首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An ultrafiltration fraction of MW > 100,000 separated from the original medium in which bone marrow had been suspended (supernatant) stimulated incorporation of [3H]thymidine by marrow in vitro and was designated marrow regulating factor (MRF). The administration of MRF to F1 hybrid mice transplanted with parental bone marrow resulted in lasting chimerism of the surviving mice. A few of the hybrids receiving parental marrow but no MRF survived: however, none were chimeric. Administration of MRF after irradiation in C57BL/ 6 mice transplanted with bone marrow from DBA/2 and BALB/c donors resulted in endogenous reconstitution. However, administration of MRF before (preconditioning) and again after irradiation resulted in survival of the majority of mice. These C57BL/6 mice were chimeras of DBA/2 or BALB/c marrow but showed no sign of secondary disease. Thus the use of MRF abrogates resistance to and promotes engraftment of foreign marrow and enduring chimerism when the recipients (F1 hybrids) appear to be nonreactive to the donor (parental marrow) and also when alloreactivity is bidirectional (allogeneic combinations).  相似文献   

2.
Creation of stable hemopoietic chimerism has been considered to be a prerequisite for allograft tolerance after bone marrow transplantation (BMT). In this study, we demonstrated that allogeneic BMT with bone marrow cells (BMC) prepared from either knockout mice deficient in both CD4 and CD8 T cells or CD3E-transgenic mice lacking both T cells and NK cells maintained a high degree of chimerism, but failed to induce tolerance to donor-specific wild-type skin grafts. Lymphocytes from mice reconstituted with T cell-deficient BMC proliferated when they were injected into irradiated donor strain mice, whereas lymphocytes from mice reconstituted with wild-type BMC were unresponsive to donor alloantigens. Donor-specific allograft tolerance was restored when donor-type T cells were adoptively transferred to recipient mice given T cell-deficient BMC. These results show that donor T cell engraftment is required for induction of allograft tolerance, but not for creation of continuous hemopoietic chimerism after allogeneic BMT, and that a high degree of chimerism is not necessarily associated with specific allograft tolerance.  相似文献   

3.
A method for transplantation of allogeneic bone marrow has been developed and tested in mice. It consists of a treatment preceding supralethal, total-body irradiation (preconditioning) in which a combination of three drugs acting on neuroendocrine regulation are administered, followed by inoculation of a large number of allogeneic bone marrow cells. A second inoculation of allogeneic marrow from the same immunogenetically different donor is given after irradiation. This system provides a high level of protection to mice against radiation damage and facilitates engraftment of the foreign marrow. A large proportion of the engrafted mice become enduring chimeras, manifesting no secondary disease.  相似文献   

4.
Tolerance-based stem cell transplantation using sublethal conditioning is being considered for the treatment of human disease, but safety and efficacy remain to be established. We have shown that mouse bone marrow recipients treated with sublethal irradiation plus transient blockade of the CD40-CD154 costimulatory pathway develop permanent hematopoietic chimerism across allogeneic barriers. We now report that infection with lymphocytic choriomeningitis virus at the time of transplantation prevented engraftment of allogeneic, but not syngeneic, bone marrow in similarly treated mice. Infected allograft recipients also failed to clear the virus and died. Postmortem study revealed hypoplastic bone marrow and spleens. The cause of death was virus-induced IFN-alphabeta. The rejection of allogeneic bone marrow was mediated by a radioresistant CD8(+)TCR-alphabeta(+)NK1.1(-) T cell population. We conclude that a noncytopathic viral infection at the time of transplantation can prevent engraftment of allogeneic bone marrow and result in the death of sublethally irradiated mice treated with costimulation blockade. Clinical application of stem cell transplantation protocols based on costimulation blockade and tolerance induction may require patient isolation to facilitate the procedure and to protect recipients.  相似文献   

