首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effects of two dibenzocyclooctene lignans on peroxidative damage of aging and ischemic rat brain were studied. Incubation of eight-month-old rat brain mitochondria and membrane suspension with Fe(2+)-cysteine resulted in the formation of malondialdehyde (MDA) and decrease of ATPase activity. Schisanhenol (Sal) (10(-4) M) completely inhibited the peroxidative damages of brain mitochondria and membrane of rats. The swelling and disintegration of brain mitochondria, as well as the reduction of brain membrane fluidity induced by Fe(2+)-cysteine were also prevented by Sal. The results of imitative experiment of ischemia and reperfusion of brain mitochondria and membrane in vitro indicated that Sal significantly impeded production of MDA and loss of ATPase activity induced by reoxygenation following anoxia. Oral administration of Sal induced increase of cytosol glutathione-peroxidase of brain in mice under the condition of reoxygenation following anoxia. The other compound schizandrin (Sin B) also has similar activity. But its potency is weaker than that of Sal. All these results indicate that Sal and Sin B have protective action against oxidative stress.  相似文献   

2.
We have studied the scavenging effects of different structures and configurations of schizandrins isolated from Fructus Schizandrae, a traditional Chinese herb, on active oxygen radicals with the method of spin-trapping technique. The active oxygen radicals were produced from human polymorphonuclear leukocytes (PMN) stimulated with phorbol myristate acetate (PMA). In addition, the scavenging effects of schizandrins on hydroxyl radicals (.OH) in Fenton's reaction and the scavenging effects on superoxide anions (O2-.) in both riboflavin/EDTA and xanthine/xanthine oxidase systems have also been studied. They are compared with the scavenging effects of both Vitamin C (Vc) and Vitamin E (VE). The experimental results have shown that the scavenging effect of schizandrin B (Sin B) on the active oxygen radicals is stronger than that of S(-) Sin B and R(+) Sin B. For schizandrins of the same molecular structures with different stereoconfigurations the scavenging effects of S type of the benzene ring on active oxygen radicals are stronger than those of R type and for schizandrins of the same stereoconfigurations with different structures the scavenging effects of schizandrin C (Sin C) on the active oxygen radicals are stronger than those of Sin B.  相似文献   

3.
The healthy intact polymorphonuclear leukocytes (PMNs) were labeled with 4-maleimide-TEMPO spin labeling compound (MAL) to study the effects of oxygen radicals produced by phorbol myristate acetate (PMA)-stimulated PMNs on the conformation of sulfhydryl (SH) groups of PMN membrane proteins. The lipid peroxidation induced by PMA-stimulated PMNs was detected by evaluating the formation of malonaldehyde (MDA) with the thiobarbituric acid (TBA) test. From the experiments of luminol-dependent chemiluminescence (CL) and fluorometry, it was found that Chinese herbs schizandrin B (Sin B) and quercetin (Q) possessed scavenging properties for oxygen radicals produced during the PMN respiratory burst. These two herbs can also inhibit the conformation changes in SH binding sites on the PMN membrane proteins caused by oxygen radicals produced by the PMNs themselves. They also decreased the amount of MDA, which was a final product formed during lipid peroxidation.  相似文献   

4.
The present study investigates in a experimental system in vitro the relationship between the non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation in rat liver microsomes and nuclei. Chemiluminescence was measured as cpm/mg protein during 180 min at 37 degrees C. Approximately 50-55% of the fatty acids located in rat liver microsomes and nuclei are polyunsaturated with a prevalence of C18:2 n6 and C20:4 n6. The values of total light emission during the non-enzymatic and enzymatic lipid peroxidation were highest in microsomes than in nuclei. A significant decrease of C20:4 n6 and C22:6 n3 in rat liver microsomes and nuclei was observed during the lipid ascorbate-Fe2+-dependent peroxidation, whereas a significant decrease of C20:4 n6 in rat liver microsomes was observed during enzymatic lipid peroxidation. Over the time course studies, analysis of chemiluminescence in microsomes and nuclei demonstrated that the lipid peroxidation in the presence of ascorbate-Fe2+ reach a maximum at 50 and 30 min, respectively, whereas in the presence of NADPH it reachs a maximum at 20 min in both organelles. In liver microsomes and nuclei the peroxidizability index (pi) which indicates the degree of vulnerability to degradation of a selected membrane showed statistically significant differences between control versus ascorbate-Fe2+ when microsomes or nuclei were compared. Our results indicate that non-enzymatic (ascorbate-Fe2+) and enzymatic (NADPH) lipid peroxidation are operative in rat liver microsomes and nuclei but the sensitivities of both organelles to lipid peroxidation evidenced by chemiluminescence was greater in the presence of ascorbate-Fe2+ when compared with NADPH.  相似文献   

