首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Lipids created via microbial biosynthesis are a potential raw material to replace plant-based oil for biodiesel production. Oleaginous microbial species currently available are capable of accumulating high amount of lipids in their cell biomass, but rarely can directly utilize lignocellulosic biomass as substrates. Thus this research focused on the screening and selection of new fungal strains that generate both lipids and hydrolytic enzymes. To search for oleaginous fungal strains in the soybean plant, endophytic fungi and fungi close to the plant roots were studied as a microbial source. Among 33 endophytic fungal isolates screened from the soybean plant, 13 have high lipid content (>20 % dry biomass weight); among 38 fungal isolates screened from the soil surrounding the soybean roots, 14 have high lipid content. Also, five fungal isolates with both high lipid content and promising biomass production were selected for further studies on their cell growth, oil accumulation, lipid content and profile, utilization of various carbon sources, and cellulase production. The results indicate that most strains could utilize different types of carbon sources and some strains accumulated >40 % of the lipids based on the dry cell biomass weight. Among these promising strains, some Fusarium strains specifically showed considerable production of cellulase, which offers great potential for biodiesel production by directly utilizing inexpensive lignocellulosic material as feedstock.  相似文献   

2.
Sixty-three actinomycete strains isolated from the marine shellfish Donax trunculus anatinus were phenotypically identified as ten genera, in addition to two unidentified strains. Their metabolic extracts exhibited wide antimicrobial activities towards 11 reference and clinical cultures; and 17.5% showed antitumor activities with solid tumor selectivity of four Nocardioides, Kitasatosporia and Streptomyces strains. Streptomyces 23-2B was particularly noted for its high antitumor activity against Ehrlich’s ascites carcinoma with plateau inhibitory effect at 500, 250 and 50 μg/ml concentrations, promising solid tumor selectivity and high cytotoxicity to human carcinoma of liver (HEPG2), cervix (HELA) and breast (MCF7) (IC50: 3.89, 9.4 and 10 μg/ml, respectively). In vivo cytotoxicity of S.23-2B metabolites showed common sign of unimpaired kidney and liver functions, as indicated from non-significant elevation in serum enzymatic activities, urea, creatinine, total protein and albumin levels in response to 0.5 and 5 μg/g doses after alternate-day injection for 2 weeks. Microorganisms associated with the marine shellfish are suggested to be potential source of bioactive metabolites.  相似文献   

3.
Cyanobacteria are known to be a rich source of biologically active compounds some of which can have pharmaceutical importance. In this work we present the screening results of cyanobacterial strains for their antibacterial, antifungal, and cytotoxic activity. Cyanobacterial strains were isolated from various soil types in province of Vojvodina and Central Serbia, Republic of Serbia. The screening included 9 strains of Anabaena and 9 strains of Nostoc. Both, extracellular products (from the culture liquid) and cellular crude lipophilic extracts were tested against 13 bacterial strains and 8 fungal strains. Cytotoxic activity was tested against three human cell lines. Methanol extracts were prepared according to ?stensvik. Antibacterial and antifungal activities were determined measuring inhibition zone, 48 h after inoculation. The cytotoxic activity was determined by sulforhodamine B (SRB) colorimetric assay. Of all cyanobacterial strains tested, 52% showed some antifungal and 41% antibacterial activity. Two out of six tested strains possessed cytotoxic activity. The cytotoxic activity of Anabaena strain S12 was found both in culture liquid and crude cell extract. It occurred specifically between the 21st and 42nd day of cultivation against HeLa and MCF7 cells, but had no activity against cell line derived from a healthy tissue. A high percentage of the active strains among the tested strains justify the effort of screening cyanobacteria that are isolated from terrestrial environments. The most promising strains for the fur- ther study are Anabaena strain S12 which showed strong cytotoxic and antibacterial activity and Ana- baena strain S20 which produces a potent antifungal compound. The future work, besides further screening and chemical identification of the active compounds, should also include the development of culture techniques that would lead to more efficient production of biologically active compounds.  相似文献   