5.
Purified NK cells were obtained from mice with severe combined immune deficiency and were activated with human IL-2 (hrIL-2) in vitro to determine if, once activated, these cells could be transferred with compatible bone marrow cells (BMC) and promote marrow engraftment in irradiated allogeneic recipients. After culture with hrIL-2, these cells maintained a phenotypic and lytic spectrum consistent with a pure population of activated NK cells. These activated NK cells were then adoptively transferred with the donor BMC and rhIL-2 into lethally irradiated allogeneic hosts. The addition of NK cells with the BMC allowed for more rapid hematopoietic engraftment as determined through short term studies, and greater donor-derived chimerism with accelerated reconstitution of the B cell population as determined with long term analysis. No evidence of graft-vs-host disease was detected in the recipients receiving the activated NK cells with allogeneic T cell replete BMC and hrIL-2. The mechanism by which the transferred NK cells improved BMC engraftment was at least partly through the abrogation of the host effector cell's ability to mediate resistance to the marrow graft. Thus, the administration of donor-type activated NK cells with BMC and hrIL-2 may significantly augment hematopoietic engraftment and immune reconstitution in the clinical setting of allogeneic BMT without giving rise to graft-vs-host disease.  相似文献   

6.
Lethally irradiated mice were infused with syngeneic, H-2 allogeneic, parental strain, or H-2 heterozygous bone marrow cells. They were injected daily with rabbit anti-mouse interferons (IFN)-alpha/beta or gamma or with IFN-alpha/beta. The growth of donor-derived cells was judged 5 days later by measuring splenic incorporation of 5-iodo-2'-deoxyuridine-125I into DNA. Antibodies to IFN-alpha/beta, but not to IFN-gamma, weakened genetic (both hybrid and allogeneic) resistance to marrow cell grafts. IFN-alpha/beta stimulated hybrid and allogeneic resistance, the latter even in genetically "poor responder" mice. Mice pretreated with silica, which weakens genetic resistance, were stimulated by IFN-alpha/beta to resist incompatible marrow cell grafts; however, IFN-alpha/beta failed to reverse the effects of antiasialo GM1 serum on marrow graft rejection. IFN-alpha/beta did not inhibit the growth of syngeneic marrow cells and did not stimulate resistance to H-2 heterozygous bone marrow cells. We propose that genetic resistance occurs in two discrete steps. In the first step, hemopoietic histocompatibility (Hh) antigens are recognized by one host cell type, and this recognition leads to IFN-alpha/beta secretion by a silica-sensitive cell. In the second step, asialo GM1-positive natural killer cells stimulated by IFN-alpha/beta recognize Hh antigens on marrow stem cells and cause rejection. The defects in resistance observed in genetically poor responder mice and in mice treated with silica appear to involve the first step in recognition. The lack of rejection of H-2 heterozygous (Hh-) marrow cells by parental strain mice injected with IFN-alpha/beta indicated that specific Hh recognition is critical in the second step of genetic resistance.  相似文献   

7.
H Heit  W Heit  E Kohne  T M Fliedner  P Hughes 《Blut》1977,35(2):143-153
In the present communication the beneficial effect of long term antimicrobial treatment with poorly absorbable antiboitics on the survival of allogeneic bone marrow chimeras was investigated. The combination of C57Bl mice as bone marrow donors and CBA/CA mice as irradiated recipients (800 rad) was used because of their strong histoincompatibility on the H-2 loci. All allografted recipients received 10 X 10(6) bone marrow cells. The majority of the recipients, which were rendered gnotobiotic by an antimicrobial treatment, achieved stable long term chimerism. In contrast, the conventional chimeras died from secondary disease within 9 weeks after transplantation. As early as 14 days after allogeneic bone marrow grafting the gnotobiotic recipients tolerated the reassociation with a conventional microflora without a change in the rate of mortality. Bone marrow cells (8 X 10(6) i.v.) and spleen cells (2 X 10(6) i.v.) collected from allogeneic chimeras failed to induce graft-versus-host-reaction (GVH) in a second lethally irradiated host. The data indicate, that the high rate of mortality in murine allogeneic bone marrow chimeras results from delayed GVH-reaction and systemic infection. The marrow graft, once established seems to exert tolerance against the allogeneic host. The pathogenesis of the systemic infection has not yet been worked out. It is assumed that it originates from bacteremia, induced by radiation dependent lesions of the epithelial integrity and defected lymphatic tissue in the gut.  相似文献   