5.
NADPH-supported lipid peroxidation monitored by malondialdehyde (MDA) production in the presence of ferric pyrophosphate in liver microsomes was inactivated by heat treatment or by trypsin and the activity was not restored by the addition of purified NADPH-cytochrome P450 reductase (FPT). The activity was differentially solubilized by sodium cholate from microsomes, and the fraction solubilized between 0.4 and 1.2% sodium cholate was applied to a Sephadex G-150 column and subfractionated into three pools, A, B, and C. MDA production was reconstituted by the addition of microsomal lipids and FPT to specific fractions from the column, in the presence of ferric pyrophosphate and NADPH. Pool B, after removal of endogenous FPT, was highly active in catalyzing MDA production and the disappearance of arachidonate and docosahexaenoate, and this activity was abolished by heat treatment and trypsin digestion, but not by carbon monoxide. The rate of NADPH-supported lipid peroxidation in the reconstituted system containing fractions pooled from Sephadex G-150 columns was not related to the content of cytochrome P450. p-Bromophenylacylbromide, a phospholipase A2 inhibitor, inhibited NADPH-supported lipid peroxidation in both liver microsomes and the reconstituted system, but did not block the peroxidation of microsomal lipid promoted by iron-ascorbate or ABAP systems. Another phospholipase A2 inhibitor, mepacrine, poorly inhibited both microsomal and pool-B'-promoted lipid peroxidation, but did block both iron-ascorbate-driven and ABAP-promoted lipid peroxidation. The phospholipase A2 inhibitor chlorpromazine, which can serve as a free radical quencher, blocked lipid peroxidation in all systems. The data presented are consistent with the existence of a heat-labile protein-containing factor in liver microsomes which promotes lipid peroxidation and is not FPT, cytochrome P450, or phospholipase A2.  相似文献   

6.
Fructus Schizandrae, a traditional Chinese tonic, has been shown to lower the elevated serum glutamic pyruvic transaminase (SGPT) levels of patients with chronic viral hepatitis and several of its components decrease the hepatotoxicity of carbon tetrachloride (CCl4) in animals. This paper deals with the mechanism of protection against CCl4-hepatotoxicity of these compounds as well as of DDB, a synthetic analogue of Schizandrin (Sin) C. Of the seven components, Sin B and C, Schizandrol (Sol) B, Schizandrer (Ser) A and B, as well as dimethyl-4,4′-dimethoxy-5,6,5′,6′-dimethylenedioxy-biphenyl-2,2′-dicarboxylate (DDB) were shown to inhibit CCl4-induced lipid peroxidation and [14C]Cl4 covalent binding to lipids of liver microsomes from phenobarbital(PB)-treated mice. The compounds also decreased carbon monoxide (CO) production and cofactor (NADPH, oxygen) utilization during CCl4 metabolization by liver microsomes. It may be postulated, therefore, that the hepatoprotective effect of certain components isolated from Fructus Schizandrae as well as DDB is due to their inhibitory effect on CCl4-induced lipid peroxidation and the binding of CCl4-metabolites to lipids of liver microsomes.  相似文献   

7.
Effect of thiols on lipid peroxidation in rat liver microsomes   总被引:1,自引:0,他引:1  
The stimulatory or inhibitory effects of various thiol compounds on in vitro lipid peroxidation by iron-ascorbate in rat liver microsomes were determined. Glutathione had no measurable pro-oxidant capacity, in contrast, it protected against lipid peroxidation. N-Acetyl l-cysteine and S-methyl-glutathione had no effect on in vitro lipid peroxidation. l-Cysteine stimulated lipid peroxidation and also of d-penicillamine and dl-dithiothreitol the pre-oxidant capacity predominated the anti-oxidant capacity. Cysteamine afforded a pronounced protection against in vitro lipid peroxidation. In contrast to the labile character of the glutathione dependent protection, the protection by cysteamine was not affected by heat-pretreatment of the liver microsomes or alkylating protein sulfhydryl groups by N-ethyl maleimide. Again in contrast to glutathione, the protection against in vitro microsomal lipid peroxidation by cysteamine was not reduced after in vivo lipid peroxidation induced by CC14. This suggests that even after the process of lipid peroxidation has been started, administration of cysteamine might still be beneficial.  相似文献   