4.
Mushroom polysaccharides are potent substances that exhibit antitumor and immunomodulatory properties. Studies comparing the chemical composition and antitumor-related activities of polysaccharides released by fungal strains under different growth conditions are not available. Thus, the present study compared polysaccharides extracts produced by Pleurotus pulmonarius from mycelium grown in liquid culture (ME) or fruiting bodies (FBE). Polysaccharides of both ME and FBE had a relatively high molecular mass. NMR spectroscopy indicated that ME glucan is an α-glucan whereas FBE glucan is a mixture of both α- and β-glucans. Glucose and galactose where the most prominent monosaccharide in both glucans. Treatment of several colon cancer cell lines expressing varying amounts of galectin-3 with the two fungal glucans inhibited their viability and significantly reduced their ability to adhere to the key component of the extracellular matrix, fibronectin, and to a human umbilical vein endothelial cell monolayer, in a time- and dose-dependent manner mainly in those cell lines expressing high amounts of galectin-3. We conclude that ME and FBE glucans may exert a direct antiproliferative effect on cancer cells expressing high galectin-3 concentrations and concomitantly downregulate tumor cell adherence, the latter being directly related to cancer progression and metastasis.  相似文献   

5.
Fibrinolytic enzyme production was evaluated in fungal specimens isolated from the sub-tropical Las Yungas Pedemontana forest (Tucumán, Argentina). Proteolytic and fibrinolytic activities were evaluated in freeze-thaw crude extracts from 230 fungal isolates on 1% w/v skimmed-milk or 0.25% w/v fibrin-agar plates, respectively. Proteolytic activity was positive in 62% of the isolates, whilst only three of them were able to produce extracellular fibrinolytic enzymes on solid nutritive medium. Fibrinolytic-positive extracts were able to degrade fibrin clots in a direct plasminogen-independent way. Selected isolates were identified by sequencing the 26S rDNA D1/D2 domain. Isolates LY 4.1 and LY 4.4 showed a 99.9% similarity with Bionectria ochroleuca, while LY 4.2 showed a 99.9% identity with Cladosporium cladosporioides. Under submerged culture conditions, LY 4.1 and LY 4.4 were able to excrete fibrinolytic enzymes, reaching a maximum at 120 h of cultivation of 100.2 and 107.9 U/ml in plasmin-equivalent units, respectively. Fibrinolytic enzyme production could be scaled-up to fermenter scale reaching similar values. Fibrin zymography showed that fibrinolytic activity was associated with ~173-, 153- and 80-kDa protein fractions. Extracellular fibrinolytic enzymes from Bionectria species may be potentially related to pathogenesis mechanisms, as already demonstrated for serine-proteases from the nematicidal anamorph Clonostachys rosea. This work reveals the potential of Bionectria strains as an unconventional and unexplored production alternative to already known thrombolytic agents. The value of Las Yungas forests as a reservoir of fungal species with promising biotechnological value could be also highlighted.  相似文献   

6.
Although enrichment culture is typically employed to isolate cellulolytic microbes, this approach tends to favor fast-growing species and discriminates against all others. Therefore, efforts to prevent the overgrowth of fast-growing species are necessary to isolate novel cellulase-producing strains. In this study, we developed a simple culture method for isolating hitherto-uncultured microbes that possess cellulase activity, particularly exocellulase. In this method, the microbial source (a forest soil) was suspended in sterilized water and inoculated onto a mineral salts agar medium, which was then overlaid with filter paper to sandwich the microbial suspension between the agar surface and paper. The filter paper fibers served to immobilize the microbial cells and were the dominant carbon source. Following cultivation at 30°C for 2 weeks, emerging colonies were isolated based on their morphology and were then subjected to phylogenetic and enzyme analyses. Using this method, 2,150 CFUs/g dry soil were obtained, and the ratio of fungal to bacterial isolates was approximately 4:1. Phylogenetic analyses revealed that most fungal and bacterial isolates belong to ten and two genera, respectively. Notably, all isolates possessed exocellulase activity, and several strains showed strong activity that was comparable to Trichoderma cellulase. Many isolates also exhibited cellulase and xylanase activity, and several strains possessed laccase activity. It is expected that the culture method described here will be useful for the isolation of hitherto-uncultured cellulolytic microbes and the identification of novel cellulases.  相似文献   