8.
Costimulatory blockade can be used to promote allogeneic marrow engraftment and tolerance induction, but on its own is not 100% reliable. We sought to determine whether one or the other of the CD4 or CD8 T cell subsets of the recipient was primarily responsible for resistance to allogeneic marrow engraftment in mice receiving costimulatory blockade, and to use this information to develop a more reliable, minimal conditioning regimen for induction of mixed chimerism and transplantation tolerance. We demonstrate that a single anti-CD40 ligand mAb treatment is sufficient to completely overcome CD4 cell-mediated resistance to allogeneic marrow engraftment and rapidly induce CD4 cell tolerance, but does not reliably overcome CD8 CTL-mediated alloresistance. The data suggest that costimulation, which activates alloreactive CTL, is insufficient to activate alloreactive CD4 cells when the CD40 pathway is blocked. The addition of host CD8 T cell depletion to anti-CD40 ligand treatment reliably allows the induction of mixed chimerism and donor-specific skin graft tolerance in 3 Gy-irradiated mice receiving fully MHC-mismatched bone marrow grafts. Thus, despite the existence of multiple costimulatory pathways and pathways of APC activation, our studies demonstrate an absolute dependence on CD40-mediated events for CD4 cell-mediated rejection of allogeneic marrow. Exposure to donor bone marrow allows rapid tolerization of alloreactive CD4 cells when the CD40 pathway is blocked, leading to permanent marrow engraftment and intrathymic tolerization of T cells that develop subsequently.  相似文献   

9.
Induction of molecular chimerism following reconstitution of mice with autologous bone marrow cells expressing a retrovirally encoded allogeneic MHC class I Ag results in donor-specific tolerance. To investigate the mechanism by which CD4 T cells that recognize allogeneic MHC class I through the indirect pathway of Ag presentation are rendered tolerant in molecular chimeras, transgenic mice expressing a TCR on CD4 T cells specific for peptides derived from K(b) were used. CD4 T cells expressing the transgenic TCR were detected in mice reconstituted with bone marrow cells transduced with retroviruses carrying the gene encoding H-2K(b), albeit detection was at lower levels than in mice receiving mock-transduced bone marrow. Despite the presence of CD4 T cells expressing an alloreactive TCR, mice receiving H-2K(b)-transduced bone marrow permanently accepted K(b) disparate skin grafts. CD4+CD25+ T cells from mice reconstituted with H-2K(b)-transduced bone marrow prevented rejection of K(b) disparate skin grafts when adoptively transferred into immunodeficient mice along with effector T cells, suggesting that induction of molecular chimerism leads to the generation of donor specific regulatory T cells, which may be involved in preventing alloreactive CD4 T cell responses that lead to rejection.  相似文献   

10.

Background

Non adherent bone marrow derived cells (NA-BMCs) have recently been described to give rise to multiple mesenchymal phenotypes and have an impact in tissue regeneration. Therefore, the effects of murine bone marrow derived NA-BMCs were investigated with regard to engraftment capacities in allogeneic and syngeneic stem cell transplantation using transgenic, human CD4+, murine CD4−/−, HLA-DR3+ mice.

