首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
1-(2,3-Dideoxy-3-amino-alpha-D-arabino-hexofuranosyl)thymine is considered as a conformationally restricted acyclic nucleoside using the furanose ring to link the diol backbone to the nucleobase. The appropriately substituted phosphoramidites were synthesised via 1-(5,6-di-O-acetyl-2,3-dideoxy-3-phthalimido-alpha-D-arabino-hexofuranosyl)thymine and used in oligodeoxynucleotide (ODN) synthesis. However, the binding affinity of the mixed ODNs towards complementary DNA and RNA was decreased compared to the wild-type oligos. The decrease was smaller when the monomer was inserted near the end of the sequence. The insertions into an alpha T sequence or in a beta T sequence gave nearly the same dropping in melting temperature per modification which indicates that the new nucleotide modifications behave both as alpha and beta nucleotides.  相似文献   

2.
The synthesis of 1-(beta-D-2'-deoxyribosyl)-2-pyrimidinone (dK) and its 5-methyl derivative (d5) from 2'-deoxycytidine or 2'-deoxythymidine, respectively, via silver oxide oxidation of 4-hydrazinopyrimidines is described. The necessary hydrazine substituted pyrimidine nucleosides have been prepared by transamination of a protected cytidine derivative or by addition/elimination reactions to an O4-sulfonated thymidine derivative. Oxidation of the 4-hydrazino pyrimidines was complicated by a competing hydrolytic reaction which generated 2'-deoxyuridine or 2'-deoxythymidine. However, in the presence of an organic base such as triethylamine, oxidation became the predominant reaction. After suitable protection and formation of the 3'-phosphoramidite derivatives, these modified nucleosides were incorporated into seven self-complementary oligodeoxynucleotides by chemical synthesis using phosphite triester methodology. Oligodeoxynucleotides were prepared such that dA-dT and dG-dC base pairs were substituted by dA-d5 or dG-dK base pairs, respectively. Both circular dichroism spectra and thermal denaturation studies were used to characterize the modified oligodeoxynucleotides.  相似文献   

3.
Y Nomura  Y Ueno    A Matsuda 《Nucleic acids research》1997,25(14):2784-2791
We report here the site-specific introduction of functional groups into phosphodiester oligodeoxynucleotides (ODNs). ODNs containing both 5-( N-aminohexyl)-carbamoyl-2'-deoxyuridine (H), which serves as a tether for the further conjugation of functional groups, and 5-(N,N-dimethylaminohexyl)carbamoyl-2'-deoxyuridine (D), which contributes to the thermal stability of the duplex and to the resistance to nucleolytic hydrolysis by nucleases, were synthesized. Functional groups such as folic acid and palmitic acid were site-specifically introduced into the terminus of the aminohexyl-linker of H. The thermal stability and resistance toward nuclease digestion of the modified ODNs were studied. We found that ODNs containing D and H formed stable duplexes with both the complementary DNA and RNA strands even when a bulky functional group such as folic acid, palmitic acid or cholesterol was attached to the terminus of the amino-linker. We also found that ODN analogues which contained D were more resistant to nucleolytic degradation by exo- and endonuclease than the unmodified ODN. Furthermore, duplexes formed by ODNs containing D and the complementary RNA could elicit RNase H activity.  相似文献   

4.
New representatives of the [ H-phosphonate's class, N-acyl-2'-O-methyl-5'-O-dimethoxytritylribonucleoside 3'-H-phosphonates, were synthesized via salicylchlorophosphine and used for the automatic synthesis of oligo(2'-O-methylribonucleotides). The efficiency of the method was demonstrated by the synthesis of a number of pyrimidine oligomers with chain length from 6 to 15 monomers.  相似文献   

