首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Malacostracan crustaceans have evolved a conserved stereotyped cell division pattern in the post-naupliar germ band. This cleavage pattern is unique in arthropods investigated so far, and allows a combined analysis of gene expression and cell lineage during segmentation and organ development at the level of individual cells. To investigate the cell lineage in the germ band of the isopod Porcellio scaber, we used a 4D-microscopy system, which enables us to analyse every cell event in the living embryo. The study was combined with the analysis of the expression of the gene engrailed (en) at different stages of germ band formation. Our findings confirm the results of earlier investigations of the cell division pattern in the posterior part of the isopod germ band. Furthermore, we can show that in the anterior region, in contrast to the posterior part, cleavage directions are variable and cell sorting takes place—similar to other arthropod germ bands. Additionally, the gene expression pattern of en in this region is not as regular as in the post-naupliar germ band, and only later becomes regulated into its characteristic stripe pattern. The comparison of the cell lineage of P. scaber with that of other malacostracan crustaceans shows an enhancement in the velocity of cell divisions relative to the arrangement of these cells in rows in the isopod germ band. The striking similarity of the formation of the genealogical units in the anterior part suggests a sister group relationship between the peracarid taxa Tanaidacea and Isopoda.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

2.
3.
4.
During Drosophila external sensory organ development, one sensory organ precursor (SOP) arises from a proneural cluster, and undergoes asymmetrical cell divisions to produce an external sensory (es) organ made up of different types of daughter cells. We show that phyllopod (phyl), previously identified to be essential for R7 photoreceptor differentiation, is required in two stages of es organ development: the formation of SOP cells and cell fate specification of SOP progeny. Loss-of-function mutations in phyl result in failure of SOP formation, which leads to missing bristles in adult flies. At a later stage of es organ development, phyl mutations cause the first cell division of the SOP lineage to generate two identical daughters, leading to the fate transformation of neurons and sheath cells to hair cells and socket cells. Conversely, misexpression of phyl promotes ectopic SOP formation, and causes opposite fate transformation in SOP daughter cells. Thus, phyl functions as a genetic switch in specifying the fate of the SOP cells and their progeny. We further show that seven in absentia (sina), another gene required for R7 cell fate differentiation, is also involved in es organ development. Genetic interactions among phyl, sina and tramtrack (ttk) suggest that phyl and sina function in bristle development by antagonizing ttk activity, and ttk acts downstream of phyl. It has been shown previously that Notch (N) mutations induce formation of supernumerary SOP cells, and transformation from hair and socket cells to neurons. We further demonstrate that phyl acts epistatically to N. phyl is expressed specifically in SOP cells and other neural precursors, and its mRNA level is negatively regulated by N signaling. Thus, these analyses demonstrate that phyl acts downstream of N signaling in controlling cell fates in es organ development.  相似文献   

5.
Background: Homeotic genes controlling the identity of flower organs have been characterized in several plant species. To determine whether cells expressing these genes are specified to follow particular developmental fates, we have studied the pattern of cell lineages in developing flowers of Antirrhinum. Each flower has four whorls of organs, and progenitor cells of these can be marked at particular stages of development using a temperature-sensitive transposon. This allows the cell lineages in the flower to be followed, as well as giving information about rates of cell division.Results We show here that, prior to the emergence of organ primordia, cells in the floral meristem have not been allocated organ identities. After this time, lineage restrictions arise between whorls, correlating with the onset of expression of genes that control organ identity. A further lineage restriction appears slightly later on, between the dorsal and ventral surfaces of the petal. Our results further suggest that the rates of cell division fluctuate during key stages of meristem development, perhaps as a consequence of meristem-identity gene expression.Conclusion The patterns of lineage restriction and organ-identity gene expression in early floral meristems are consistent with some cells being allocated specific identities at about this stage of development. Plant cells cannot move relative to each other, so lineage restrictions in plants may reflect particular orientations and/or rates of growth at boundary regions.  相似文献   

6.
 Trochoblasts are the first cells to differentiate during the development of spiralian embryos. Differentiation is accompanied by a cell division arrest. In embryos of the limpet Patella vulgata, the participation of cell cycle-regulating factors in trochoblast arrest was analysed as a first step to unravel its cause. We determined the cell cycle phase in which the trochoblasts are arrested by analysing the subcellular locations of mitotic cyclins. The results show that the trochoblasts are most likely arrested in the G2 phase. This was supported by measurement of the DNA content in trochoblast nuclei after the last division. Trochoblasts complete their final division at the sixth mitotic cycle. This mitotic cycle resembles the first postblastoderm cell cycle of Drosophila, in which mitotic activity is controlled by expression of the string gene. As failure of string expression results in cell cycle arrest in the G2 phase, negative regulation of a Patella string homolog could be responsible for trochoblast arrest. Although Stl messengers disappeared from trochoblasts during their final division, expression was observed again 20 min later. Messengers remained present in all trochoblasts at low levels during further development. Thus, expression of the stringlike gene allows the cell cycle arrest of these cells, whereas in Drosophila cells arrested in division lack string messengers. Received: 10 February 1997 / Accepted: 23 November 1997  相似文献   