Methodology/Principal Findings

Bone marrow cells were harvested from C57Bl/6 and Balb/c wild-type mice, expanded to NA-BMCs for 4 days and characterized by flow cytometry before transplantation in lethally irradiated recipient mice. Chimerism was detected using flow cytometry for MHC-I (H-2D[b], H-2K[d]), mu/huCD4, and huHLA-DR3). Culturing of bone marrow cells in a dexamethasone containing DMEM medium induced expansion of non adherent cells expressing CD11b, CD45, and CD90. Analysis of the CD45+ showed depletion of CD4+, CD8+, CD19+, and CD117+ cells. Expanded syngeneic and allogeneic NA-BMCs were transplanted into triple transgenic mice. Syngeneic NA-BMCs protected 83% of mice from death (n = 8, CD4+ donor chimerism of 5.8±2.4% [day 40], P<.001). Allogeneic NA-BMCs preserved 62.5% (n = 8) of mice from death without detectable hematopoietic donor chimerism. Transplantation of syngeneic bone marrow cells preserved 100%, transplantation of allogeneic bone marrow cells 33% of mice from death.

Conclusions/Significance

NA-BMCs triggered endogenous hematopoiesis and induced faster recovery compared to bone marrow controls. These findings may be of relevance in the refinement of strategies in the treatment of hematological malignancies.  相似文献   

11.
Historically, conditioning for engraftment of hematopoietic stem cells has been nonspecific. In the present study, we characterized which cells in the recipient hematopoietic microenvironment prevent allogeneic marrow engraftment. Mice defective in production of alphabeta-TCR(+), gammadelta-TCR(+), alphabeta- plus gammadelta-TCR(+), CD8(+), or CD4(+) cells were transplanted with MHC-disparate allogeneic bone marrow. Conditioning with 500 cGy total body irradiation (TBI) plus a single dose of cyclophosphamide (CyP) on day +2 establishes chimerism in normal recipients. When mice were conditioned with 300 cGy TBI plus a single dose of CyP on day +2, all engrafted, except wild-type controls and those defective in production of CD4(+) T cells. Mice lacking both alphabeta- and gammadelta-TCR(+) cells engrafted without conditioning, suggesting that both alphabeta- and gammadelta-TCR T cells in the host play critical and nonredundant roles in preventing engraftment of allogeneic bone marrow. CD8 knockout (KO) mice engrafted without TBI, but only if they received CyP on day +2 relative to the marrow infusion, showing that a CD8(-) cell was targeted by the CyP conditioning. The CD8(+) cell effector function is mechanistically different from that for conventional T cells, and independent of CD4(+) T helper cells because CD4 KO mice require substantially higher levels of conditioning than the other KO phenotypes. These results suggest that a number of cell populations with different mechanisms of action mediate resistance to engraftment of allogeneic marrow. Targeting of specific recipient cellular populations may permit conditioning approaches to allow mixed chimerism with minimal morbidity and could potentially avoid the requirement for myelotoxic agents altogether.  相似文献   

12.
Reconstitution of lethally irradiated mice with a mixture of T cell-depleted syngeneic plus T cell-depleted allogeneic bone marrow (B10 + B10.D2----B10) leads to the induction of mixed lymphopoietic chimerism, excellent survivals, specific in vivo transplantation tolerance to subsequent donor strain skin grafts, and specific in vitro unresponsiveness to allogeneic donor lymphoid elements as assessed by mixed lymphocyte reaction (MLR) proliferative and cell-mediated lympholysis (CML) cytotoxicity assays. When B10 recipient mice received mixed marrow inocula in which the syngeneic component had not been T cell depleted, whether or not the allogeneic donor marrow was treated, they repopulated exclusively with host-type cells, promptly rejected donor-type skin allografts, and were reactive in vitro to the allogeneic donor by CML and MLR assays. In contrast, T cell depletion of the syngeneic component of the mixed marrow inocula resulted in specific acceptance of allogeneic donor strain skin grafts, whether or not the allogeneic bone marrow was T cell depleted. Such animals were specifically unreactive to allogeneic donor lymphoid elements in vitro by CML and MLR, but were reactive to third party. When both the syngeneic and allogeneic marrow were T cell depleted, variable percentages of host- and donor-type lymphoid elements were detected in the mixed reconstituted host. When only the syngeneic bone marrow was T cell depleted, animals repopulated exclusively with donor-type cells. Although these animals had detectable in vitro anti-host (B10) reactivity by CML and MLR and reconstituted as fully allogeneic chimeras, they exhibited excellent survival and had no in vivo evidence for graft-vs-host disease. In addition, experiments in which untreated donor spleen cells were added to the inocula in this last group suggest that the presence of T cell-depleted syngeneic bone marrow cells diminishes graft-vs-host disease and the mortality from it. This system may be helpful as a model for the study of alloresistance and for the identification of syngeneic cell phenotypes, which when present prevent engraftment of allogeneic marrow.  相似文献   