5.
6.
The first study about the anxiolytic activity of two chiral tetrahydrocarbazoles is presented. This new chiral compounds were prepared through an organocatalytic strategy via trienamine activation. The in situ ortho-quinodimethane species, formed by the condensation of the N-protected 2-methylindole acrylaldehyde with a sterically hindred diarylsilylprolinol ether derivative as catalyst, easily participate in a Diels–Alder reaction with the ethyl cyanophenyl acrylate as dienophile, in good yields and excellent stereoselectivity. These compounds showed activity against anxiety and mood disorders that can possibly contribute in the discovery of new drugs. In addition, the use of N-protected 2-methylindole acrylaldehyde will set a new base for the synthesis of medically and pharmacologically important tetrahydrocarbazoles via trienamine catalysis.  相似文献   

7.
8.
Eukaryotic ribonucleases H of known sequence are composed of an RNase H domain similar in size and sequence to that of Escherichia coli RNase HI and additional domains of unknown function. The RNase H1 of Saccharomyces cerevisiae has such an RNase H domain at its C-terminus. Here we show that the N-terminal non-RNase H portion of the yeast RNase H1 binds tightly to double-stranded RNA (dsRNA) and RNA-DNA hybrids even in the absence of the RNase H domain. Two copies of a sequence with limited similarity to the dsRNA-binding motif are present in this N-terminus. When the first of these sequences is altered, the protein no longer binds tightly to dsRNA and exhibits an increase in RNase H activity. Unlike other dsRNA-binding proteins, increasing the Mg2+ concentration from 0.5 mM to 5 mM inhibits binding of RNase H1 to dsRNA; yet a protein missing the RNase H domain binds strongly to dsRNA even at the higher Mg2+ concentration. These results suggest that binding to dsRNA and RNase H activity are mutually exclusive, and the Mg2+ concentration is critical for switching between the activities. Changes in the Mg2+ concentration or proteolytic severing of the dsRNA-binding domain could alter the activity or location of the RNase H and may govern access of the enzyme to the substrate. Sequences similar to the dsRNA-binding motif are present in other eukaryotic RNases H and the transactivating protein of cauliflower mosaic virus, suggesting that these proteins may also bind to dsRNA.  相似文献   

9.
Oligodeoxynucleotides with a phosphorus atom in which one of the non-bridging oxygen atoms is substituted by selenium were prepared and investigated with respect to their antisense properties. A general synthesis of phosphoroselenoate analogs of oligonucleotides is described using potassium selenocyanate as the selenium donor. The compounds, characterized by 31P NMR, were shown to decompose to phosphate with a half-life of ca. 30 days. Melting temperatures of duplexes between poly(rA) or poly(rI) with oligo(dT) and oligo(dC), respectively, indicate diminished hybridization capability of phosphoroselenoate oligomers relative to both the unmodified phosphodiester oligomers and the phosphorothioate congeners. A phosphoroselenoate 17-mer is a sequence specific inhibitor of rabbit beta-globin synthesis in wheat germ extract and in injected Xenopus oocytes. In contrast phosphoroselenoate analogs are potent non-sequence specific inhibitors in rabbit reticulocyte lysate. In vitro HIV assays were carried out on a phosphoroselenoate sequence and compared with a phosphorothioate analogue that has previously been shown to exhibit anti-HIV activity (Matsukura et al., Proc. Natl. Acad. Sci. (1987) 84, 7706-7710). The phosphoroselenoate was somewhat less active, and was much more toxic to the cells.  相似文献   