7.
Industrial Dye Decolorization by Laccases from Ligninolytic Fungi   总被引:14,自引:0,他引:14  
White-rot fungi were studied for the decolorization of 23 industrial dyes. Laccase, manganese peroxidase, lignin peroxidase, and aryl alcohol oxidase activities were determined in crude extracts from solid-state cultures of 16 different fungal strains grown on whole oats. All Pleurotus ostreatus strains exhibited high laccase and manganese peroxidase activity, but highest laccase volumetric activity was found in Trametes hispida. Solid-state culture on whole oats showed higher laccase and manganese peroxidase activities compared with growth in a complex liquid medium. Only laccase activity correlated with the decolorization activity of the crude extracts. Two laccase isoenzymes from Trametes hispida were purified, and their decolorization activity was characterized. Received: 26 May 1998 / Accepted: 7 August 1998  相似文献   

8.
Thirty different fungal strains were isolated from A. tequilana leaves showing disease symptoms such as wilt and curled leaves, black, red and chlorotic spots. Ten genera were identified and confirmed by using the LSU D1/D2 rDNA and ITS1‐5.8S‐ITS2 regions, mainly of the Ascomycota phylum, where the Lasiodiploidia and Neoscytalidium genera were the more (46.6%) abundant. The other genera identified were Cladosporium, Cytospora, Epicoccum, Flavodon, Lasiodiplodia, Myrmaecium, Neoscytalidium, Penicillium, Peniophora, Purpureocillium, Trametes and Fusarium. Five strains of Lasiodiplodia and one of Fusarium were selected based on their representativeness and pathogenic potential on Agaves. Pathogenic potential was analysed by both, an infection assay, evidenced as necrosis, and by pectinolytic activity. Specifically, necrosis infection assay was conducted by puncture (wounded) infection and by direct mycelium contact. In general, Lasiodiplodia strains exhibited different pathogenic profiles according to their necrosis percentages, regardless of the infection method used. Fusarium strain analysed also showed a high necrosis infection (> 99%). Pectinolytic activity used as an indirect measurement of pathogenesis presented a high Fusarium extract activity (peaking at 23.9 U). Lasiodiplodia strains exhibited up 6 times more enzymatic activity (peaking at 143.5) than Fusarium strain analysed. In addition, Agave leaf extracts used totally or partially as carbon source during fungal induction culture may induce different pathogenic activities in these strains. In general, the two pathogenicity assays implemented evidenced differences in the pathogenicity profile of these analysed strains.  相似文献   

9.
The pectinase enzymes are involved in several industrial applications, and industrial waste is one of the largest environmental pollutants, so this study aims to Endo-polygalacturonase (endo-PG) producing using Aspergillus niger AUMC 4156, Penicillium oxalicum AUMC 4153 and P. variotii AUMC 4149 by using some agro-industrial wastes (dried orange peel and sugar beet pulp) as a sole raw carbon source for degradation these waste in the process of urban wastes disposal. The fermentation process was carried out as a submerged culture technique under both shaken and static culture conditions. A. niger AUMC 4156 was the most promising producer of endo-PG under static conditions while P. oxalicum AUMC 4153 was the highest producer of endo-PG under shaken conditions. Sugar beet pulp proved to be the most preferable to orange peel as the only source of carbon in both shaken and static cultures. The medium that encompassing orange peel as a single carbon source afforded the highest protein content with all tested fungal strains in stirred and static cultures in comparison with sugar beet pulp. The highest activity of endo-polygalacuronase that produced using A. niger AUMC 4156 and P. oxalicum AUMC 4153 was achieved by using sugar beet pulp at 3% concentration under static cultures, meanwhile maximal enzyme activity produced by both fungal strains required 2% sugar beet pulp under shaken cultures. Sugar beet pulp showed promised potential as a good inducer for endo-polygalacturoase production, and enzymes production depended on fungal strains, culture medium, and submerged fermentation conditions.  相似文献   