7.
8.
The ascidian larva has a pigmented ocellus comprised of a cup-shaped array of approximately 30 photoreceptor cells, a pigment cell, and three lens cells. Morphological, physiological and molecular evidence has suggested evolutionary kinship between the ascidian larval photoreceptors and vertebrate retinal and/or pineal photoreceptors. Rx, an essential factor for vertebrate photoreceptor development, has also been suggested to be involved in the development of the ascidian photoreceptor cells, but a recent revision of the photoreceptor cell lineage raised a crucial discrepancy between the reported expression patterns of Rx and the cell lineage. Here, we report spatio-temporal expression patterns of Rx at single-cell resolution along with mitotic patterns up to the final division of the photoreceptor-lineage cells in Ciona. The expression of Rx commences in non-photoreceptor a-lineage cells on the right side of the anterior sensory vesicle at the early tailbud stage. At the mid tailbud stage, Rx begins to be expressed in the A-lineage photoreceptor cell progenitors located on the right side of the posterior sensory vesicle. Thus, Rx is specifically but not exclusively expressed in the photoreceptor-lineage cells in the ascidian embryo. Two cis-regulatory modules are shown to be important for the photoreceptor-lineage expression of Rx. The cell division patterns of the photoreceptor-lineage cells rationally explain the generation of the cup-shaped structure of the pigmented ocellus. The present findings demonstrate the complete cell lineage of the ocellus photoreceptor cells and provide a framework elucidating the molecular and cellular mechanisms of photoreceptor development in Ciona.  相似文献   

9.
Ostreococcus tauri (Prasinophyceae) is a marine unicellular green alga which diverged early in the green lineage. The interest of O. tauri as a potential model to study plant cell division is based on its key phylogenetic position, its simple binary division, a very simple cellular organisation and now the availability of the full genome sequence. In addition O. tauri has a minimal yet complete set of cell cycle control genes. Here we show that division can be naturally synchronised by light/dark cycles and that organelles divide before the nucleus. This natural synchronisation, although being only partial, enables the study of the expression of CDKs throughout the cell cycle. The expression patterns of OtCDKA and OtCDKB were determined both at the mRNA and protein levels. The single OtCDKA gene is constantly expressed throughout the cell cycle, whereas OtCDKB is highly regulated and expressed only in S/G2/M phases. More surprisingly, OtCDKA is not phosphorylated at the tyrosine residue, in contrast to OtCDKB which is strongly phosphorylated during cell division. OtCDKA kinase activity appears before the S phase, indicating a possible role of this protein in the G1/S transition. OtCDKB kinase activity occurs later than OtCDKA, and its tyrosine phosphorylation is correlated to G2/M, suggesting a possible control of the mitotic activity. To our knowledge this is the first organism in the green lineage which showed CDKB tyrosine phosphorylation during cell cycle progression.  相似文献   

10.
11.
The cytoarchitectural simplicity of the cerebral cortex makes it an attractive system to study central nervous system (CNS) histogenesis—the process whereby diverse cells are generated in the right numbers at the appropriate place and time. Recently, multipotent stem cells have been implicated in this process, as progenitor cells for diverse types of cortical neurons and glia. Continuous analysis of stem cell clone development reveals stereotyped division patterns within their lineage trees, highly reminiscent of neural lineage trees in arthropods and Caenorhabditis elegans. Given that these division patterns play a critical part in generating diverse neural types in invertebrates, we speculate that they play a similar role in the cortex. Because stereotyped lineage trees can be observed from cells growing at clonal density, cell-intrinsic factors are likely to have a key role in stem cell behavior. Cortical stem cells also respond to environmental signals to alter the types of cells they generate, providing the means for feedback regulation on the germinal zone. Evidence is accumulating that cortical stem cells, influenced by intrinsic programs and environmental signals, actually change with development—for example, by reducing the number and types of neurons they produce. Age-related changes in the stem cell population may have a critical role in orchestrating development; whether these cells truly self-renew is a point of discussion. In summary, we propose that cortical stem cells are the focus of regulatory mechanisms central to the development of the cortical cytoarchitecture. © 1998 John Wiley & Sons, Inc. J Neurobiol 36: 162–174, 1998  相似文献   

12.
Summary A method is presented which allows the study of the progeny of single cells during Drosophila embryogenesis. Cells from various larval anlagen of donor embryos labelled with a lineage tracer are individually transplanted from defined positions into similar, or different, positions in unlabelled hosts. The clones produced by these cells can be seen in whole mounts or in sections of fixed material, when using a histochemical marker (i.e. HRP), and/or in living embryos, when using fluorescent lineage tracers. The characteristics of the clones disclose lineage parameters, such as division patterns, morphogenetic movements and differentiation. The method is especially useful for testing the respective roles of positional information and cell lineage on the commitment of progenitor cells by transplanting these cells into heterotopic positions or into hosts of different genotypes.  相似文献   