10.
A model RNA template-primer system is described for the study of RNA-directed double-stranded DNA synthesis by purified avian myeloblastosis virus DNA polymerase and its associated RNase H. In the presence of complementary RNA primer, oligo(rI), and the deoxyribonucleoside triphosphates dGTP, dTTP, and dATP, 3'-(rC)30-40-poly(rA) directs the sequential synthesis of poly(dT) and poly(dA) from a specific site at the 3' end of the RNA template. With this model RNA template-primer, optimal conditions for double-stranded DNA synthesis are described. Analysis of the kinetics of DNA synthesis shows that initially there is rapid synthesis of poly(dT). After a brief time lag, poly(dA) synthesis and the DNA polymerase-associated RNase H activity are initiated. While poly(rA) is directing the synthesis of poly(dT), the requirements for DNA synthesis indicate that the newly synthesized poly(dT) is acting as template for poly(dA) synthesis. Furthermore, selective inhibitor studies using NaF show that activation of RNase H is not just a time-related event, but is required for synthesis of the anti-complementary strand of DNA. To determine the specific role of RNase H in this synthetic sequence, the primer for poly(dA) synthesis was investigated. By use of formamide--poly-acrylamide slab gel electrophoresis, it is shown that poly(dT) is not acting as both template and primer for poly(dA) synthesis since no poly(dT)-poly(dA) covalent linkages are observed in radioactive poly(dA) product. Identification of 2',3'-[32P]AMP on paper chromatograms of alkali-treated poly(dA) product synthesized with [alpha-32P]dATP as substrate demonstrates the presence of rAMP-dAMP phosphodiester linkages in the poly(dA) product. Therefore, a new functional role of RNase H is demonstrated in the RNA-directed synthesis of double-stranded DNA. Not only is RNase H responsible for the degradation of poly(rA) following formation of a poly(rA)-poly(dT) hybrid but also the poly(rA)fragments generated are serving as primers for initiation of synthesis of the second strand of the double-stranded DNA.  相似文献   

11.
12.
13.
14.
15.
A series of novel 2-(3,5-diphenyl-4,5-dihydro-1H-pyrazol-1-yl)-4-phenylthiazoles have been prepared by a three-component cyclo-condensation of various chalcones, thiosemicarbazide and phenacyl bromide. The easy work-up of the products, rapid reaction, and mild conditions are notable features of this protocol. The reaction was efficiently catalyzed in one-pot by a few drops of HCl in EtOH under reflux conditions providing the title compounds in moderate to high yields. The antibacterial activity of the selected products was examined. Some products exhibit promising activities.  相似文献   

16.
A non-nucleoside linker based upon the ligand 2,2'-bipyridine and ethylene glycol is prepared and placed into the backbone of a number of oligonucleo-tides. The bipyridine ligand is reacted with cis -dichloro bis(2,2'-bipyridyl) Ru(II) to generate the relatively substitutionally inert complex based upon the well-characterized tris -2,2'-bipyridyl Ru(II). The ruthenium-containing DNA complexes exhibited UV and fluorescence characteristics that are consistent with those previously observed for simple tris -2,2'-bipyridyl Ru(II) complexes. Oligonucleotides containing the ruthenium complex will form both DNA duplexes and triplexes with stabilities that are slightly better than those formed from simple tethered oligonucleotide probes in which the two hybridizing sequences are tethered by simple tri(ethylene glycol) or hexa(ethylene glycol) linkers.  相似文献   

17.
Oligoribonucleotides containing 3'-S-phosphorothiolate linkages are valuable probes in nucleic acid biochemistry, but their accessibility has been limited because 3'-thioribonucleoside phosphoramidites have not been available. We synthesized 3'-thioribonucleoside derivatives (C, G, and U) via glycosylations of nucleoside bases with 3-S-thiobenzoyl-5-O-toluoyl-1,2-O-diacetylfuranose 5, which was obtained from 1 ,2-O-isopropylidene-5-O-toluoyl-3-trifluoromethane-sulfonyl-alpha-D-x ylofuranose 2 by SN2 displacement with sodium thiobenzoate. Additionally, a 3'-thioinosine derivative was prepared from inosine via direct modification of the ribose, analogous to the previously reported synthesis of 3'-thioadenosine, except that the intermediate 2',3'-epoxide 9 was first protected as the 5'-O-tert-butyldiphenylsilyl ether prior to subsequent synthetic steps. This hydrophobic silyl group facilitated extraction and isolation of synthetic intermediates. After removal of the protecting groups, the 3'-thionucleosides (C, G, U, and I) were treated with 2,2'-dipyridyl disulfide to protect the free thiol group as a disulfide. The 3'-thionucleosides were converted to the corresponding phosphorothioamidites using procedures analogous to those for standard phosphoramidites. The amino groups of 3'-thiocytidine and 3'-thioguanosine were protected as benzoyl and isobutyryl amides, respectively, and the 5'- and 2'-hydroxyl groups of each nucleoside were protected as dimethoxytrityl and tert-butyldimethylsilyl ethers, respectively. The 3'-thiol group was deprotected by reduction with DTT and phosphitylated to afford analytically pure 3'-S-phosphorothioamidites 15, which were incorporated into oligoribonucleotides by solid-phase synthesis. Chemical assays and mass spectrometry of the synthetic RNA showed that ribose-3'-S-phosphorothiolate linkages were installed correctly and efficiently into RNA oligonucleotides using phosphoramidite chemistry.  相似文献   