10.
The aim of this study was to evaluate the antimicrobial activity of crude ethanolic extracts and fractions of the ariel parts and the fruits of Galium tricornutum subsp. longipedunculatum, traditionally used in northern areas of Pakistan for treating microbial infections of skin. Extracts and their fractions were tested against six bacteria and six fungal strains using the hole diffusion method and macrodilution method. All extracts and fractions possessed significant antimicrobial effect. Four fungal strains, Candida albicans, Trichophyton longifusus, Fusarium.solani and Candida glabrata, showed interesting susceptibility profiles when evaluated using the extracts and fractions with MICs ranging from 0.18 to 200 mg/mL. In case of bacterial strains, Staphylococcus aureus, Pseudomonas aeruginosa and Salmonella typhi were significantly susceptible to the extracts and fractions with MICs ranging from 0.12 to 200 mg/mL. Comparative results were carried out using imepenem, miconazole and amphotericin B as standard antibiotics.  相似文献   

11.
During the MICROMAT project, the bacterial diversity of microbial mats growing in the benthic environment of Antarctic lakes was accessed for the discovery of novel antibiotics. In all, 723 Antarctic heterotrophic bacteria belonging to novel and/or endemic taxa in the α-, β- and γ-subclasses of the Proteobacteria, the Bacteroidetes branch, and of the high and low percentage G+C Gram-positives, were isolated, cultivated in different media and at different temperatures, and then screened for the production of antimicrobial activities. A total of 6348 extracts were prepared by solid phase extraction of the culture broths or by biomass solvent extraction. 122 bacteria showed antibacterial activity against the Gram-positives Staphylococcus aureus and to a lower extent Enterococcus faecium, and versus the Gram-negative Escherichia coli. Few of these strains showed also some antifungal activity against Cryptococcus neoformans, Aspergillus fumigatus and to a lower extent Candida albicans. LC–MS fractionation of extracts from a subset of strains (hits) that exhibited relatively potent antibacterial activities evidenced a chemical novelty that was further investigated. Two strains of Arthrobacter agilis produced potent antibacterial compounds with activity against Gram-positives and possibly related to novel cyclic thiazolyl peptides. To our knowledge, this is the first report of new antibiotics produced by bacteria from benthic microbial mats from Antarctic lakes. With no doubts these microbial assemblages represent an extremely rich source for the isolation of new strains producing novel bioactive metabolites with the potential to be developed as antibiotic compounds.  相似文献   

12.
The outbreaks of fungal diseases in cultured fish have been severe in recent years, which is harmful to the healthy and sustainable development of fish farming. In this study, an investigation was conducted for significant fungal infections of 12 species of fish in four regions in Xinjiang, China, to understand the distribution of local fish fungal pathogens. Twenty-six fungal strains with pathogenicity were isolated, and the challenge experiment showed that eight strains from Changji area had high infection rate to fish eggs. Based on internal transcribed spacer sequence data and molecular analysis, the 26 strains were classified into nine different species of six fungal genera. Phylogenetic analysis showed that all strains were divided into two clades, namely Cluster 1 (contains only the genus Mucor) and Cluster 2 (consists of five small branches), and the distribution of strains from the same region was scattered in two clusters. There is no strict host selectivity for these fungi to infect fish. Mucor sp. are the main fungal pathogen of fish in these four regions, whereas Hypophthalmichthys molitrix and Carassius auratus are two types of fish that were susceptible to pathogen. In addition, the environmental adaptability experiments showed that eight highly pathogenic strains have different adaptability to the environment, and their optimum temperature and pH were 25°C and 7.0, respectively, whereas the concentration of NaCl was negatively correlated with the growth of strains. Therefore, these results indicated that the coinfection of multiple fungal pathogens in a culture region should be considered in the future study.  相似文献   