8.
A reconstituted lipid peroxidation system consisting of rat liver microsomal NADPH-cytochrome P450 reductase and cytochrome P450 incorporated into phospholipid vesicles was developed and characterized. Peroxidation of the vesicles required NADPH and ADP-Fe3+, just as in the NADPH-dependent peroxidation of microsomes. The peroxidation of the vesicles was inhibited 30-50% by superoxide dismutase, depending upon their cytochrome P450 content: those with higher cytochrome P450 contents exhibited greater rates of malondialdehyde formation which were less sensitive to inhibition by superoxide dismutase. When cytochrome P450 was incorporated into vesicles, EDTA-Fe3+ was not required for lipid peroxidation, distinguishing this system from the one previously described by Pederson and Aust [Biochem. Biophys. Res. Comm. 48, 789; 1972]. Since at least 50% of the malondialdehyde formation in the vesicular system was not inhibited by superoxide dismutase, alternative means of iron reduction (O2-.-independent) were examined. It was found that rat liver microsomes or a reconstituted mixed function oxidase system consisting of NADPH-cytochrome P450 reductase and cytochrome P450 in dilauroylphosphatidylcholine micelles reduced ADP-Fe3+ under anaerobic conditions.  相似文献   

9.
Studies were carried out to determine the level of ascorbate-Fe2+ dependent lipid peroxidation of mitochondria and microsomes isolated from liver and heart of rat and pigeon. Measurements of chemiluminescence indicate that the lipid peroxidation process was more effective in mitochondria and microsomes from rat liver than in the same organelles obtained from pigeon. In both mitochondria and microsomes from liver of both species a significant decrease of arachidonic acid was observed during peroxidation. The rate C18:2 n6/C20:4 n6 was 4.5 times higher in pigeon than in rat liver. This observation can explain the differences noted when light emission and unsaturation index of both species were analysed. A significant decrease of C18:2 n6 and C20:4 n6 in pigeon liver mitochondria was observed when compared with native organelles whereas in pigeon liver microsomes only C20:4 n6 diminished. In rat liver mitochondria only arachidonic acid C20:4 n6 showed a significant decrease whereas in rat liver microsomes C20:4 n6 and C22:6 n3 decreased significantly. However changes were not observed in the fatty acid profile of mitochondria and microsomes isolated from pigeon heart. In the heart under our peroxidation conditions the fatty acid profile does not appear to be responsible for the different susceptibility to the lipid peroxidation process. The lack of a relationship between fatty acid unsaturation and sensitivity to peroxidation observed in heart suggest that other factor/s may be involved in the protection to lipid peroxidation in microsomes and mitochondria isolated from heart.  相似文献   

10.
1. The effect of chronic ethanol consumption on the level of the t-butyl hydroperoxide (Bu'OOH)-induced lipid peroxidation in rat liver homogenate and subcellular fractions was measured using chemiluminescence technique and malondialdehyde formation. 2. It was shown that under the action of ethanol the rate of lipid peroxidation was decreased in the whole and "postnuclear" liver homogenates. 3. Ethanol significantly decreased the intensity of lipid peroxidation in microsomes, but did not affect the Bu'OOH-dependent process in mitochondria. 4. The level of lipid peroxidation was reduced after incubation of the total particulate fraction (mitochondria plus microsomes) with the undialysed cytosol from ethanol-treated rat liver. Dialysis of the cytosol prevented depressive effect of ethanol treatment on lipid peroxidation. 5. Reduced glutathione (0.1-1.0 mM) was shown to decrease the rate of lipid peroxidation in rat liver microsomes, but did not affect its level in mitochondria. 6. Pyrazole injections to rats reduced and phenobarbital treatment increased the level of the Bu'OOH-dependent lipid peroxidation in liver microsomes. 7. The data obtained indicate that the Bu'OOH-dependent lipid peroxidation is not an appropriate marker of the ethanol-induced oxidative stress in rat liver cells.  相似文献   

11.
Rat and rabbit liver microsomes catalyze an NADPH-cytochrome P-450 reductase-dependent peroxidation of endogenous lipid in the presence of the chelate, ADP-Fe3+. Although liver microsomes from both species contain comparable levels of NADPH-cytochrome P-450 reductase and cytochrome P-450, the rate of lipid peroxidation (assayed by malondialdehyde and lipid hydroperoxide formation) catalyzed by rabbit liver microsomes is only about 40% of that catalyzed by rat liver microsomes. Microsomal lipid peroxidation was reconstituted with liposomes made from extracted microsomal lipid and purified protease-solubilized NADPH-cytochrome P-450 reductase from both rat and rabbit liver microsomes. The results demonstrated that the lower rates of lipid peroxidation catalyzed by rabbit liver microsomes could not be attributed to the specific activity of the reductase. Microsomal lipid from rabbit liver was found to be much less susceptible to lipid peroxidation. This was due to the lower polyunsaturated fatty acid content rather than the presence of antioxidants in rabbit liver microsomal lipid. Gas-liquid chromatographic analysis of fatty acids lost during microsomal lipid peroxidation revealed that the degree of fatty acid unsaturation correlated well with rates of lipid peroxidation.  相似文献   