18.
The modification of Escherichia coli citrate synthase (citrate oxaloacetatelyase(pro-3S-CH2.COO- leads to acetyl-CoA, EC 4.1.3.7) with 5,5'-dithiobis-(2-nitrobenzoic acid) has been investigated. (1) In low ionic strength (20 mM Tris.HCl, pH 8.0): (A) Eight thiol groups per tetramer of the native enzyme reacted with Nbs2. (b) Two of the eight accessible thiols were modified rapidly with the loss of 26% enzyme activity but with no change in the NADH inhibition. The remaining six were modified more slowly, resulting in a further 60% loss of activity and complete densensitization to NADH. (c) The 2nd-order rate constant for the modification of the rapidly reacting thiols is 2.5.10(4) M-1.min-1. At the reagent concentrations used (0.1 to 0.2 mM) the modification of the six thiols in the slow kinetic set appeared to be 1st-order; at 0.1 mM dithionitrobenzoic acid their rate of modification was approximately 30 times slower than the thiols in the fast kinetic set. (2) In high ionic strength (20 mM Tris.HCl, pH 8.0, 0.1 M KCl): (a) Four thiol groups were modified in a single kinetic set and it appeared that these thiols are four of the six slowly modified in the absence of KCl. (b) The modification resulted in 70% loss of enzyme activity and complete loss of NADH inhibition. (3) From the kinetic analysis it is proposed that the four thiol groups accessible to dithionitrobenzoic acid in the absence and presence of 0.1 M KCl are those involved in the response of NADH. Modification of any one of these four groups produced no reduction in the inhibition; instead, loss of NADH sensitivity was coincident with the appearance of tetrameric protein possessing three substituted thiols, whereas enzyme with one or two modified groups was still fully inhibited by NADH.  相似文献   

19.
A series of new 4-aza-podophyllotoxin analogs containing thiazole unit were synthesized via multi-component reactions of aldehydes, tetronic acid and 2-methylbenzo[d]thiazol-5-amine under microwave irradiation. The method not only provides a valuable tool in design and synthesis of new 4-aza-podophyllotoxin analogs but also has the advantages of atom-economy, environmental-friendliness, good yields and operational simplicity. More importantly, the preliminary evaluation on the cytotoxic activity of this type of new 4-aza-podophyllotoxin analogs has resulted in the finding of several compounds with potent and efficacious cytotoxicity to three carcinoma cell lines M14, MCF7 and SW1116.  相似文献   

20.
A novel base pair, 2-amino-6-(N,N-dimethylamino)purine (denoted x) and the counter part, pyridin-2-one (denoted y) were designed. The bulky 6-dimethylamino group of x is expected to eliminate base pairing with all natural bases. The phosphoramidite of x for DNA templates and the 2'-deoxyribonucleoside triphosphate of y (dyTP) for a substrate were synthesized, and the selectivity of the enzymatic incorporation of dyTP opposite x in the templates was examined. dyTP was preferentially incorporated opposite x than canonical dNTPs by Klenow fragment of Escherichia coli DNA polymerase I. While dyTP was also incorporated opposite A and G, the misincorporation was suppressed in the presence of dTTP and dCTP, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号