13.
14.
The RNA‐binding protein Musashi1 (Msi1) is one of two mammalian homologues of DrosophilaMusashi, which is required for the asymmetric cell division of sensory organ precursor cells. In the mouse central nervous system (CNS), Msi1 is preferentially expressed in mitotically active progenitor cells in the ventricular zone (VZ) of the neural tube during embryonic development and in the subventricular zone (SVZ) of the postnatal brain. Previous studies showed that cells in the SVZ can contribute to long‐term neurogenesis in the olfactory bulb (OB), but it remains unclear whether Msi1‐expressing cells have self‐renewing potential and can contribute to neurogenesis in the adult. Here, we describe the generation of Msi1‐CreERT2 knock‐in mice and show by cell lineage tracing that Msi1‐CreERT2‐expressing cells mark neural stem cells (NSCs) in both the embryonic and adult brain. Msi1‐CreERT2 mice thus represent a new tool in our arsenal for genetically manipulating NSCs, which will be essential for understanding the molecular mechanisms underlying neural development. genesis, 51:128–134, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

15.
 Homologs of the Drosophila snail gene have been characterized in several vertebrates. In addition to being expressed in mesoderm during gastrulation, vertebrate snail genes are also expressed in presumptive neural crest and/or its derivatives. Given that neural crest is unique to vertebrates and is considered to be of fundamental importance in their evolution, we have cloned and characterized the expression of a snail gene from amphioxus, a cephalochordate widely accepted as the sister group of the vertebrates. We show that, at the amino acid sequence level, the amphioxus snail gene is a clear phylogenetic outgroup to all the characterized vertebrate snail genes. During embryogenesis snail expression initially becomes restricted to the paraxial or presomitic mesoderm of amphioxus. Later, snail is expressed at high levels in the lateral neural plate, where it persists during neurulation. Our results indicate that an ancestral function of snail genes in the lineage leading to vertebrates is to define the paraxial mesoderm. Furthermore, our results indicate that a cell population homologous to the vertebrate neural crest may be present in amphioxus, thus providing an important link in the evolution of this key vertebrate tissue. Received: 11 May 1998 / Accepted: 2 August 1998  相似文献   

16.
In the mouse blastocyst, some cells of the inner cell mass (ICM) develop into primitive endoderm (PE) at the surface, while deeper cells form the epiblast. It remained unclear whether the position of cells determines their fate, such that gene expression is adjusted to cell position, or if cells are pre-specified at random positions and then sort. We have tracked and characterised dynamics of all ICM cells from the early to late blastocyst stage. Time-lapse microscopy in H2B-EGFP embryos shows that a large proportion of ICM cells change position between the surface and deeper compartments. Most of this cell movement depends on actin and is associated with cell protrusions. We also find that while most cells are precursors for only one lineage, some give rise to both, indicating that lineage segregation is not complete in the early ICM. Finally, changing the expression levels of the PE marker Gata6 reveals that it is required in surface cells but not sufficient for the re-positioning of deeper cells. We provide evidence that Wnt9A, known to be expressed in the surface ICM, facilitates re-positioning of Gata6-expressing cells. Combining these experimental results with computer modelling suggests that PE formation involves both cell sorting movements and position-dependent induction.  相似文献   

17.
18.
19.
An amphioxus Msx gene expressed predominantly in the dorsal neural tube   总被引:2,自引:0,他引:2  
 Genomic and cDNA clones of an Msx class homeobox gene were isolated from amphioxus (Branchiostoma floridae). The gene, AmphiMsx, is expressed in the neural plate from late gastrulation; in later embryos it is expressed in dorsal cells of the neural tube, excluding anterior and posterior regions, in an irregular reiterated pattern. There is transient expression in dorsal cells within somites, reminiscent of migrating neural crest cells of vertebrates. In larvae, mRNA is detected in two patches of anterior ectoderm proposed to be placodes. Evolutionary analyses show there is little phylogenetic information in Msx protein sequences; however, it is likely that duplication of Msx genes occurred in the vertebrate lineage. Received: 12 October 1998 / Accepted: 26 December 1998  相似文献   

20.
During development one mechanism for generating different cell types is asymmetric cell division, by which a cell divides and contributes different factors to each of its daughter cells. Asymmetric cell division occurs through out the eukaryotic kingdom, from yeast to humans. Many asymmetric cell divisions occur in a defined orientation. This implies a cellular mechanism for sensing direction, which must ultimately lead to differences in gene expression between two daughter cells. In this review, we describe two classes of molecules: regulatory factors that are differentially expressed upon asymmetric cell division, and components of a signal transduction pathway that may define cell polarity. The lin-11 and mec-3 genes of C. elegans, the Isl-1 gene of mammals and the HO gene of yeast, encode regulatory factors that determine cell type of one daughter after asymmetric cell division. The CDC24 and CDC42 genes of yeast affect both bud positioning and orientation of mating projections, and thus may define a general cellular polarity. We speculate that molecules such as Cdc24 and Cdc42 may regulate expression of genes such as lin-11, mec-3, Isl-1 and HO upon asymmetric cell division.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号