12.
Protein-A (PA) is a cell-surface glycoprotein of S. aureus Cowan I with immunomodulatory and anti-tumor activities, and ability to ameliorate cyclophosphamide and carbontetrachloride (CCl4) induced toxicity in rodents. The likely mechanism of this effect appears to be the anti-oxidant property of PA, evidenced in the present study by inhibition of CCl4 and Fe2-ascorbate induced lipid peroxidation in rat liver homogenates and inhibition of deaminative-oxidative degradation of L-glutamate into 2-thiobarbituric acid reactive products in a constituted chemical system. The anti-oxidant property of PA seem to arise from its molecular characteristics and the ability to interact with a superoxide derived free-radical species without any affinity for superoxide anion, hydroxyl radical and singlet oxygen species.  相似文献   

13.
The effect of normal rat liver cytosol on the level of Fe/ADP-ascorbate-induced lipid peroxidation in the total particulate fraction (mitochondria plus microsomes) has been studied. The intensity of lipid peroxidation was measured using the chemiluminescence technique and by malonic dialdehyde (MDA) production. Dialyzed cytosol significantly decreased the level of chemiluminescence and, to a much lesser extent, the rate of MDA production. Gel filtration on a Sephadex G-200 column led to the appearance of at least three cytosolic fractions which suppressed the low-level chemiluminescence. These fractions differed from one another by their molecular masses, kinetics of chemiluminescence inhibition and effects on the intensity of MDA production. The putative functional role of antioxidative defence factors from rat liver cytosol is discussed.  相似文献   

14.
Diazinon is one of the most widely used organophosphate insecticides (OPIs) in agriculture and public health programs. Reactive oxygen species (ROS) caused by OPIs may be involved in the toxicity of various pesticides. The aim of this study was to investigate how diazinon affects lipid peroxidation (LPO) and the antioxidant defense system in vivo and the possible ameliorating role of vitamins E and C. For this purpose, experiments were done to study the effects of DI on LPO and the activities of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase (CAT) in adult rat heart. Experimental groups were: (1) control group, (2) diazinon treated (DI) group, (3) DI+vitamins E and C-treated (DI+Vit) group. The levels of malondialdehyde (MDA) and the activities of SOD and CAT increased significantly in the DI group compared with the control group. The activity of SOD and the levels of MDA decreased significantly in the DI+Vit group compared with the DI group. The differences between the DI+Vit and control groups according to the MDA levels and the activities of both SOD and CAT were statistically significant. These results suggest that treating rats with a single dose of diazinon increases LPO and some antioxidant enzyme activities in the rat myocardium and, in addition, that single-dose treatment with a combination of vitamins E and C after the administration of diazinon can reduce LPO caused by diazinon, though this treatment was not sufficiently effective to reduce the values to those in control group.  相似文献   

15.
以料液比、超声时间、超声温度和静置时间为考察因素进行单因素试验和正交试验确定芝麻木脂素的最佳提取条件。通过改良邻苯三酚自氧化法测定芝麻木脂素清除O-2·能力来研究芝麻木脂素的抗氧化活性;用H2O2-Fe2+体系诱导线粒体脂质过氧化,测定芝麻木脂素对丙二醛(MDA)含量的影响。结果表明:芝麻木脂素最佳提取条件为料液比1∶12(g/mL),超声温度55℃,超声时间30 min,静置时间2 h,超声波辅助法提取芝麻渣中芝麻木脂素的提取量最高达到0.120 g(以100 g芝麻渣计)。芝麻渣提取物能有效清除O-2·,具有良好的抑制脂质过氧化的作用。  相似文献   