13.
Endophytic actinobacteria from the Brazilian medicinal plant Lychnophora ericoides were isolated for the first time, and the biological potential of their secondary metabolites was evaluated. A phylogenic analysis of isolated actinobacteria was accomplished with 16S rRNA gene sequencing, and the predominance of the genus Streptomyces was observed. All strains were cultured on solid rice medium, and ethanol extracts were evaluated with antimicrobial and cytotoxic assays against cancer cell lines. As a result, 92% of the extracts showed a high or moderate activity against at least one pathogenic microbial strain or cancer cell line. Based on the biological and chemical analyses of crude extracts, three endophytic strains were selected for further investigation of their chemical profiles. Sixteen compounds were isolated, and 3‐hydroxy‐4‐methoxybenzamide ( 9 ) and 2,3‐dihydro‐2,2‐dimethyl‐4(1H)‐quinazolinone ( 15 ) are reported as natural products for the first time in this study. The biological activity of the pure compounds was also assessed. Compound 15 displayed potent cytotoxic activity against all four tested cancer cell lines. Nocardamine ( 2 ) was only moderately active against two cancer cell lines but showed strong activity against Trypanosoma cruzi. Our results show that endophytic actinobacteria from L. ericoides are a promising source of bioactive compounds.  相似文献   

14.
Summary By contaminating a Tunisian soil with black oxidized and sterilized olive-mill wastewaters (OMW), 30 new indigenous fungal soil strains able to overcome the OMW toxicity could be directly selected. Ten of the fungal strains previously isolated were screened for their capability to grow in a liquid culture medium containing oxidized OMW as the only source of carbon and energy. According to these preliminary tests, strain F2 showed the best capability of removing black colour and COD (chemical oxygen demand) and was further identified as Aspergillus flavus. After optimization of batch-liquid culture conditions in the presence of oxidized OMW, the time course of biomass and enzyme production by A. flavus F2 was followed in relation to colour and COD removal. A. flavus F2 could efficiently decolourize and detoxify the black oxidized OMW (58 and 46% of colour and COD removal, respectively, after 6 days of cultivation), concomitantly with the production of tannase (8000 UI/l on day 3).  相似文献   

15.
镰刀菌Fusarium solani菌株对卤虫Artemia salina的毒性   总被引:2,自引:0,他引:2  
寻找能杀伤肿瘤细胞而对正常细胞无毒的抗癌药物极具挑战性。具有细胞毒性的植物或者真菌可能含有抗肿瘤的化合物。卤虫无节幼体的致死性可作为筛选抗肿瘤化合物的试验。本研究运用从不同农作物种子分离的8株镰刀菌(Fusarium solani)培养滤液来测试卤虫的细胞毒性效果。结果表明,5株菌株(TS、S-29、B-17、C-10和W-5)对卤虫显示高毒性;3株菌株(SR、T-9和L-25)显示低毒性,且毒性随着培养滤液的稀释而减弱。5株菌株(TS、B-17、SR、T-9和L-25)按照1∶10稀释能导致30%以上的死亡率。NaOH中和后的滤液毒性略微降低,表明培养滤液的pH值可能影响毒性。这些菌株冻干的滤液相对于未冻干的滤液毒性较低。只在3株温和毒性的菌株中得到正己烷可溶萃取物;氯仿可溶萃取物的量极微而不能作进一步处理。各菌株的毒性效果各不相同。从镰刀菌(F. solani)分离的化合物可开发为毒性化合物。  相似文献   

16.
Edible and medicinal mushrooms have usually been considered as a sustainable source of unique bioactive metabolites, which are valued as promising provisions for human health. Antrodia cinnamomea is a unique edible and medicinal fungus widespread in Taiwan, which has attracted much attention in recent years for its high value in both scientific research and commercial applications owing to its potent therapeutic effects, especially for its hepatic protection and anticancer activity. Due to the scarcity of the fruiting bodies, the cultivation of A. cinnamomea by submerged fermentation appears to be a promising substitute which possesses some unique advantages, such as short culture time period and its high feasibility for scale-up production. However, the amount of fungal bioactive metabolites derived from the cultured mycelia of A. cinnamomea grown by submerged fermentation is much less than those obtained from the wild fruiting bodies. Hence, there is an urgent need to bridge such a discrepancy on bioactive metabolites between the wild fruiting bodies and the cultured mycelia. The objective of this article is to review recent advances and the future development of the mycelial submerged fermentation of A. cinnamomea in terms of enhancement for the production of fungal bioactive components by the optimization of culture conditions and the regulation of fungal metabolism. This review provides valuable information for further biotechnological applications of A. cinnamomea as well as other mushrooms being the source of bioactive ingredients by submerged fermentation.  相似文献   