13.
Allogeneic chimeras are valuable tools for studies of complex immune cell interactions in vivo. Mice with severe combined immune deficiency (scid) should be ideal hosts for chimerism with allogeneic bone marrow cells as these animals lack mature T and B lymphocytes capable of reacting against donor alloantigens. However, it has been difficult to achieve full reconstitution of adult scid mice even using coisogenic bone marrow grafts without prior irradiation of the recipient. We explored ways to generate complete reconstitution of scid mice with allogeneic bone marrow. Unirradiated adult scid recipients of allogeneic bone marrow were only marginally reconstituted. Adult scid mice pretreated with 250 R were reconstituted with allogeneic bone marrow as measured by serum IgM concentration, peripheral lymphoid cellularity, and mitogen responses, but a potentially important immunologic deficit was found in these mice: 250 R caused a 70% loss of scid macrophages and dendritic cells which persisted at least 5 months. By contrast, when scid mice were injected i.p. with allogeneic bone marrow within the first 24 h after birth, rapid and complete reconstitution of both T and B cell lineages was achieved, and the animals had APC that were both donor and host in origin. Considering the extent and duration of engraftment (43 wk) by allogeneic cells in neonatally transplanted scid mice, it was anticipated that their bone marrow would be chimeric. However, the bone marrow contained very few donor-derived cells, suggesting that lymphopoiesis may be taking place in other organs in these chimeras.  相似文献   

14.
Regulatory CD4(+) CD25(+) FoxP3(+) T cells (T(regs) ) suppress immunological reactions. However, the effect of adding T(regs) to hematopoietic stem cell grafts on recovery and graft versus host disease (GvHD) is unknown. T(regs) from splenocytes of C57Bl/6 and Balb/c wild-type mice were isolated by MACS separation and analyzed by flow cytometry. Using a murine syngeneic transplantation model that clearly distinguishes between donor and host hematopoiesis, we showed that co-transplantation of bone marrow cells (BMCs) with high levels of T(regs) leads to a 100% survival of the mice and accelerates the hematopoietic recovery significantly (full donor chimerism). In allogeneic transplantation, bone marrow and T(regs) co-transplantation were compared to allogeneic bone marrow transplantation with or without the addition of splenocytes. Survival, leukocyte recovery, chimerism at days -2, 19, 33, and 61 for murine CD4, human CD4, HLA-DR3, murine CD3, murine CD8, murine Balb/c-H2K(d) , murine C57Bl/6-H2K(b) , and GvHD appearance were analyzed. Allogeneic bone marrow transplantation requires the addition of splenocytes to reach engraftment. Mice receiving grafts with bone marrow, splenocytes and high levels of allogeneic T(regs) died within 28 days (hematopoietic failure). Here, we show also detailed flow cytometric data reagarding analysis of chimerism after transplantation in unique murine hematopoietic stem cell transplantation models. Our findings showed that the syngeneic co-transplantation of CD4(+) , CD25(+) , FoxP3(+) T-cells and BMCs induced a stimulating effect on reconstitution of hematopoiesis after irradiation. However, in the allogeneic setting the co-transplantation of T(regs) aggravates the engraftment of transplanted cells.  相似文献   