16.
The effect of intraperitoneal administration of alpha-tocopherol (100 mg/kg wt/24 h) on ascorbate (0.4 mM) induced lipid peroxidation of mitochondria and microsomes isolated from rat liver and testis was studied. Special attention was paid to the changes produced on the highly polyunsaturated fatty acids C20:4 n6 and C22:6 n3 in liver and C20:4 n6 and C22:5 n6 in testis. The lipid peroxidation of liver mitochondria or microsomes produced a significant decrease of C20:4 n6 and C22:6 n3 in the control group, whereas changes in the fatty acid composition of the alpha-tocopherol treated group were not observed. The light emission was significantly higher in the control than in the alpha-tocopherol treated group. The lipid peroxidation of testis microsomes isolated from the alpha-tocopherol group produced a significant decrease of C20:4 n6 , C22:5 n6 and C22:6 n3, these changes were not observed in testis mitochondria. The light emission of both groups was similar. The treatment with alpha-tocopherol at the dose and times indicated showed a protector effect on the polyunsaturated fatty acids of liver mitochondria, microsomes and testis mitochondria, whereas those fatty acids situated in testis microsomes were not protected during non enzymatic ascorbate-Fe2+ lipid peroxidation. The protector effect observed by alpha-tocopherol treatment in the fatty acid composition of rat testis mitochondria but not in microsomes could be explained if we consider that the sum of C20:4 n6 + C22:5 n6 in testis microsomes is 2-fold than that present in mitochondria.  相似文献   

17.
应用辣根过氧化物-鲁米诺-过硼酸钠-对碘酚增强化学发光体系测量了四种抗氧化剂清除苯氧自由基的能力,并与其清除超氧阴离子和抗鼠肝微粒体脂质过氧化的能力相比较,结果表明,这四种抗氧化剂在不同系统中都有明显的抗氧化能力,抗氧化剂清除苯氧自由基比清除超氧阴离子的能力更接近于抗鼠肝微粒体脂质过氧化的能力,从而提示增强化学发光法在测定抗氧化剂的抗氧化能力上有良好的应用前景。  相似文献   

18.
A purified preparation of rat liver microsomal NADPH-cytochrome c reductase has been shown to catalyze the NADPH-dependent peroxidation of isolated microsomal lipid. In addition to ADP and ferric ion required for NADPH-dependent lipid peroxidation in whole microsomes, this system requires high ionic strength and a critical concentration of EDTA. The peroxidation activity can be inhibited by superoxide dismutase suggesting that the superoxide anion, produced by this flavoprotein, is involved in the lipid peroxidation reaction.  相似文献   

19.
1. The effect of normal rat liver cytosol on the level of Fe/ADP-ascorbate-induced lipid peroxidation in the total particulate fraction (mitochondria plus microsomes) has been studied. The intensity of lipid peroxidation was measured using chemiluminescence technique and malondialdehyde (MDA) formation. 2. Dialysed cytosol significantly decreased the level of chemiluminescence, and to a much lesser extent, the rate of MDA production. 3. Gel filtration on a Sephadex G-200 column led to appearance of at least three cytosolic fractions which suppressed the low-level chemiluminescence. 4. The discovered components differed from each other by their molecular masses, kinetics of chemiluminescence inhibition and effects on intensity of MDA formation. 5. The putative functional role of antioxidative defence factors from rat liver cytosol is discussed.  相似文献   

20.
The oxidative effects were investigated of exhausting exercise in smokers, and the possible protective role of 400 mg day(-1) vitamin E (Vit E) supplementation over a period of 28 days. The subjects exercised to exhaustion including concentric-eccentric contractions following maximal cycling. The haematocrit and haemoglobin, leucocyte (WBC), plasma lactic acid (La) and malondialdehyde (MDA), erythrocyte superoxide dismutase (SOD) and glutathione peroxidase (GPx), serum Vit E and ceruloplasmin (CER) concentrations were measured pre and post exercise. Supplementation increased Vit E concentrations 28% and 31% in the controls and the smokers, respectively. Cigarette smoking and/or Vit E supplementation did not influence plasma lipid peroxidation or the antioxidant status at rest. Exercise caused significant haemoconcentration in all groups. When the post-exercise concentrations were adjusted for haemoconcentration, a significant elevation in La concentrations due to exercise was observed in all groups. Similarly, there were significant elevations in the adjusted WBC counts in all groups except the Vit E supplemented controls. The MDA concentrations on the other hand, when adjusted for haemoconcentration, did not exhibit any difference due to exercise. Exercise did not affect the GPx and CER activities either, while causing a SOD activity loss in all groups except the Vit E supplemented non-smokers. Serum Vit E concentrations diminished significantly in all groups after exercise. Post-exercise plasma MDA and blood antioxidant concentrations were not altered by smoking. The results would suggest that plasma volume changes should always be taken into account when assessing post-exercise plasma concentrations and that smoking and exercise do not have an additional collective effect on plasma lipid peroxidation and the dose of Vit E administered was insufficient to maintain the serum concentrations after exercise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号