17.
The aim of this study was to assess the antibacterial and antifungal potential of some Romanian medicinal plants, arnica--Arnica montana, wormwood--Artemisia absinthium and nettle--Urtica dioica. In order to perform this antimicrobial screening, we obtained the vegetal extracts and we tested them on a series of Gram-positive and Gram-negative bacteria, and also against two fungal strains. The vegetal extracts showed antimicrobial activity preferentially directed against the planktonic fungal and bacterial growth, while the effect against biofilm formation and development was demonstrated only against S. aureus and C. albicans. Our in vitro assays indicate that the studied plant extracts are a significant source of natural alternatives to antimicrobial therapy, thus avoiding antibiotic therapy, the use of which has become excessive in recent years.  相似文献   

18.
Marine biofilms are a virtually untapped source of bioactive molecules that may find application as novel antifoulants in the marine paint industry. This study aimed at determining the potential of marine biofilm bacteria to produce novel biomolecules with potential application as natural antifoulants. Nine representative strains were isolated from a range of surfaces and were grown in YEB medium and harvested during the late exponential growth phase. Bacterial biomass and spent culture medium were extracted with ethanol and ethyl acetate, respectively. Extracts were assayed for their antifouling activity using two tests: (1) antimicrobial well diffusion test against a common fouling bacterium, Halomonas marina, and (2) anti-crustacean activity test using Artemia salina. Our results showed that none of the ethanolic extracts (bacterial biomass) were active in either test. In contrast, most of the organic extracts had antimicrobial activity (88%) and were toxic towards A. salina (67%). Sequencing of full 16 S ribosomal DNA analysis showed that the isolates were related to Bacillus mojavensis and Bacillus firmus. Matrix-assisted laser desorption ionization-time-of-flight mass spectrometry (MALDI-TOF-MS) profiling of ethyl acetate extracts of culture supernatants showed that these species produce the bioactive lipopeptides surfactin A, mycosubtilin and bacillomycin D.  相似文献   

19.
Diverse endophytic fungi exist within plant aerial tissues, with a global estimate of up to a million undescribed species. These endophytes constitute a rich bio-resource for exploration to discover new natural products. Here we investigate fungal endophytes associated with a medicinal plant, Nerium oleander L. (Apocynaceae). A total of 42 endophytic fungal strains were isolated from the host plant. Total antioxidant capacity, xanthine oxidase inhibitory activity, antimicrobial activity, and total phenolic content (TPC) were evaluated for 16 representative fungal cultures grown in improved Czapek’s broth and for the host plant. The total antioxidant capacities and phenolic contents of the fungal cultures ranged from 9.59 to 150.79 μmol trolox/100 mL culture, and from 0.52 to 13.95 mg gallic acid/100 mL culture, respectively. The fungal culture of an endophytic strain Chaetomium sp. showed the strongest antioxidant capacity, contained the highest level of phenolics, and to some extent inhibited xanthine oxidase activity with an IC50 value of 109.8 μg/mL. A significant positive correlation was found between antioxidant capacity and TPC in the tested samples. Most of the endophytic fungal cultures tested have a wide range of antimicrobial activities, which were not very strong, but much better than those of the host plant. The major bioactive constituents of the fungal cultures were investigated using LC-ESI-MS and GC-MS, and preliminary identification detected phenolics (e.g. phenolic acids and their derivatives, flavonoids) and volatile and aliphatic compounds. This study shows that the endophytic fungi isolated from N. oleander can be a potential antioxidant resource.  相似文献   

20.
The production of pimelic acid from azelaic acid by microorganisms was studied. About 100 strains of bacteria which were able to utilize azelaic acid as a sole carbon source were isolated from soil and other natural materials. Among these bacteria, several strains produced a large quantity of an organic acid (pimelic acid) from azelaic acid in their culture fluids during the cultivation. The acid was isolated from the culture fluid of strain A133 in crystalline form. The crystal was identified as pimelic acid by physicochemical and biological methods.

From the results of investigations on the morphological and physiological characters, the bacterial strain A133 was assumed to be Micrococcus sp.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号