15.
The association of preformed anti-donor Abs with the hyperacute rejection of bone marrow and solid organ allografts and the persistence of the anti-donor immune response secondary to immunologic memory make allosensitization an absolute contraindication to transplantation. Mixed allogeneic (A + B-->A) bone marrow chimerism has been demonstrated to confer donor-specific tolerance in nonsensitized recipients, but has not been evaluated in the setting of allosensitization. The current study documents that despite significant anti-donor sensitization, mixed allogeneic engraftment is possible and provides a marked advantage over fully allogeneic (B-->A) models. Moreover, the acceptance of donor skin grafts and loss of circulating anti-donor Abs suggest that allosensitization can be abrogated with the induction of stable mixed allogeneic chimerism.  相似文献   

16.
The opposing problems of graft-vs-host disease (GVHD) and failure of alloengraftment present major obstacles to the application of bone marrow transplantation (BMT) across complete MHC barriers. The addition of syngeneic T-cell-depleted (TCD) bone marrow (BM) to untreated fully allogeneic marrow inocula in lethally irradiated mice has been previously shown to provide protection from GVHD. We have used this model to study the effects of allogeneic T cells on levels of chimerism in recipients of mixed marrow inocula. The results indicate that T cells in allogeneic BM inocula eliminate both coadministered recipient-strain and radioresistant host hematopoietic elements to produce complete allogeneic chimerism without clinical GVHD. To determine the role of GVH reactivity in this phenomenon, we performed similar studies in an F1 into parent combination, in which the genetic potential for GVHD is lacking. The presence of T cells in F1 marrow inocula led to predominant repopulation with F1 lymphocytes in such chimeras, even when coadministered with TCD-recipient-strain BM. These results imply that the ability of allogeneic BM cells removed by T cell depletion to increase levels of allochimerism may be mediated by a population which is distinct from that which produces GVHD. These results may have implications for clinical BM transplantation.  相似文献   

17.
Elimination of porcine hemopoietic cells by macrophages in mice.   总被引:2,自引:0,他引:2  
The difficulty in achieving donor hemopoietic engraftment across highly disparate xenogeneic species barriers poses a major obstacle to exploring xenograft tolerance induction by mixed chimerism. In this study, we observed that macrophages mediate strong rejection of porcine hemopoietic cells in mice. Depletion of macrophages with medronate-encapsulated liposomes (M-liposomes) markedly improved porcine chimerism, and early chimerism in particular, in sublethally irradiated immunodeficient and lethally irradiated immunocompetent mice. Although porcine chimerism in the peripheral blood and spleen of M-liposome-treated mice rapidly declined after macrophages had recovered and became indistinguishable from controls by wk 5 post-transplant, the levels of chimerism in the marrow of these mice remained higher than those in control recipients at 8 wks after transplant. These results suggest that macrophages that developed in the presence of porcine chimerism were not adapted to the porcine donor and that marrow-resident macrophages did not phagocytose porcine cells. Moreover, M-liposome treatment had no effect on the survival of porcine PBMC injected into the recipient peritoneal cavity, but was essential for the migration and relocation of these cells into other tissues/organs, such as spleen, bone marrow, and peripheral blood. Together, our results suggest that murine reticuloendothelial macrophages, but not those in the bone marrow and peritoneal cavity, play a significant role in the clearance of porcine hemopoietic cells in vivo. Because injection of M-liposomes i.v. mainly depletes splenic macrophages and liver Kupffer cells, the spleen and/or liver are likely the primary sites of porcine cell clearance in vivo.  相似文献   

