulted in DRK(+)RDH(+)-constitutive, DRK(+)RDH(+)-inducible, and DRK(+)RDH(-)-inducible transductants but no detectable DRK(+)RDH(-) constitutive transductants, data consistent with the order rbtC-rbtD-rbtK, where rbtC is a control site and rbtD and rbtK correspond to the sites for the sites for the enzymes RDH and DRK, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号