18.
Allogeneic bone marrow transplantation (in immunocompetent adults) has always required cytoreductive treatment of recipients with irradiation or cytotoxic drugs to achieve lasting engraftment at levels detectable by non-PCR-based techniques ('macrochimerism' or 'mixed chimerism'). Only syngeneic marrow engraftment at such levels has been achieved in unconditioned hosts. This requirement for potentially toxic myelosuppressive host pre-conditioning has precluded the clinical use of allogeneic bone marrow transplantation for many indications other than malignancies, including tolerance induction. We demonstrate here that treatment of naive mice with a high dose of fully major histocompatibility complex-mismatched allogeneic bone marrow, followed by one injection each of monoclonal antibody against CD154 and cytotoxic T-lymphocyte antigen 4 immunoglobulin, resulted in multi-lineage hematopoietic macrochimerism (of about 15%) that persisted for up to 34 weeks. Long-term chimeras developed donor-specific tolerance (donor skin graft survival of more than 145 days) and demonstrated ongoing intrathymic deletion of donor-reactive T cells. A protocol of high-dose bone marrow transplantation and co-stimulatory blockade can thus achieve allogeneic bone marrow engraftment without cytoreduction or T-cell depletion of the host, and eliminates a principal barrier to the more widespread use of allogeneic bone marrow transplantation. Although efforts have been made to minimize host pre-treatment for allogeneic bone marrow transplantation for tolerance induction, so far none have succeeded in eliminating pre-treatment completely. Our demonstration that this can be achieved provides the rationale for a safe approach for inducing robust transplantation tolerance in large animals and humans.  相似文献   

19.
The mechanisms behind the increased incidence of marrow graft failure in recipients that receive allogeneic marrow depleted of T cells were studied. Recipient mice were lethally irradiated and challenged with bone marrow cells (BMC) from C.B-17 +/+ (+/+) donors. Radioisotope 125IUdR incorporation was assessed 5 to 7 days after transfer to determine the extent of engraftment. Some groups received BMC in which the T cells were removed by treatment with antibody and C. In addition, some groups received BMC from T cell-deficient C.B-17 scid/scid (SCID) mice to determine the postulated need for donor T cells in hematopoiesis and engraftment. In a model system that distinguishes between possible host NK cell and radioresistant T cell-mediated rejection of marrow allografts, it was determined that the absence of donor T cells in a marrow graft does not affect engraftment in syngeneic recipients. However, both host NK cell and radioresistant T cell rejection was markedly enhanced when SCID BMC or BMC from C.B-17 +/+ donors that had T cells removed by antibody and complement were infused into irradiated allogeneic recipients. Furthermore, the addition of alloreactive thymocytes as a source of T cells could abrogate this increased susceptibility of the BMC to host rejection mechanisms. As determined by histology and 59Fe uptake, the addition of thymocytes resulted in enhanced erythropoiesis. These results suggest that the increased incidence of marrow graft failure when BMC depleted of T cells are used is a result of active rejection by host effector cells and that the adverse effect of marrow T cell depletion can be reversed by the addition of thymocytes.  相似文献   

20.
Posttransplant infusion of donor bone marrow cells (BMC) induces tolerance to allografts in adult mice, dogs, nonhuman primates, and probably humans. Here we used a mouse skin allograft model and an allogeneic radiation chimera model to examine the role of MHC Ags in tolerance induction. Infusion of MHC class II Ag-deficient (CIID) BMC failed to prolong C57BL/6 (B6) skin grafts in ALS- and rapamycin-treated B10.A mice, whereas wild-type B6 or MHC class I Ag-deficient BMC induced prolongation. Removal of class II Ag-bearing cells from donor BMC markedly reduced the tolerogenic effect compared with untreated BMC, although graft survival was significantly longer in mice given depleted BMC than that in control mice given no BMC. Infusion of CIID BMC into irradiated syngeneic B6 or allogeneic B10.A mice produced normal lymphoid cell reconstitution including CD4+ T cells except for the absence of class II Ag-positive cells. However, irradiated B10.A mice reconstituted with CIID BMC rejected all B6 and a majority of CIID skin grafts despite continued maintenance of high degree chimerism. B10.A mice reconstituted with B6 BMC maintained chimerism and accepted both B6 and CIID skin grafts. Thus, expression of MHC class II Ag on BMC is essential for allograft tolerance induction and peripheral chimerism with cells deficient in class II Ag does not guarantee allograft acceptance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号